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Abstract— Some frequency-domain controller design prob-
lems are solved using a finite number of frequency samples.
Consequently, the performance and stability conditions are not
guaranteed for the frequencies between the frequency samples.
In this paper, all possible interpolants between the frequency
samples of the open-loop system are bounded using convex
constraints on a linearly parameterized controller. These con-
straints are integrated in a method which solves an H∞ control
problem based on spectral models by convex optimization. The
method is applied to a simulation example. It is shown how the
added conservatism is reduced while the number of frequency
samples is increased.

I. INTRODUCTION

Many difficulties arise when physical laws or identification
methods are used to obtain parametric models. Consequently,
some controller design methods have been developed based
on frequency-domain or time-domain data instead of using
parametric models. Frequency-domain data or spectral mod-
els are preferred because the stability condition and some
performance specifications can be defined in frequency-
domain.

Several frequency-domain methods as loop-shaping in
Bode diagram, Ziegler-Nichols tuning method and the Quan-
titative Feedback Theory [1] are still used in many applica-
tions. Although the graphical tools are usually used in these
approaches, with new progress in numerical methods for
solving optimization problems, new approaches for controller
design have been developed [2], [3], [4], [5], [6], [7], [8],
[9]. These controller design methods use only a finite number
of frequency-domain data to solve the control problem. As
a consequence, the stability and performance constraints
are only verified at a finite number of frequency samples.
Practically, if the number of samples is large enough, this
may lead to stable controllers with desired performances.
However, in this paper it is shown that, it is possible to
satisfy the constraints for all frequencies only using a finite
number of frequencies if some assumptions are verified on
the system. Nevertheless, the difficulty is to know which is
the minimum number of necessary frequencies. The systems
behavior between the measured frequency samples is named,
in the sequel, the inter-grid behavior.

In [10], the set of all possible interpolants that corresponds
to the measured frequency samples is defined with a prior
assumption in the impulse response of the system. The
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absolute value of the impulse response of the system is
assumed to be bounded by a decreasing exponential func-
tion that converges to zero. As a result, a bound for the
difference between the linear interpolation model and all
the possible interpolants between the frequency samples is
obtained. This result cannot be applied for systems with
integrators because the impulse response cannot be bounded
with a decreasing exponential function that converges to zero.
A similar problem is treated in [11]. A prior assumption
is considered on the relative stability of the underlying
system. This means that the real part of the poles of the
underlying system are assumed to be greater than a chosen
positive value. Then, a frequency dependent bound is given
for the all possible interpolants. This reduces slightly the
conservatism compared to the previously mentioned constant
bound proposed by [10]. These results have been applied
to a controller design method presented in [12]. The main
drawback of the approach is that non-parametric controllers
are obtained. A second step of interpolation is needed to
obtain a parametric controller to be applicable in a feedback
loop.

In this paper, using some ideas presented in [10], a
solution to the theoretical problem of the inter-grid behavior
is given for the controller design method presented in [8],
[9]. These papers propose an open-loop shaping method with
infinity norm constraints on the weighted closed-loop transfer
functions. A linearly parameterized controller K is designed
for the system G such that the open-loop transfer function
L = KG is close to a desired open-loop transfer function.
With the aim of finding the inter-grid uncertainty, a bound
on the impulse response of L is defined. This permits to
compute the inter-grid uncertainty bound. This uncertainty
defines all the systems describing the inter-grid behavior.
Then, this bound is integrated in the original performance
and stability constraints of the controller design method.
Finally, a linear constraint is added to ensure the imposed
bound on the impulse response of L. This impulse response
is calculated only using a finite number of the open-loop
frequency response samples. The uncertainty bound are also
developed for open-loop systems containing one integrator.
The proposed method can be used for PID controllers as
well as for higher order linearly parametrized controllers in
discrete or continuous time. This approach can also treat
the multimodel uncertainty case. The proposed approach is
applied in a simulation example showing how the added
conservatism is decreased when the number of the frequency
samples is increased.

This paper is organized as follows: First, all possible



interpolants between the frequency samples of the frequency
response of a signal are bounded based on some results
of [10] in Section II. Section III introduces this bound for
a general controller design problem in Nyquist diagram.
The results are applied to the method proposed in [8], [9].
Simulation results are given in IV. Finally, some conclusions
are given in Section V.

II. ANALYSIS OF THE INTER-GRID BEHAVIOR

A. Inter-grid uncertainty

Based on the results shown in [10], the frequency sam-
ples of a signal are used to define an uncertainty bound.
This bound represents all possible interpolants between the
samples.

Assume that we have N + 1 samples, X(ωk) for k =
0, . . . , N of the original frequency response X(ω) between
0 and ωmax rad/s spaced by ωmax

N . It is considered that the
frequency response of X(ω) is negligible for frequencies
higher than ωmax. Let the linear interpolation model Xλ(ω)
be defined as the frequency response between two consecu-
tive frequency points X(ωk) and X(ωk+1):

Xλ(ω) = λX(ωk) + (1− λ)X(ωk+1) for ωk < ω < ωk+1

(1)
where ω is defined as ω = λωk + (1 − λ)ωk+1 and:

λ =
ω − ωk+1

ωk − ωk+1
λ ∈ [0, 1] (2)

For a signal X(ω) with an Inverse Fourier Transform x(t)
satisfying |x(t)| ≤ Mβ−t, it is shown in [10] that:

|Xλ(ω) − X(ω)| ≤ δ (3)

where

δ =
1
2

Mβ(β + 1)
(β − 1)3

(
ωk+1 − ωk

2

)2

=
1
2

Mβ(β + 1)
(β − 1)3

(ωmax

2N

)2

(4)

B. How to deal with integrators

If the Laplace transform of a signal contains an integrator,
(a pole at zero), the signal cannot be bounded by a decreasing
exponential function that converges to zero. In this case, a
similar approach can be applied.

In the sequel, it is considered that the Laplace transform
of the signal has only one integrator. The frequency response
X̃(ω) of the signal is given by:

X̃(ω) =
X(ω)
jω

(5)

As in Section II-A, the Inverse Fourier Transform x(t) of
the signal X(ω) is bounded |x(t)| ≤ Mβ−t. This bounds
|Xλ(ω)−X(ω)| as in (4). However, now the goal is to find
a bound δint for |X̃λ(ω) − X̃(ω)| based on the bound on
|Xλ(ω) − X(ω)|. Note that the linear interpolation model
X̃λ(ω) between the frequency samples is defined as:

X̃λ(ω) = λ
X(ωk)
jωk

+(1−λ)
X(ωk+1)
jωk+1

for ωk < ω < ωk+1

(6)

It is known that

|X̃λ(ω)−X̃(ω)| ≤
∣∣∣∣X̃λ(ω) − Xλ(ω)

jω

∣∣∣∣+
∣∣∣∣Xλ(ω)

jω
− X̃(ω)

∣∣∣∣
for ωk < ω < ωk+1 (7)

The following bound is a direct result from the previous
subsection:

|Xλ(ω)
jω

− X̃(ω)| =
∣∣∣∣ 1
jω

(Xλ(ω) − X(ω))
∣∣∣∣ ≤

∣∣∣∣ 1
jωk

∣∣∣∣ δ

for ωk < ω < ωk+1 (8)

From (1) and (2), the following equation is obtained:

Xλ(ω)
jω

=
ω − ωk+1

ωk − ωk+1

X(ωk)
jω

+(1− ω − ωk+1

ωk − ωk+1
)
X(ωk+1)

jω

for ωk < ω < ωk+1 (9)

Then, if λ from (2) is replaced in (6) and combined with
(9), the following equation is obtained:∣∣∣∣∣X̃λ(ω) − Xλ(ω)

jω

∣∣∣∣∣ =

∣∣∣∣∣ ω−ωk+1
ωk−ωk+1

X(ωk)ωk−ω
ωkω

− ωk−ω
ωk−ωk+1

X(ωk+1)
ω−ωk+1
ωk+1ω

∣∣∣∣∣
=

∣∣∣ (ω−ωk+1)(ωk−ω)
(ωk−ωk+1)ω

∣∣∣ ∣∣∣X(ωk)
ωk

− X(ωk+1)
ωk+1

∣∣∣
for ωk < ω < ωk+1

(10)
which has a maximum value when ω = √

ωkωk+1. Then,
(10) can be bounded by:∣∣∣∣∣X̃λ(ω) − Xλ(ω)

jω

∣∣∣∣∣ ≤
∣∣∣ (

√
ωkωk+1−ωk+1)(ωk−√

ωkωk+1)

(ωk−ωk+1)
√

ωkωk+1

∣∣∣×∣∣∣X(ωk)
ωk

− X(ωk+1)
ωk+1

∣∣∣
=

∣∣∣ (
√

ωk−√
ωk+1)

2

ωk−ωk+1

∣∣∣ ∣∣∣X(ωk)
ωk

− X(ωk+1)
ωk+1

∣∣∣
=

∣∣∣ ωk−ωk+1
(
√

ωk+
√

ωk+1)2

∣∣∣ ∣∣∣X(ωk)
ωk

− X(ωk+1)
ωk+1

∣∣∣
for ωk < ω < ωk+1

(11)
Replacing ωk+1 − ωk by ωmax

N :∣∣∣∣∣X̃λ(ω) − Xλ(ω)
jω

∣∣∣∣∣ ≤ 1
N

ωmax

(
√

ωk+
√

ωk+1)2
×

∣∣∣X(ωk)
ωk

− X(ωk+1)
ωk+1

∣∣∣
for ωk < ω < ωk+1

(12)

Therefore, the bound δint for the difference between the
linear interpolation model X̃λ(ω) and all possible inter-
polants between the frequency samples when the frequency



response contains an integrator is given by:

δint(ω) = 1
N

ωmax

(
√

ωk+
√

ωk+1)2

∣∣∣X(ωk)
ωk

− X(ωk+1)
ωk+1

∣∣∣
+

∣∣∣ 1
jωk

∣∣∣ δ for ωk < ω < ωk+1

(13)

Remark: It should be noted that these bounds are conser-
vative but decrease rapidly while N is increased. For the no
integrator case, the bound δ in (4) decreases by a factor of
1/N2 while for the case with one integrator, the bound δ int

in (13) decreases by a factor of 1/N .

III. CONTROLLER DESIGN METHOD

The inter-grid behavior of a frequency function can be
analyzed following the Sections II-A and II-B. In an open-
loop shaping controller design method, X(ω) or X̃(ω) are
the open-loop transfer function of the system (a function
of the controller parameters). However, the controller is
not known a priori, so those results cannot be applied
directly. Thus, the results presented in Sections II-A and II-
B should be integrated in a controller design method taking
into account the inter-grid behavior in function of controller
parameters.

The main idea is to define convex constraints on controller
parameters so that the assumption concerning the bounded
impulse response is verified. Then, the graphical interpre-
tation of the bound for the difference between the linear
interpolation model and the frequency samples of the open-
loop is used to define new constraints.

The class of stable continuous-time LTI-SISO systems
with bounded infinity norm are considered. The system is
represented by a spectral model G(jω).

The objective is to design a linearly parameterized con-
troller given by :

K(s, ρ) = ρT φ(s) (14)

where

ρT = [ρ1, ρ2, . . . , ρn] (15)

φT (s) = [φ1(s), φ2(s), . . . , φn(s)] (16)

n is the number of controller parameters and φ i(s), i =
1, . . . n are stable transfer functions with possible poles on
the imaginary axis chosen from a set of orthogonal basis
functions. It is clear that PID controllers belong to this set.
The main property of this parameterization is that every point
on the Nyquist diagram of K(jω, ρ)G(jω) can be written as
a linear function of the controller parameters ρ:

K(jω, ρ)G(jω) = ρT φ(jω)G(jω)
= ρTR(ω) + jρTI(ω) (17)

where R(ω) and I(ω) are respectively the real and imaginary
parts of φ(jω)G(jω).

A. Controller design (no integrator)

The open-loop transfer function of the system is
L(jω, ρ) = K(jω, ρ)G(jω). It is considered that only
a finite number of samples of the open-loop frequency
response L(jωk, ρ) for k = 0, . . . , N are available. The
inter-grid behavior of the open-loop frequency response
depends on the impulse response of the open-loop �(t, ρ).
This impulse response can be computed with the Inverse
Fourier Transforme using the open-loop frequency response
L(jω, ρ):

�(t, ρ) =
∫ ∞

−∞
L(jω, ρ)ejωtdω (18)

Note that, L(jω, ρ) can be exactly calculated using only
the available N + 1 finite number of samples of the open-
loop frequency response L(jωk, ρ), if the Dual of Shannon’s
Theorem is satisfied. In the Theorem given in Appendix A,
it is shown that the uniformly spaced discrete samples of the
frequency response of a signal are a complete representation
of the frequency response if the impulse response obtained
by its Inverse Fourier Transform is a time-limited signal.

The impulse response in (18) can be approximated based
on the Inverse Discrete Fourier Transforme using N+1 open-
loop frequency response samples:

�(hTs, ρ) =
1

N + 1

N∑
k=0

L(jωk, ρ)ejωkhTs

for h = 0, . . . , N (19)

where Ts = π
ωmax

. Then, �(hTs, ρ) can be bounded with the
following convex constraints:

�(hTs, ρ) ≤ Mβ−hTs for h = 0, . . . , N (20)

�(hTs, ρ) ≥ −Mβ−hTs for h = 0, . . . , N (21)

Note that the constraints are linear because the controller
to be designed is linearly parameterized. Now, the inter-grid
behavior can be defined for all ω using the constant bound
given in (4). It should be noted that this bound is defined
around the following linear interpolation model:

Lλ(ω, ρ) = λL(jωk, ρ) + (1 − λ)L(jωk+1, ρ)
for ωk < ω < ωk+1 (22)

Below, the main idea of fixed-order H∞ controller design
for SISO systems proposed in [9] is reviewed. For simplic-
ity, an open-loop shaping controller design problem with
constraint on one weighted closed-loop sensitivity function
is considered. The 2-norm of L − Ld is minimized under
the closed-loop sensitivity function condition ‖W1S‖∞ < 1
where S = (1 + L)−1.

In [9] it is shown that the constraint ‖W1S‖∞ < 1 can be
approximated by the following linear constraint:

|W1(jω)[1 + Ld(jω)]|−
Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} < 0 ∀ω (23)



This constraint assures that the point L(jω, ρ) is at the side
of d(ω) excluding the critical point for all ω (see Fig.1).
The line d(ω) is defined orthogonal to the line connecting
the critical point (−1 + 0j) to Ld(jω) and tangent to the
circle centered at the critical point with radius of W1(jω).

A convex optimization approach in which the approxima-
tion of the 2-norm of L − Ld is minimized under the linear
constraints proposed in (23) evaluated only at the available
N + 1 frequency samples is proposed in [9]:

min
ρ

N∑
k=0

|L(jωk) − Ld(jωk)|2

Subject to:
|W1(jωk)[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L(jωk, ρ)]} < 0

for k = 0, . . . , N

(24)

However, the constraints proposed on the optimization
problem (24), do not guarantee that the conditions are veri-
fied between the frequency samples. This can be achieved by
defining an uncertainty area in the Nyquist diagram for each
pair of ωk and ωk+1 around the interpolation model (22).
Following a similar idea proposed in [9], if the uncertainty
area described in Figure 1 is at the side of the line d(ω)
excluding the critical point, the condition is also satisfied for
all frequencies between ωk and ωk+1. The infinite number
of constraints in (23) defined for all ω can be replaced by
the following finite number of constraints:

|W1(jωk)[1 + Ld(jωk)]| + |δ[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L(jωk, ρ)]} < 0

for k = 0, . . . , N − 1
|W1(jωk)[1 + Ld(jωk)]| + |δ[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L(jωk+1, ρ)]} < 0

for k = 0, . . . , N − 1 (25)

The optimization problem proposed in (24) is replaced by
a new convex optimization approach in which the approx-
imation of the 2-norm of L − Ld is minimized under the
linear constraints proposed in (25), (20) and (21):

min
ρ

N∑
k=0

|L(jωk, ρ) − Ld(jωk)|2

Subject to:
|W1(jωk)[1 + Ld(jωk)]| + |δ[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L(jωk, ρ)]} < 0

for k = 0, . . . , N − 1
|W1(jωk)[1 + Ld(jωk)]| + |δ[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L(jωk+1, ρ)]} < 0

for k = 0, . . . , N − 1
�(hTs, ρ) ≤ Mβ−hTs for h = 0, . . . , N
�(hTs, ρ) ≥ −Mβ−hTs for h = 0, . . . , N

(26)

where �(hTs, ρ) is defined in (19).

|W1(jω)|

δ

Ld(jω)

L(jωk)

d(ω)

Re

Im

L(jωk+1)

−1

Lλ(ω)

Uncertainty Area

Fig. 1. Convex constraints guaranteeing inter frequency behavior in Nyquist
diagram

B. Controller design (with integrator)

For control problems where the open-loop system contains
an integrator, the open-loop transfer function of the system
is defined:

L̃(jω, ρ) =
L(jω, ρ)

jω
= ρT φ(jω)G(jω) (27)

Note that the bound δint(ω) depends on controller pa-
rameters ρ and it is defined around the following linear
interpolation model:

L̃λ(ω, ρ) = λ
L(jωk, ρ)

jωk
+ (1 − λ)

L(jωk+1, ρ)
jωk+1

for ωk < ω < ωk+1 (28)

Figure 1 also describes graphically the constraints for
controller design with integrator if L(jωk) and L(jωk+1)
are replaced by L̃(jωk) and L̃(jωk+1), Lλ(ω) by L̃λ(ω)
and δ by δint(ω, ρ). Note that, in this case, the uncertainty
area depends on the controller parameter ρ.

The optimization problem proposed in (26) is slightly
modified and leads to the following convex optimization



problem:

min
ρ

N∑
k=0

|L̃(jωk, ρ) − Ld(jωk)|2

Subject to:
|W1(jωk)[1 + Ld(jωk)]| + |δint(ωk, ρ)[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L̃(jωk, ρ)]} < 0

for k = 0, . . . , N − 1
|W1(jωk)[1 + Ld(jωk)]| + |δint(ωk, ρ)[1 + Ld(jωk)]|−
Re{[1 + Ld(−jωk)][1 + L̃(jωk+1, ρ)]} < 0

for k = 0, . . . , N − 1
�(hTs, ρ) ≤ Mβ−hTs for h = 0, . . . , N
�(hTs, ρ) ≥ −Mβ−hTs for h = 0, . . . , N

(29)
where

δint(ωk, ρ) = 1
N

ωmax

(
√

ωk+
√

ωk+1)2

∣∣∣L(jωk,ρ)
ωk

− L(jωk+1,ρ)
ωk+1

∣∣∣
+

∣∣∣ 1
jωk

∣∣∣
(30)

and �(hTs, ρ) is computed based on the open-loop transfer
function L(jωk, ρ) (which does not contain the integrator).

It should be noted that the optimization problem proposed
in (26) contains only linear constraints while that proposed in
(29) contains linear and convex constraints. The optimization
problem in (26) can be solved very efficiently even with
thousand of constraints by standard quadratic programming.
On the other hand, an SDP solver is needed to solve the
optimization problem in (29) (e.g. SeDuMi [13]).

IV. SIMULATION RESULTS

A simulation example is presented in this section where
a PD controller is designed. The idea is to show how the
conservatism is reduced when the number of frequency
samples is incresed.

The following continuous-time transfer function system is
considered:

G(s) =
1

(s + 1)(s + 2)
(31)

for which the following PD controller should be tuned:

K(s) =
ρ1s + ρ0

0.1s + 1
(32)

The goal is to design a controller minimizing the 2-norm of
L−Ld with a modulus margin of at least 0.5 (W1(s) = 0.5)
where Ld(s) = 1

s+1 is chosen. The impulse response of
Ld(s) is e−t. However, β and M are chosen 10% higher
than those values, giving β = 1.1 and M = 1.1. The
frequency response of Ld(s) is negligible for frequencies
higher than 100 rad/s, hence, ωmax = 100 rad/s is chosen. It
should be noted that the computation of the impulse response
of the open-loop system is not accurate for high values
of h. Therefore, only the constraints bounding the impulse
response for which the bound Mβ−hTs is higher than 10−3

are considered.
The optimization problem presented in (26) is solved

with N + 1 equally spaced frequency samples between 0

TABLE I

WITH INTER-GRID CONDITION

N + 1 ‖L − Ld‖2 ρ1 ρ0 TC [s]
100 Not feasible
1000 Not feasible
10000 0.2625 1.2094 1.2371 21
100000 0.1961 1.2000 1.8462 814

TABLE II

WITHOUT INTER-GRID CONDITION

N + 1 ‖L − Ld‖2 ρ1 ρ0 TC [s]
100 0.1967 1.2000 1.8978 0.82
1000 0.1961 1.2000 1.8533 0.81
10000 0.1961 1.2000 1.8469 2.4
100000 0.1961 1.2000 1.8462 169

and ωmax rad/s for different values of N . The results are
shown in Table I for N + 1 equal to 100, 1000, 10000 and
100000. It can be seen that the 2-norm of L−Ld is reduced
when N is increased. This result is expected because the
inter-grid uncertainty δ is decreasing when N is increased
which reduces de conservatism of the approach. However,
the computational cost (TC) is as well increased.

As expected, if the same control problem is solved based
on the optimization problem proposed in (24), better per-
formances can be obtained for the same number of data
N + 1. The results are shown in Table II. Note that using
the approach proposed in this paper, if N is large enough,
the results are the same as those obtained with the method
not considering the inter-grid uncertainty.

V. CONCLUSION

A solution for the inter-grid behavior to verify the stability
and performance condition for frequency-domain controller
design methods has been presented. Convex constraints are
proposed to bound the impulse response of the open-loop
system. This allows to do smoothness assumptions which are
used to bound the difference between the linear interpolation
model and all possible interpolants between the frequency
samples of the open-loop system. Additionally, it is shown
how this bound is reduced when the number of frequency
samples is increased. These results are integrated in an H∞
controller design method where a linearly parameterized con-
troller is designed by convex optimization. The simulation
result show that using a finite number of frequency samples,
the stability and performance conditions can be satisfied
even for frequencies between the samples if a conservatism
is added. This conservatism decreases if the number of
frequency samples increases. Consequently, the complexity
of the problem increases. Same results can be obtained
with much less computational complexity only verifying
the constraints at the available frequency samples. It should
be noted that in this case, there is no guarantee that the
conditions are verified between the frequency samples.
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APPENDIX

A. Dual of Shannon’s Theorem

According to Shannon’s Sampling Theorem, the uniformly
spaced discrete samples of a time-domain signal are a com-
plete representation of the signal if its sampling rate is higher
than the double of the signal’s bandwidth. Similarly, the
uniformly spaced discrete samples of the frequency response
of a signal are a complete representation of the frequency
response if the impulse response obtained by its Inverse
Fourier Transform is time limited.
Theorem: X(ω) is completely determined by its ordinates
at a series of points spaced by less than or equal to π/T
if its Inverse Fourier Transform x(t) is 0 for t < −T and
t > T .

Proof: x(t) has non 0 values for a period of 2T . Therefore,
it can be represented as a Fourier series expansion using any
period Tm ≥ 2T . The Fourier Transform expansion of x(t)
can be written as:

x(t) =
∞∑

k=−∞
Akejk2π t

Tm (33)

where Ak = 1
Tm

∫ Tm
2

−Tm
2

x(t)e−jk2π t
Tm dt. As x(t) is 0 for

t < −Tm and t > Tm, the Fourier Transform is reduced to:

X(ω) = F{x(t)} =
∫ ∞

−∞
x(t)e−jωtdt =

∫ Tm

−Tm

x(t)e−jωtdt

(34)
By comparison, Ak = 1

Tm
X(k 2π

Tm
). Hence, this implies

that X(ω) can be fully represented by its samples.

X(ω) =
1

Tm

∫ Tm

−Tm

[ ∞∑
k=−∞

X(ωk)ejk2π t
Tm

]
e−jωtdt (35)

where ωk = k 2π
Tm

. �


