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Abstract— This paper addresses an aspect of controllability
in a single-leader network when the agents are homogeneous. In
such a network, indices are not assigned to the individual agents
and controllability, which is typically a point to point property,
now becomes a point to set property, where the set consists of all
permutations of the target point. Agent homogeneity allows for
choice of the optimal target point permutation that minimizes
the distance to the system’s reachable subspace, which we show
is equivalent to finding a minimum sum-of-squares clustering
with constraints on the cluster sizes. However, finding the
optimal permutation is NP-hard. Methods are presented to find
suboptimal permutations in the general case and the optimal
permutation when the agent positions are 1-D.

I. INTRODUCTION

Research in multi-agent systems has mainly focused on

designing decentralized controllers that allow for agents

to autonomously achieve global goals, such as reaching

consensus (e.g. [1], [2], [3], [4], [5]) or achieving formations

(e.g. [6], [7]). However, in many of the intended applications

for multi-agent systems, such as search and rescue, it is more

likely that agents will be working closely with humans as

opposed to acting completely autonomously. The research

problem that arises involves understanding how a human

controller can affect and interact with an entire network of

agents, without directly communicating with each of them.

In this paper, we focus on when a human takes control

of a single agent within the network, while all other agents

are executing a nearest neighbor averaging rule. The agents

thus form a single-leader network where the positions of

all follower agents within the network can be affected by

controlling the leader agent (e.g. [8], [9], [10], [11]). We

investigate the controllability problem when the network

consists of homogeneous agents. Since agents are inter-

changeable, it does not matter which agent goes where, as

long as there is an agent at each of the target locations.

Controllability is now no longer a point to point property

of the system, but instead becomes a point to set property,

where the set consists of all permutations of the target point.

Homogeneity in the system lets us choose a permutation

of the target point that is closest to the system’s reachable

subspace. However, we show that finding such an optimal

permutation is NP-hard.

The outline of this paper is as follows: Section 2 presents

system dynamics for a single-leader network. Section 3

Philip Twu and Magnus Egerstedt are with the School of
Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30312, USA, Email: ptwu@gatech.edu,
magnus@ece.gatech.edu

Simone Martini is with The Interdepartmental Research
Center, “E. Piaggio”, University of Pisa, Italy, Email:
s.martini@ingegneria.pisa.it

reviews previous work on the controllability of a single-

leader network and discusses the problem of controllability

in a homogeneous single-leader network, as well as the

computational complexity of finding the optimal permutation

of a target point that is closest to the system’s reachable

subspace. Finally, Section 4 explores methods to find the

optimal permutation of a target point both in the general

case and the special case of 1-D agents.

II. SYSTEM DYNAMICS

Consider a team of N +1 agents, numbered 1, . . . , N +1,

with positions xi ∈ Rn, for i = 1, . . . , N + 1, respectively.

Let the information flow amongst agents in the network

be represented by an undirected static graph G = (V,E),
where V = {v1, . . . , vN+1} and (vi, vj) ∈ E if and only if

information flows between agents i and j. The neighbor set

Ni = {j| (vi, vj) ∈ E} represents the set of indices of all

agents that share an edge with agent i in E.

Suppose the agents form a single-leader network where all

followers execute a nearest neighbor averaging rule, while

the leader’s position is the external input u. Without loss

of generality, assume the N + 1th agent is the leader while

agents 1, . . . , N are followers. The agents’ dynamics are:






ẋi = −
∑

j∈Ni

(xi − xj) , ∀i = 1, . . . , N

xN+1 = u.
(1)

The adjacency matrix of G is the (N + 1) × (N + 1)
symmetric matrix A where ai,j , the element in the ith row

and jth column, is given by

ai,j =

{

1 (vi, vj) ∈ E
0 otherwise.

(2)

The degree matrix of the graph G is a (N + 1) × (N + 1)
diagonal matrix ∆, where

∆i,j =







|Ni| i = j

0 otherwise.
(3)

Finally, the graph Laplacian matrix L is given by

L = ∆−A, (4)

which can be decomposed into blocks

L =

[

Lf ℓ

ℓ T ξ

]

, (5)

where the dimension of Lf is N×N , ℓ is N×1, and ξ ∈ R.

Let x =
[

xT
1 , . . . , x

T
N

]T
∈ RNn be the concatenated posi-

tions of all follower agents, where xj = [xj,1, . . . , xj,n]
T ∈

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 5869



Rn, for j = 1, . . . , N . Define di : RNn → RN , for

i = 1, . . . , n, as a function that returns the positions

of the N follower agents along the ith dimension, i.e.,

di (x) = [x1,i, . . . , xN,i]
T

. The dynamics of the follower

agents’ positions along the ith dimension are given by

di (ẋ) = −Lfdi (x)− ℓui, (6)

where ui is the ith element of u. Since the dynamics along

each dimension are decoupled, the dynamics of x can be

written using ⊗, the Kronecker product, as the linear system

ẋ = − (Lf ⊗ In)x− (ℓ⊗ In)u, (7)

where In is the n× n identity matrix.

III. CONTROLLABILITY IN HOMOGENEOUS

SINGLE-LEADER NETWORKS

Many applications of multi-agent systems, such as the de-

ployment of mobile sensor networks, require a large number

of homogeneous agents that are initially in close proximity

to spread out and reach a desired target point (positions of

the follower agents). Analyzing the controllability of single-

leader networks allows us to understand, for a given network

topology, the range of target points that can be achieved from

a human user steering the network through the leader.

A. Controllability of Single-Leader Networks

In a single-leader network, the dynamics of the follower

agents along each dimension are decoupled and given by

the linear system (6). Treating each dimension separately,

the reachable subspace is given by the range space of the

controllability Grammian Γ, where

Γ =
[

−ℓ Lf ℓ . . . (−Lf )
N−1

(−ℓ)
]

. (8)

The reachable subspace of a single-leader network was found

in [10] to have an interesting interpretation involving the

graph topology. Before stating this result, we must first

review some definitions from [10], [12], and [13].

Definition 3.1: Given a vertex set V , let Π =
{C1, . . . , CM} be a partition of V , where Ci ⊂ V for

i = 1, . . . ,M , C1 ∪ . . . ∪ CM = V , and Ci ∩ Cj = ∅
when i 6= j. We will call each Ci a cell.

Definition 3.2: Given a vertex v and a cell C, the node

to cell degree gives the number of vertices in cell C
that share an edge with v, and is given by deg (v, C) =
card ({v′ ∈ C| (v, v′) ∈ E}).
For example, in Figure 1(b), C1, C2, C3 are cells that parti-

tion the vertices in the network and deg (v2, C3) = 3.

Definition 3.3: An external equitable partition (EEP) is

a partition Π such that ∀C ∈ Π, v ∈ C and v′ ∈ C ⇒
deg (v, C ′) = deg (v′, C ′) ∀C ′ ∈ Π− {C}.

Definition 3.4: An EEP is leader-invariant if the vertex

corresponding to the leader agent belongs to its own cell.

Definition 3.5: A leader-invariant EEP is maximal if it has

the fewest number of cells in any leader-invariant EEP.

For example, Figure 1(a) is a leader-invariant EEP, while

Figure 1(b) is a maximal leader-invariant EEP.

V4

V5

V6

V2

V3

V1

(a) The trivial leader-invariant EEP.

V4

V5

V6

V2

V3

V1

C1

C2

C3

(b) The maximal leader-invariant EEP.

Fig. 1. Two examples of leader-invariant EEPs of a single-leader network,
where V1 is the vertex for the leader agent. (a) shows the trivial leader-
invariant EEP, while (b) gives the maximal leader-invariant EEP. Since the
two partitions are different, the network is not completely controllable.

With these definitions, we now state a result relating con-

trollability of a network to its maximal leader-invariant EEP.

In [10] it was shown that follower agents within the same cell

of the maximal leader-invariant EEP asymptotically approach

the centroid of agents within that cell. That result is stated

again below for easy reference.

Theorem 3.1: Assume a single-leader network has an in-

formation flow graph with a maximal leader-invariant EEP of

k cells, numbered 1, . . . , k, that do not contain leader agents.

In [10] it was shown that the range space of the controlla-

bility Grammian for (6), the follower agent dynamics along

any dimension, is given by

R (Γ) = span {w1, . . . , wk} (9)

where wi ∈ RN and wi,j , the jth element of wi, is defined

by

wi,j =

{

1 vj ∈ cell i
0 otherwise.

(10)

From the above theorem, it is seen that a network is com-

pletely controllable and can reach any target point only when

the maximal leader-invariant EEP is trivial, i.e., each follower

agent is contained within its own cell. When multiple agents

are within the same cell, they asymptotically approach each

other. Referring back to Figure 1, we see that the trivial

leader-invariant EEP is not the same as the maximal leader-

invariant EEP so the network is not completely controllable.

B. Optimally Reachable Target Points

The set of reachable target points in a network is restricted

by the choice of leader agent and the network topology. In
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many situations, a tolerable margin of error may be allowed

between where the agents are located and where the user

desires them to be. Thus, we will investigate how close a

network can get to a given target point.

We will model agents initially being at close proximity

to one another by assuming zero initial conditions on the

positions of the follower agents in the network. Such an

assumption greatly simplifies the analysis of controllability,

since agents within the same cell start and stay together.

Assumption 3.1: The agent positions, x, are initially 0.

With zero initial conditions on x, a target point of follower

agents xT ∈ RNn is reachable if and only if di (xT ) ∈ R (Γ),
for i = 1, . . . , n. Depending on the network topology,

the system of follower agents is not always completely

controllable and so may not be able to reach a target point

perfectly. Therefore, for a given xT , it is useful to find the

optimal reachable target point x∗ (xT ), which minimizes

J (xT , x) = ||xT − x||2 =

n
∑

i=1

||di (xT )− di (x) ||
2, (11)

such that di(x) ∈ R (Γ), for i = 1, . . . , n.

Theorem 3.2: For a given xT , the optimal reachable

x∗ (xT ), where di(x
∗ (xT )) ∈ R (Γ), for i = 1, . . . , n, that

minimizes (11) is

x∗ (xT ) =
(

WWT ⊗ In
)

xT , (12)

where

W =

[

w1

||w1||
. . .

wk

||wk||

]

, (13)

and w1, . . . , wk are as given in (9).

Proof: Minimizing ||xT − x||2 is equivalent to min-

imizing ||di(xT ) − di(x)|| individually for each i because

the dynamics along each dimension are decoupled. The

Hilbert Projection Theorem says that the optimal reachable

di(x
∗ (xT )) ∈ R (Γ) that minimizes ||di(xT )−di(x)|| is the

projection of di(xT ) onto the subspace R (Γ). The reachable

subspace R (Γ) is spanned by vectors w1, . . . , wk as given

in (9). Therefore, the optimal choice of di(x) is given by

di(x
∗ (xT )) =

k
∑

j=1

wT
j di(xT )

||wj ||2
wj . (14)

Letting W be as defined in (13), (14) can be rewritten as

di(x
∗ (xT )) = WWT di(xT ).

Since this holds for i = 1, . . . , n, x∗ (xT ) is written as (12).

The expression determined for x∗ (xT ) has an interesting

and intuitive interpretation that will be useful later. Define

gi : RNn → Rn, for i = 1, . . . , N , as a function that

returns the n dimensional coordinates of the ith agent, i.e.,

gi (x) = xi. Further, define m : {1, . . . , N} → {1, . . . , k}
as a function that takes in an index of a follower agent and

returns the index of the cell it belongs to in the maximal

leader-invariant EEP. Let m−1 be the inverse image function

that takes in a cell number and returns a set containing the

indices of the follower agents that belong to that cell.

Corollary 3.1: For a given xT and corresponding x∗ (xT )
that minimizes (11),

gi (x
∗ (xT )) =

1

|m−1 (m (i)) |

∑

j∈m−1(m(i))

gj (xT ) . (15)

In other words, agent positions in cell j of x∗ (xT ) are all

located at the centroid of the agent positions in cell j of xT .

Proof: From the definition of vectors wj given in (10),

the expression for di(x
∗ (xT )) in (14) can be interpreted.

The numerator term of each summand wT
j di(xT ) is the sum

along the ith dimension of the positions of all agents in cell

j in the target point. That quantity is then divided by ||wj ||
2,

which is the number of agents in cell j, so the result is the

centroid along the ith dimension of all agent positions in

cell j of xT . Finally, that value is multiplied to wj , thereby

assigning it to the ith dimensional component of the positions

of all agents in cell j of x∗ (xT ). Since this is true for along

all dimensions i = 1, . . . , n, the result is that agent positions

in cell j of x∗ (xT ) are all located at the centroid of the

agent positions in cell j of xT .

With an expression for x∗ (xT ), it is now possible to

compute the minimum cost associated with any given xT .

Corollary 3.2: For a given xT and corresponding x∗ (xT ),
the minimum cost J∗ (xT ) = J (xT , x

∗ (xT )) is

J∗ (xT ) = xT
T

(

INn −WWT ⊗ In
)

xT . (16)

Proof: Plugging in the expression (12) for x∗ into the

cost (11), expanding the norm-squared, and noticing that the

term INn −WWT ⊗ In is symmetric results in

J∗ (xT ) = xT
T

(

INn −WWT ⊗ In
)2

xT .

Expanding the squared term and making use of the fact that

the columns of W are orthonormal results in (16).

C. Homogeneous Networks

Equation (16) represents the cost associated with the

closest that a particular single-leader network can reach a

target point xT . Notice that xT represents the specification

to have each agent i be located at gi (xT ), for i = 1, . . . , N .

However, in a network of homogeneous agents, the roles of

agents are interchangeable and so it makes no difference if

instead we ask agent i to go to gj (xT ) and agent j to go

to gi (xT ). In fact, any permutation of the agent indices in

xT to some (P ⊗ In)xT , where P is a permutation matrix,

ends up specifying the same target point if all we care about

is the presence of an agent at each of the target positions.

However, the new target point may be “more reachable” in

the sense that J∗ ((P ⊗ In)xT ) < J∗ (xT ).
Example 3.1: Consider a 1-D single-leader network with

N = 3 follower agents as illustrated in Figure 2(a), where

agents 1 and 2 are in cell 1 and agent 3 is in cell 2 of

the maximal leader-invariant EEP of the network. The range

space of the controllability Grammian is thus

R (Γ) = {w1, w2} =











1
1
0



 ,





0
0
1











.
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V1

V2

V3 V0

C2

C1

C0

(a) The single-leader network used in Example
3.1, where the leader agent’s vertex is V0.

X3X1,X2

XT,1 XT,2 XT,3

(b) The closest the agents in the network (circles) can
reach target point xT (X’s).

X3 X1,X2

XT,3 XT,1 XT,2

(c) The closest the agents in the network (circles) can
reach the permuted target points PxT (X’s).

Fig. 2. The topology of the single-leader network in Example 3.1 is
given in (a). (b) shows the closest the agents in the network can reach
xT = [1 9 10]T , while (c) shows the closest the agents can reach PxT =
[9 10 1]T . Notice that the PxT results in an error less than xT and so
PxT is the better specification of the target point.

Let xT =
[

1 9 10
]T

and

P =





0 1 0
0 0 1
1 0 0



 ,

then J∗ (xT ) = 32, while J∗ (PxT ) = 0.5. Therefore,

as illustrated in Figures 2(b) and 2(c), PxT is a better

specification of the target point than xT .

To exploit the advantage of homogeneity towards a net-

work’s controllability, it is necessary to solve the following

problem that will be the focus of the rest of this paper:

Problem 3.1: Given a single-leader network and target

point of follower agents xT . Let P be the set of all N×N
permutation matrices. Find P ∗ such that

P ∗ = argmin
P∈P

J∗ ((P ⊗ In)xT ) . (17)

Calculating P ∗ can be viewed as finding the optimal

specification of a target point. A more intuitive interpretation

of finding P ∗ is to treat it as a constrained clustering problem

on the N target positions g1 (xT ) , . . . , gN (xT ).
Definition 3.6: A multiset is a collection of objects in

which order is ignored, but where multiplicity is significant.

For example, M1 = {1, 3, 4}, M2 = {1, 3, 4, 4}, and

M3 = {1, 4, 3, 4} are all multisets. M2 = M3, but M1 6= M2

and M1 6= M3. Also, |M1| = 3, while |M2| = |M3| = 4.

Definition 3.7: Given a multiset S, a clustering of S is a

partitioning of the elements of S into multisets c1, . . . , ck.

Now, let S be a multiset of agent positions. Within each

cluster ci, define the distortion measure of that cluster as

D (ci) =
∑

z∈ci

||z − θ (ci) ||
2, (18)

where θ (ci) is the centroid of all positions in ci. Define the

cost of a clustering as the total distortion measure, given by

H (c1, . . . , ck) =

k
∑

i=1

D (ci) . (19)

Problem 3.2: The Euclidean minimum sum-of-squares

clustering problem is to find a clustering c∗1, . . . , c
∗
k, given

a multiset of positions S, so as to minimize (19).

Theorem 3.3: Suppose a single-leader network has a max-

imal leader-invariant EEP of exactly k cells containing

follower agents, numbered 1, . . . , k. Finding the optimal

permutation P ∗ for a target xT in Problem 3.1 is equivalent

to solving Problem 3.2 for the multiset of target positions,

S = {g1(xT ), . . . , gN (xT )}, under the constraint that |ci| =
|m−1 (i) |, the number of agents in cell i, for i = 1, . . . , k.

Proof: Given a permutation matrix P , let p :
{1, . . . , N} → {1, . . . , N} take in an agent index

and returns the permuted index such that, for j =
1, . . . , N , gj (xT ) = gp(j) ((P ⊗ In)xT ). Let ci =
{gj ((P ⊗ In)xT ) |m (j) = i}, for i = 1, . . . , k, be a cluster-

ing of S = {g1 (xT ) , . . . , gN (xT )}, where target positions

in (P ⊗ In)xT with indices in cell i are assigned to ci.
Notice that |ci| = |m−1 (i) |, the number of agents in each

cell i, for i = 1, . . . , k. Considering different permutations

of agent indices for the target point xT is equivalent to

considering different cell assignments of the target positions,

which is equivalent to considering clusterings c1, . . . , ck of

S. The cost (16) associated with a chosen permutation P of

target positions can be rewritten using (11) and (15) as

J∗ ((P ⊗ In)xT )

=
n
∑

i=1

||di ((P ⊗ In)xT )− di (x
∗ ((P ⊗ In)xT )) ||

2

=

N
∑

i=1

||gi ((P ⊗ In)xT )− gi (x
∗ ((P ⊗ In)xT )) ||

2

=

N
∑

i=1

||gi ((P ⊗ In)xT )− θ
(

cm(i)

)

||2

=

k
∑

i=1

∑

j|m(j)=i

||gj ((P ⊗ In)xT )− θ (ci) ||
2

=

k
∑

i=1

∑

z∈ci

||z − θ (ci) ||
2 = H (c1, . . . , ck) ,

which shows that the cost is equivalent to (19).

Given the P ∗ that solves Problem 3.1, an optimal

clustering c∗1, . . . , c
∗
k that solves Problem 3.2 under

the constraint that |ci| = |m−1 (i) |, for i = 1, . . . , k,

can be computed by the polynomial-time algorithm:

Let c∗1, . . . , c
∗
k be empty multisets;

for i = 1, . . . , N do
Add gi ((P

∗ ⊗ In)xT ) to c∗m(i);

end

Alternatively, given an optimal clustering c∗1, . . . , c
∗
k, the ma-

trix P ∗ can be computed by the polynomial time algorithm:
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Let Q = R = {1, . . . , N}, and P ∗ = 0 (N ×N matrix);

for i = 1 . . . , k do

for each z ∈ c∗i do
Find any j ∈ Q such that gj (xT ) = z;

Remove j from Q;

Find a b ∈ m−1 (i) such that b ∈ R;

Remove b from R;

Set the element P ∗
b,j to 1;

end

end

Thus, finding P ∗ in Problem 3.1 is equivalent to

finding an optimal clustering c∗1, . . . , c
∗
k for S =

{g1 (xT ) , . . . , gN (xT )}, that minimizes (19) subject to |ci|
equaling the number of agents in cell i, for i = 1, . . . , k.

Viewing the problem of finding the optimal permutation

for a target specification as a size-constrained version of

the Euclidean minimum sum-of-squares clustering problem

given in Problem 3.2 is very useful because it allows us find

the computational complexity associated with the task.

Theorem 3.4: The problem of finding the optimal permu-

tation matrix P ∗ in Problem 3.1 is NP-hard.

Proof: It was shown in [14] that the Euclidean mini-

mum sum-of-squares clustering problem described in Prob-

lem 3.2 is NP-hard by using a reduction from the DENSEST

CUT problem for the case of k = 2 clusters. Using almost the

same procedure, we will show that the optimization version

of the MAX BISECTION problem, which was shown in

[15] to be NP-hard, reduces to the size-constrained Euclidean

minimum sum-of-squares problem for k = 2 clusters.

Let G = (V,E) be an undirected graph. Define B1, B2

as a partition of V such that |B1| = |B2| =
N
2 , where N

is assumed to be even. The MAX BISECTION problem is

to find B∗
1 and B∗

2 so as to maximize |E (B1, B2) |, where

E (B1, B2) = {(vi, vj) ∈ E|vi ∈ B1 and vj ∈ B2}.

Arbitrarily number and orient the edges in E as

e1, . . . , e|E| so that each ei is an ordered pair of vertices.

Define the incidence matrix I as a N ×|E| matrix such that

for each ek = (vi, vj) ∈ E, Ii,k = −1 and Ij,k = 1. Have

x1, . . . , xN ∈ R|E| be such that xT
i equals the ith row of

I. Define the multiset S = {x1, . . . , xN}. Have c1, c2 be

two clusters that partition S subject to the size constraint

|c1| = |c2| =
N
2 . Let B1 and B2 be a partition of V , where

Bi = {vj |xj ∈ ci}, for i = 1, 2.

Let the function φj : R|E| → R take in a vector and

return the jth element of its argument. Computing the total

distortion of the cluster as in (19), we have

H (c1, c2) =

2
∑

i=1

∑

z∈ci

||z − θ (ci) ||
2

=

|E|
∑

j=1

2
∑

i=1

∑

z∈ci

(φj (z)− φj (θ (ci)))
2

If ej ∈ E (B1, B2), then either φj (z) equals 1 for

exactly one z ∈ c1 and equals −1 for exactly one z ∈ c2
with all others equaling 0 and thus φj (θ (c1)) = 2

N and

φj (θ (c2)) = − 2
N , or the same statements above but with

c1 and c2 switched. Furthermore, if ej /∈ E (B1, B2), then

φj (θ (c1)) = φj (θ (c2)) = 0. Using these properties:

H (c1, c2) =
∑

e∈E(B1,B2)

2
∑

i=1

(

(

N

2
− 1

)(

2

N

)2

+

(

1−
2

N

)2
)

+
∑

e/∈E(B1,B2)

2

= 2

(

1−
2

N

)

|E (B1, B2|+ 2 (|E (B1, B1) |

+ |E (B2, B2) |)

= 2|E| −
4

N
|E (B1, B2) |.

Choice of B∗
1 and B∗

2 , or equivalently the choice of c∗1 and

c∗2, that minimizes H (c1, c2) also maximizes |E (B1, B2) |,
since |E| and N are constant. Therefore, the NP-hard MAX

BISECTION problem reduces to size-constrained Euclidean

minimum sum-of-squares, which is equivalent to finding P ∗

in Problem 3.1, and so finding P ∗ is also NP-hard.

IV. FINDING THE OPTIMAL SPECIFICATION OF A TARGET

NETWORK

In order to exploit homogeneity in the controllability of a

single-leader network, it is necessary to compute the optimal

permutation matrix P ∗ in Problem 3.1 or equivalently, the

optimal clustering c∗1, . . . , c
∗
k from Theorem 3.3. However,

in Theorem 3.4 it was shown that the complexity of the

problem in the general case is NP-hard. This section explores

heuristic-based and approximation algorithms for solving the

general problem, as well as the special case of the problem

where agents positions are 1-D.

A. Heuristic and Approximation Algorithms

A popular method for finding locally optimal solutions

to the Euclidean sum of squares problem is the k-means

algorithm (e.g. [16]). However, Theorem 3.3 adds equality

constraints on the size of individual clusters. In [17], a

constrained k-means clustering algorithm is proposed that

finds locally optimal clusterings which minimize (19), where

the minimum size of individual cluster can be specified.

Equality constraints on the cluster sizes are imposed when

minimum cluster sizes are chosen to sum to N .

B. Special Case: 1-D Networks

Recall that we assumed a network of N agents with a

maximal leader-invariant EEP of k cells containing follower

agents. In the general multi-dimensional case, finding P ∗

in Problem 3.1 involves considering at most N ! possible

permutation matrices, or equivalently N ! clusterings by

Theorem 3.3. However, in the special case of 1-D networks,

only k! clusterings need to be considered by exploiting a

special property of constrained clustering in 1-D networks.

Definition 4.1: Given a clustering c1, . . . , ck of a multiset

S of 1-D points, a cluster ci is compact if ∄xi1, xi2 ∈ ci
and ∄xj ∈ cj such that xi1 < xj < xi2, ∀ j 6= i.
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Lemma 4.1: The optimal clustering c∗1, . . . , c
∗
k of a mul-

tiset S of 1-D points, which minimizes (19) with |ci|
predefined for i = 1, . . . , k, involves only compact clusters.

Proof: We start by showing that elements in every non-

compact clustering can always be reassigned to decrease (19)

without changing the cluster sizes. Assume c1, . . . , ck are

not all compact, then ∃xa1, xa2 ∈ ca and xb ∈ cb such

that xa1 < xb < xa2, for some ca and cb where a 6= b.
Furthermore, define the function

Ho (c1, . . . , ck,m1, . . . ,mk) =

k
∑

i=1

∑

z∈ci

(z −mi)
2
,

where H (c1, . . . , ck) ≤ Ho (c1, . . . , ck,m1, . . . ,mk) with

equality if and only if mi = θ (ci), for i = 1, . . . , k. The

total distortion cost of the clustering can be rewritten as

H (c1, . . . , ck) = Ho (c1, . . . , ck, θ (c1) , . . . , θ (ck))

= Q− 2R (ca, cb, θ (ca) , θ (cb)) ,

where

Q =

N
∑

i=1

x2
i +

k
∑

i=1

|ci|θ (ci)
2 − 2

k
∑

i=1,i6=a,b

(

θ (ci)
∑

z∈ci

z

)

and

R (ca, cb,ma,mb) = ma

∑

z∈ca

z +mb

∑

z∈cb

z.

If θ (ca) ≥ θ (cb), assign ĉa the |ca| largest elements of

ca ∪ cb, while giving ĉb the remaining elements. Otherwise,

if θ (ca) < θ (cb), then let ĉa have the |ca| smallest elements

of ca ∪ cb, while ĉb gets the rest. Furthermore, define ĉi =
ci ∀ i 6= a, b. Notice that |ĉi| = |ci|, for i=1, . . . , k. Then since

after the reassignment, θ (ĉa) 6= θ (ca) and θ (ĉb) 6= θ (cb),

H (c1, . . . , ck) = Q− 2R (ca, cb, θ (ca) , θ (cb))

≥ Q− 2R (ĉa, ĉb, θ (ca) , θ (cb))

= Ho (ĉ1, . . . , ĉk, θ (c1) , . . . , θ (ck))

> H (ĉ1, . . . , ĉk) .

Thus, whenever a clustering c1, . . . , ck is not all compact, it

is always possible to obtain a new clustering ĉ1, . . . , ĉk with

a lower total distortion. Since there are only a finite number

of ways to cluster points in S, an optimal cluster must exist

and it must involve only compact clusters.

Knowing the optimal clustering is compact reduces the

number of clusterings that need to be searched.

Theorem 4.1: Finding c∗1, . . . , c
∗
k to minimize (19) for a

1-D network requires considering at most k! clusterings.

Proof: Since points are 1-D, only the ordering of the

k compact clusterings matter in finding c∗1, . . . , c
∗
k. Thus, at

most only k! clusterings need to be considered.

V. CONCLUSIONS

This paper extended the notion of controllability in a

single-leader network to the case of homogeneous agents.

By taking advantage of the fact that agents are interchange-

able, controllability in the homogeneous setting was phrased

as a point to set property of the system, where the set

corresponds to all permutations of a target point. It was

shown that different permutations of a target point may be

at different distances from the system’s reachable subspace,

and so is more reachable than others. Finding the optimal

permutation of a target point that is closest to the network’s

reachable subspace was shown to be equivalent to solving an

Euclidean minimum sum-of-squares clustering problem with

constraints on the cluster sizes. However, the task was shown

to be NP-hard. As a consequence, methods were presented

for finding suboptimal permutations in the general case, as

well as finding the optimal permutation in the special case

when the network consists of 1-D agents.
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