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A Projection Framework for Near-Potential Games

Ozan Candogan, Asuman Ozdaglar and Pablo A. Parrilo

Abstract— Potential games are a special class of games that
admit tractable static and dynamic analysis. Intuitively, games
that are “close” to a potential game should enjoy somewhat
similar properties. This paper formalizes and develops this idea,
by introducing a systematic framework for finding potential
games that are close to a given arbitrary strategic-form finite
game. We show that the sets of exact and weighted potential
games (with fixed weights) are subspaces of the space of games,
and that for a given game, the closest potential game in
these subspaces (possibly subject to additional constraints) can
be found using convex optimization. We provide closed-form
solutions for the closest potential game in these subspaces, and
extend our framework to more general classes of games.

We further investigate and quantify to what extent the static
and dynamic features of potential games extend to “near-
potential” games. In particular, we show that for a given
strategic-form game, we can characterize the approximate
equilibria and the sets to which better-response dynamics
converges, as a function of the distance of the game to its
potential approximation.

I. INTRODUCTION

Potential games are a class of games with appealing static
and dynamic properties. For instance, in such games pure-
strategy Nash equilibria always exist, and many of the simple
user dynamics (e.g., fictitious play) converge to a Nash equi-
librium [1]–[3]. Because of these properties, potential games
found numerous applications in various control and resource
allocation problems, e.g., [1], [4]–[6]. However, many multi-
agent strategic interactions in engineering and economics
literatures cannot be directly modelled as a potential game.

Intuitively, games that are “close” to potential games,
should inherit some of these static and dynamic properties.
In this work, our goal is to provide a systematic framework
for identifying a close potential game to some given game,
and to study to which extent the properties of this potential
game extend to the original game. For this purpose, we focus,
in increased order of generality, on three well-known classes
of potential games: exact potential games, weighted potential
games, and ordinal potential games.

We first characterize the geometry of the problem, by for-
mally defining the vector space of all games, and introducing
a natural inner product structure on it. We show that the set
of exact potential games, and the set of weighted potential
games with fixed weights are subspaces of the space of
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games (Theorem 2). Therefore, for any given game, the clos-
est exact (or fixed-weight) potential game can be obtained by
projection onto the relevant subspace. On the other hand, the
set of all weighted potential games, and similarly the set of
ordinal potential games, are nonconvex sets. Hence, finding
the closest weighted and ordinal potential games to a given
game requires solving nonconvex optimization problems.

For any finite game, we provide a closed-form solution
for the closest fixed-weight potential game, by projecting the
original game to the subspace of weighted potential games
associated with these weights (Theorem 3). If the weights are
unknown, the underlying set is no longer convex. Neverthe-
less, we present a related convex optimization formulation
for finding close weighted potential games (Section IV-B).
Although the game obtained through this approach will not
necessarily be the closest weighted potential game to the
original game, examples show that it often is a very good
approximation and yields a weighted potential game whose
distance (in terms of utility differences) to the original game
is much smaller than that of the closest exact potential game.

Additionally, we show that the approximate equilibria
and the better-response dynamics in arbitrary strategic-form
finite games can be analyzed using the close weighted and
ordinal potential games suggested by our framework (cf.
Propositions 5 and 6). The main idea behind this approach
is to use the “distance” of the original game from the set
of potential games to approximately establish the properties
of the original game. Our results indicate that the equilibria
of the close potential game can be used to characterize the
approximate equilibria of the original game, and the sets
to which the update rules converge. Moreover, the closer
the original game is to a potential game, the tighter our
characterization becomes.

The remainder of this paper is organized as follows: In
Section II we present relevant game-theoretic background.
In Section III, we establish the geometric properties of the
sets of potential games. We discuss different formulations for
finding close weighted potential games to a given game in
Section IV, followed by a numerical example in Section V.
In Section VI, we show how this framework can be used
to establish static and dynamic properties of a given near-
potential game. We close in Section VII with concluding
remarks and future directions.

II. PRELIMINARIES

In this section we present the game theoretic background
that is relevant to our work.

Throughout this paper we consider strategic-form finite
games. A (noncooperative) finite game in strategic form
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consists of:
• A finite set of players, denoted by M = {1, . . .M}.
• Strategy spaces: A finite set of strategies (or actions)
Em, for every m ∈M.

• Utility functions: um : E → R, for every m ∈M.
A (strategic-form) game instance is accordingly given by the
tuple 〈M, {Em}m∈M, {um}m∈M〉.

We assume that each player in a game has at least two
strategies: |Em| ≥ 2, for all m ∈ M. The joint strategy
space of a game is denoted by E =

∏
m∈MEm. We refer

to a collection of strategies of all players as a strategy profile
and denote it by p = (p1, . . . , pM ) ∈ E. The strategies of
all players but the mth one is denoted by p−m.

The basic solution concept in a noncooperative game is
that of a Nash Equilibrium (NE). A (pure) Nash equilibrium
is a strategy profile from which no player can unilaterally
deviate and improve its payoff. Formally, a strategy profile
p = (p1, . . . , pM ) is a Nash equilibrium if

um(pm,p−m) ≥ um(qm,p−m),

for every qm ∈ Em and m ∈M.
To address strategy profiles that are approximately a Nash

equilibrium, we use the concept of ε-equilibrium. A strategy
profile p = (p1, . . . , pM ) is an ε-equilibrium if

um(pm,p−m) ≥ um(qm,p−m)− ε

for every qm ∈ Em and m ∈ M. Note that a Nash
equilibrium is an ε-equilibrium with ε = 0.

We next define potential games [1], which are central to
our discussion in the subsequent sections.

Definition 2.1 (Potential Games): Consider a noncooper-
ative game G = 〈M, {Em}m∈M, {um}m∈M〉. If there
exists a function φ : E → R such that for every m ∈ M,
pm, qm ∈ Em, p−m ∈ E−m,

1) φ(pm,p−m) − φ(qm,p−m) = um(pm,p−m) −
um(qm,p−m), then G is an exact potential game.

2) φ(pm,p−m) − φ(qm,p−m) = wm(um(pm,p−m) −
um(qm,p−m)), for some strictly positive weight
wm > 0, then G is a weighted potential game.

3) φ(pm,p−m) − φ(qm,p−m) > 0 ⇔ um(pm,p−m) −
um(qm,p−m) > 0, then G is an ordinal potential
game.

The function φ is referred to as a potential function of
the game. This definition suggests that potential games are
games in which the interests of players are captured by a
global potential function φ.

Note that every exact potential game is a weighted po-
tential game with wm = 1 for all m ∈ M. From the
definitions it also follows that every weighted potential game
is an ordinal potential game. In other words, ordinal potential
games generalize weighted potential games, and weighted
potential games generalize exact potential games.

We denote the sets of exact, weighted, and ordinal po-
tential games by P , WP , OP respectively. In order to
characterizeWP , it is sufficient to consider weights wm ≥ 1.
This follows since in any weighted potential game, the

potential function and the weights can be jointly scaled by
a positive scalar to obtain a different potential function and
larger weights. Given a fixed set of weights w = {wm},
we refer to the set of all weighted potential games with
these weights as fixed-weight potential games, and denote
this set by Pw. In particular, the set of exact potential games
is equivalent to P1. It can be seen that the set of weighted
potential games can be expressed as a union of the sets of
fixed-weight potential games over weights wm ≥ 1 for all
m ∈M, i.e. WP = ∪w≥1Pw.

We conclude this section by providing necessary and
sufficient conditions for a game to be an exact or ordinal
potential game. We first introduce some key concepts used
in establishing these conditions.

Definition 2.2 (Path – Closed Path – Improvement Path):
A path is a collection of strategy profiles γ = (p0, . . .pN )
such that pi and pi+1 differ in the strategy of exactly one
player. A path is a closed path (or a cycle) if p0 = pN .
A path is an improvement path if umi(pi) ≥ umi(pi−1)
where mi is the player who modifies its strategy when the
strategy profile is updated from pi−1 to pi.

The transition from strategy profile pi−1 to pi is referred
to as step i of the path. We refer to a closed improvement
path such that the inequality umi(pi) ≥ umi(pi−1) is strict
for at least a single step of the path, as a weak improvement
cycle. We say that a closed path is simple if no strategy
profile other than the first and the last strategy profiles is
repeated along the path. For any path γ = (p0, . . .pN ),
let I(γ) represent the “utility improvement” along the path.
Namely

I(γ) =
N∑
i=1

umi(pi)− umi(pi−1),

where mi is the index of the player that modifies its strategy
in the ith step of the path.

The following proposition provides an alternative charac-
terization of exact and ordinal potential games. This charac-
terization will be used in studying the geometry of sets of
different classes of potential games (cf. Theorem 2).

Proposition 1 ( [1], [7]): (i) A finite game G is an exact
potential game if and only if I(γ) = 0 for all simple closed
paths γ.

(ii) A finite game G is an ordinal potential game if and
only if it does not include weak improvement cycles.

III. SETS OF POTENTIAL GAMES

In this section, we investigate the properties and the
geometry of potential games. In particular, we show that the
sets of weighted and ordinal potential games are nonconvex
subsets of the space of games, but the set of exact potential
games is a subspace.

We first provide a formal definition of the space of games.
Consider games with set of players M, set of strategy
profiles E

4
= E1 × · · · × EM . We denote by C0 = {f |f :

E → R}, the set of utility functions that can be present in
a game with set of strategy profiles E. Since every function
f ∈ C0 has a finite domain, it can be represented as a vector
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in R|E|. Note that every utility function in a game with set
of strategy profiles E and set of players M, belongs to C0,
i.e., um ∈ C0 for all m ∈ M. We denote the set of all
games with set of players M and set of strategy profiles
E by GM,E . Any two games in this space differ only in
their payoff functions, thus this space can alternatively be
identified by C

|M|
0 ≈ R|E||M|, i.e., the set of all payoff

functions that define such games.
Before we present our result on the sets of potential games,

we introduce the notion of convexity for sets of games.
Definition 3.1: Let B ⊂ GM,E . The set B is said to be

convex if and only if for any two game instances G1, G2 ∈ B
with collections of utilities u = {um}m∈M, v = {vm}m∈M
respectively, and for all α ∈ [0, 1],

〈M, {Em}m∈M, {αum + (1− α)vm}m∈M〉 ∈ B.
Below we show that the set of exact potential games is a

subspace of the space of games, whereas, the sets of weighted
and ordinal potential games are nonconvex.

Theorem 2: (i) The sets of exact potential games, P , and
fixed-weight potential games, Pw, are subspaces of GM,E .

(ii) The sets of weighted potential games,WP , and ordinal
potential games, OP , are nonconvex subsets of GM,E .

Proof: (i) Proposition 1 (i) implies that the set of exact
potential games is the subset of space of games where the
utility functions satisfy the condition I(γ) = 0 for every
simple closed path γ. Note that for each γ, I(γ) = 0 is a
linear equality constraint on the utility functions {um}. Thus,
the set of exact potential games is the intersection of the sets
defined by these linear equality constraints. Therefore, it is
a subspace of the space of games, GM,E ≈ C |M|0 .

It can be seen from Definition 2.1 that similar to exact
potential games, fixed-weight potential games are character-
ized by linear equality constraints. Thus, the proof for Pw
follows similarly.

(ii) We prove the claim by showing that the convex
combination of two weighted potential games is not an
ordinal potential game. This implies that the sets of both
weighted and ordinal potential games are nonconvex since
every weighted potential game is an ordinal potential game.

In Table I we present the payoffs and the potential in a
two player game, G1, where each player has two strategies.
Given strategies of both players the first table shows payoffs
of players (the first number denotes the payoff of the first
player), the second table shows the corresponding potential
function. In both tables the first column stands for actions
of the first player and the top row stands for actions of the
second player. Note that this game is a weighted potential
game with weights w1 = 1, w2 = 3.

(u1, u2) A B
A 0,0 0,4
B 2,0 8,6

φ A B
A 0 12
B 2 20

TABLE I
PAYOFFS AND POTENTIAL IN G1

Similarly, another game G2 is defined in Table II. Note
that this game is also a weighted potential game with weights

(u1, u2) A B
A 4,2 6,0
B 0,8 0,0

φ A B
A 20 18
B 8 0

TABLE II
PAYOFFS AND POTENTIAL IN G2

(u1, u2) A B
A 2,1 3,2
B 1,4 4,3

TABLE III
PAYOFFS IN G3

w1 = 3, w2 = 1. In Table III, we consider a game G3, in
which the payoffs are averages (hence convex combinations)
of payoffs of G1 and G2.

Note that this game has a weak improvement cycle:

(A,A)− (A,B)− (B,B)− (B,A)− (A,A).

From Proposition 1 (ii), it follows that G3 is not an ordinal
potential game.

The above example shows that the sets of weighted and
ordinal potential games with two players each of which has
two strategies is nonconvex. For general n player games,
the claim immediately follows by constructing two n player
weighted potential games, and embedding G1 and G2 in these
games. The details are omitted due to page constraints.

We next discuss the geometry of the sets of weighted
and ordinal potential games. The above theorem together
with WP = ∪w≥1Pw, implies that the set of weighted
potential games is an uncountable union of subspaces of
GM,E . Given an ordinal potential game, the multiplication
of the utilities by a positive scalar gives a game with the
same weak improvement cycles. Since the original game
is an ordinal potential game and does not have a weak
improvement cycle, the scaled game cannot have a weak
improvement cycle. Thus, the scaled game is an ordinal
potential game as well. Therefore, we conclude that OP is a
cone. However, Theorem 2 implies that this is not a convex
cone.

IV. PROJECTION TO THE SET OF POTENTIAL GAMES

In this section, we develop a framework for finding close
weighted and ordinal potential games to a given game. It was
shown in Section III that the fixed-weight potential games
and exact potential games form subspaces. In Section IV-
A, we develop a projection framework which gives closed
form solution for the closest fixed-weight potential game
to a given game. In Section IV-B, we discuss methods for
choosing weights to obtain better weighted potential game
approximations. Due to space constraints, in this section
proofs are omitted, and they can be found in [8].

A. Fixed-Weight Potential Games

In this section, we obtain closed form solution of the
closest fixed-weight potential game to a given game. Before
presenting our results, we first introduce some necessary
operators and notation.

For each player m ∈M, we define the difference operator
Dm such that for all f : E → R and p,q ∈ E that differ in
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the strategy of only player m,

(Dmf)(p,q) = f(q)− f(p),

and (Dmf)(p,q) = 0 otherwise. The difference operators
allow for alternative definitions of potential games: A game
is a weighted potential game with weights {wm}, if there
exists a potential function φ, such that Dmu

m = wmDmφ
for all m ∈ M (it is an exact potential game if all weights
are equal to 1).

As mentioned earlier, the set of functions with domain E,
is denoted by C0 and this set can equivalently be represented
as a vector in R|E|. Motivated by this, we use the regular
inner product of R|E| in C0, i.e., the inner product of any
f1, f2 ∈ C0 is given by 〈f1, f2〉 =

∑
p∈E f1(p)f2(p).

For each player m, we define the set Am = {(p,q) | p,q ∈
E differ in the strategy of only player m} and we denote
the union of these sets by A = ∪mAm. We refer to functions
X : E × E → R such that X(p,q) = X(q,p) ∈ R
if (p,q) ∈ A and X(p,q) = 0 otherwise as the pairwise
ranking functions. We denote the space of all such functions
by C1 and associate with it the inner product 〈X,Y 〉 =
1
2

∑
(p,q)∈AX(p,q)Y (p,q), where X,Y ∈ C1. For all

m ∈M and f ∈ C0, it can be seen that (Dmf) ∈ C1.
The adjoint of Dm is the unique operator D∗m which

satisfies,
〈X,Dmf〉 = 〈D∗mX, f〉,

for all f : E → R, X : E × E → R. Using the definitions
of the inner products and the difference operators, it follows
that for all X ∈ C1 the operator D∗m satisfies,

(D∗mX)(p) = −
∑

q|(p,q)∈Am

X(p,q).

Three operators that are related to the difference operator
and its adjoint are ∆0,m = D∗mDm, ∆0 =

∑
m ∆0,m and

Πm = D†mDm, where † denotes the pseudo inverse. The
first two operators correspond to Laplacian operators on a
graph associated with the game and the third operator is
a projection operator to the orthogonal complement of the
kernel of the difference operator Dm (for details see [9]).

We next present an optimization problem that finds the
closest weighted potential game with weights {wm} to a
given game. We quantify the distance between two games
with utility functions {um} and {ûm} as

∑
m∈M hm||um−

ûm||2, where we use the norm induced by the inner product
in the space of payoff functions C0, and hm = |Em|. It can
be seen that

∑
m∈M hm||um||2 corresponds to a weighted l2

norm in the space of games GM,E (see [9]). Given a game
with payoff functions {um}, the closest weighted potential
game with weights {wm} and utility functions {ûm} is the
solution of the following least-squares optimization problem:

(P1 :)

min
φ,{ûm}

∑
m

hm||um − ûm||2

s.t. Dmφ = wmDmû
m,

for all m ∈M.

Since all the constraints are linear, the feasible set of {ûm}
in this optimization problem is a subspace of C |M|0 . Thus,
the optimal {ûm} is unique and given by the projection
of the original game to the feasible subspace with respect
to the norm in the objective function. The next theorem
characterizes the optimal solution of this problem.

Theorem 3: The optimal solution of P1 is given by φ =(∑
m

1
w2

m
∆0,m

)†∑
m

1
wm

∆0,mu
m and ûm = 1

wm
Πmφ +

(I −Πm)um for all players m ∈M.
If all weights are equal to 1, the above theorem provides
a closed form solution for projection to the set of exact
potential games.

B. Choosing Weights for the Potential Game Approximation

In this section we discuss methods for choosing weights
to obtain a close weighted potential game to a given game.
As shown in Section III, WP is nonconvex, implying that
finding the closest weighted potential game to an arbitrary
game involves solving nonconvex optimization problems. In
particular, for any given game, the solution of problem P1
provides the closest fixed-weight potential game. The best
weights (and the closest potential game to the original game)
can be found by minimizing the optimal objective value of
P1 over all weights. Using the closed form solution of P1,
its optimal objective value as a function of the weights can
be given as:

∑
m

hm

∣∣∣∣∣∣
∣∣∣∣∣∣Πmu

m −Πm

(∑
k

1
w2
k

∆0,k

)†∑
k

1
wk

∆0,ku
k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

This is a nonconvex function of the weights, and hence
solving for the optimal weights requires minimizing the
above nonconvex function over the set of possible weights.

We next consider an alternative formulation for finding a
close weighted potential game. For a given set of weights
{wm}, we first consider the problem

(P2 :)

min
φ,{ûm}

∑
m

hm||wmum − wmûm||2

s.t. Dmφ = wmDmû
m,

for all m ∈M.

It can be seen that P2 is a convex optimization problem,
and it gives a weighted potential game approximation of
the original game. To obtain a good approximation, we are
interested in solving P2 with the weights that minimize its
optimal objective value. Solving P2 with the best weights is
equivalent to introducing a new variable v̂m = wmû

m and
solving the following convex optimization problem:

min
φ,{wm},{v̂m}

∑
m

hm||wmum − v̂m||2

s.t. Dmφ = Dmv̂
m,

for all m ∈M.

Using the solution of this problem, the optimal utilities
corresponding to the best weights in P2 can be recovered
from ûm = 1

wm
v̂m. Note that in the new formulation the
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optimal weights and the utilities can be obtained by solving
a convex optimization problem.

We next obtain a closed form solution for P2. Note that the
optimization formulations P1 and P2 are related: Consider a
set of utility functions {um} and assume that for a fixed set
of weights {wm}, the solution of P2 is given by {ûm} and φ.
Comparing the optimization formulations P1 and P2, it can
be seen that the closest exact potential game, in the sense
of P1, to the game with utility functions {wmum} is given
by {wmûm} and this game also has a potential function φ.
Hence, the solution of P2 can be obtained by: (i) scaling
the utility functions of the original game by weights {wm},
(ii) solving P1 with the scaled utility functions and unit
weights, and (iii) scaling the utility functions that solve P1 by
weights

{
1
wm

}
. The following theorem, uses this observation

to characterize the optimal solution of P2.
Theorem 4: The optimal solution of P2 is given by φ =

∆†0
∑
m ∆0,mwmu

m and ûm = 1
wm

Πmφ+ (I−Πm)um for
all players m ∈M.

Using this theorem, it follows that for a fixed set of
weights, the optimal cost of P2 is

ψ(w) ,
∑
m

hm

∣∣∣∣∣
∣∣∣∣∣wmΠmu

m −Πm∆†0
∑
m

∆0,mwmu
m

∣∣∣∣∣
∣∣∣∣∣
2

,

where w denotes the vector of all weights {wm}. Note that
ψ is a convex function of the weights. Hence, weights that
will lead to a better potential game approximation can be
obtained by solving

min
w

ψ(w) s.t. wm ≥ 1 for all m ∈M. (1)

We refer to the solution of P2, using the optimal weights
with respect to (1), as the best weighted potential game
approximation in the sense of P2.

If the original game is a weighted potential game, it can be
shown that the best weighted potential game approximation
of this game is itself (see [8] for a proof). Note that this also
provides a way of checking whether a game is a weighted
potential game or not: Given a game if the optimal objective
value of (1) is equal to zero, then the original game is
a weighted potential game, with weights that achive this
objective value.

We next present an alternative motivation for the formu-
lation P2. Note that the strategic considerations in a game
(such as the equilibria, and the best responses) do not change
if utility functions in the game are scaled by different positive
scalars. Hence, it makes sense to consider projections of
scaled utility functions (with different weights) to the set
of exact potential games, as formalized through problem P2.
This approach provides a higher degree of freedom and leads
potentially to a smaller distance than the distance from the
closest exact potential game. We show in Section VI that
tighter approximations of both static and dynamic properties
of a game can be obtained through this approach.

As shown in Section III, the set of ordinal potential
games is a nonconvex subset of GM,E . Because of this,
finding the closest ordinal potential game to a given game

also requires solving a nonconvex optimization problem.
However, it is possible to develop a convex optimization
formulation, similar to the one we proposed for weighted
potential games, in order to find a close ordinal potential
game. Details are omitted due to page constraints and can
be found in [8].

We conclude this section by mentioning that the frame-
work presented here for finding close potential games to
a given game is for finite games, and it does not imme-
diately extend to continuous games. This can be seen as for
continuous games, problems (P1) and (P2) become infinite
dimensional optimization problems. We leave developing a
similar framework for continuous games as a future goal.

V. EXAMPLE

In this section, we compare the methods for finding close
potential games proposed in the previous section on a specific
example.

We focus on two-player games where each player has three
strategies. Consider the matrices

A =

1 1 2
0 2 0
2 1 1

 and B =

1 2 2
0 −3 0
2 2 1

 .
For any α ∈ [0, 1], let Gα denote the game with payoff
matrices (u1, u2) = (α ·3A+(1−α) ·B,α ·A+(1−α) ·3B).
It can be seen from this definition that G0 is a weighted
potential game with payoff matrices (u1, u2) = (B, 3B) and
weights (3, 1) and similarly G1 is a weighted potential game
with payoff matrices (u1, u2) = (3A,A) and weights (1, 3).

In our simulations, for different values of α, we consider
the game Gα and compute (i) the closest exact potential game
(ii) the best weighted potential game approximation using
the formulation P2 (iii) the closest weighted potential game
to Gα. Here, we obtain the closest weighted potential game
to Gα by exhaustive search over weights (w1, w2), and the
corresponding solution of P1. We calculate the distance from
the original game to each of these games, by quantifying the
distance between the games in terms of the norm defined
in the space of games (for G with payoffs {um}, ||G||2 =∑
m hm||um||2).
In Figure 1 we compare the distances between the original

game and the close potential games obtained by different
methods, as a function of α. We see that the best weighted
potential game approximation in the sense of P2, closely
approximates the closest weighted potential game, and it
improves significantly over the closest exact potential game.

VI. STATIC AND DYNAMIC PROPERTIES OF
NEAR-POTENTIAL GAMES

In this section we relate the static and dynamic properties
of a given game with those of a nearby potential game. The
proofs of the results in this section are omitted due to page
constraints. Proofs as well as extensions of the presented
results can be found in [8] and [10].
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Fig. 1. Comparison of distances between the original game and the close
potential games obtained by different methods.

A. Static Properties

If two games have similar payoff functions, then their
approximate equilibria are closely related. In this section,
we use this property to study their sets of equilibria. The
following lemma characterizes the ε-equilibria of a game in
terms of the ε-equilibria of a nearby game.

Lemma 1: Let G and Ĝ be two games with set of players
M, strategy profiles E and utility functions {um} and {ûm}
respectively. Assume that |um(p) − ûm(p)| ≤ ε0 for every
m ∈M and p ∈ E. Then,

(i) For any two strategy profiles p, and q that only differ
in the strategy of player k, it follows that uk(q)− uk(p) ≤
ûk(q)− ûk(p) + 2ε0.

(ii) Every ε1-equilibrium of Ĝ is an ε-equilibrium of G
with ε ≤ 2ε0 + ε1.

The previous lemma can be used to characterize the
approximate equilibrium set of an arbitrary game in terms of
the approximate equilibrium set of a close potential game.

Proposition 5: Let a game G and a set of weights {wm}
be given. For G and these weights, denote the game which
solves P2 by Ĝ and the corresponding objective value in P2
by ψ(w) = α2. Assume that hm denotes the number of
strategies player m has. Then, every ε1-equilibrium of Ĝ is
an ε-equilibrium of G with ε ≤ ε1 + 2 maxm α

wm

√
hm

.

B. Dynamic Properties

We next show that dynamics in an arbitrary game can
be studied using a close potential game. Before stating
our result, we introduce the approximate better-response
dynamics:

Definition 6.1 (ε-Better-Response Dynamics): At each
time step t, a single player is chosen at random for
updating its strategy, using a probability distribution
with full support over the set of players. Let m be the
player chosen at some time t, and let p ∈ E denote the
strategy profile at t. If um(p) < maxq um(q,p−m) − ε

then player m updates its strategy to a strategy
qm ∈ {q ∈ Em | um(q,p−m) > um(p) + ε}, where
the new strategy is chosen uniformly at random from this
set; otherwise player m does not modify its strategy.

The following proposition shows that in an arbitrary game,
approximate convergence of the better-response dynamics
can be studied using the properties of a close potential game.

Proposition 6: Let a game G and a set of weights {wm}
be given. For G and these weights, denote the game which
solves P2 by Ĝ and the corresponding objective value in P2
by ψ(w) = α2. Assume that ε ≥ 2 maxm α

wm

√
hm

. In G, the
ε-better-response dynamics is confined in the ε-equilibrium
set after finite time, with probability 1.

VII. CONCLUSIONS

We introduced a geometric framework for the analysis
of arbitrary games in terms of “close” potential games.
We showed that the sets of weighted and ordinal potential
games are nonconvex, as opposed to fixed-weight potential
games, which form a subspace. Using this fact, we obtained
closed-form solutions for the closest exact and fixed-weight
potential games to a given game. Additionally, we introduced
a convex optimization formulation which provides a close
weighted potential game with arbitrary weights to any given
strategic-form finite game.

Our results show that the static and dynamic properties
of an arbitrary game can be analyzed by employing the
properties of potential games that are close to it. More-
over, the proposed scheme for finding a close weighted
potential game results in a tighter characterization of static
and dynamic properties of a game, when compared to the
results that can be obtained using exact potential games. We
leave the application of our potential game approximation
framework to analysis of various update rules and additional
static properties, such as efficiency notions, as a future goal.
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