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Abstract— This paper presents systematic methods for throw-
ing motion control of the Pendubot based on the concept of
explosively unstable zero dynamics. The Pendubot, an underac-
tuated two-link planar robot, is investigated as a dynamic model
of the superior limbs for imitation of human throwing motion
whose models are fundamentally underactuated in nature. The
controller is designed based on input-output linearization and
output zeroing control since the Pendubot is not input-state
linearizable. The originality of this paper is to intentionally
destabilize the zero dynamics, a nonlinear dynamics which
remains unobservable from the output when the partially

linearized dynamics converges exponentially to zero, to generate
dynamic acceleration of the ball. Mathematical analysis of
ordinary differential equations guarantees the explosive insta-
bility of the zero dynamics. Numerical simulations verify the
effectiveness of the proposed control strategy.

I. INTRODUCTION

Control problems of underactuated mechanical systems

have attracted a number of researchers in the field of control

theory and robotics since it consists of both pure and applied

research interests. Westervelt et al. [1] presented systematic

methods for achieving stable, agile, and efficient locomotion

in bipedal robots. Anton et al. [2] and Freidovich et al. [3]

proposed a new constructive tool for orbital stabilization of

underactuated nonlinear systems based on the concept of

virtual holonomic constraints. Mettin et al. [4] proposed a

new approach for solving an optimal control problem of

ball pitching with an underactuated model of a human arm.

Katsumata et al. [5], Ichinose et al. [6], and Shoji et al. [7]

claimed that the unstable zero dynamics generated dynamic

acceleration of a ball when the input is devoted to constrain

the ball on a geometric path via input-output linearization and

output zeroing control. The major omission of the previous

works, however, was the lack of zero dynamics analysis. The

zero dynamics was too complicated to calculate a general

solution of the differential equation and to give exact analysis

since the output consisted of nonlinear functions with respect

to the configuration variables. Moreover, a torsion spring

mounted on the passive joint of the Pendubot might help

the controller to produce the required torque for throwing

motion control. Therefore instability of the zero dynamics

was not guaranteed.
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The purpose of this paper is to present systematic methods

for throwing motion control of the Pendubot based on the

concept of explosively unstable zero dynamics and to give

zero dynamics analysis. The controller design is based on

input-output linearization and output zeroing control since

the control objective is motion generation of underactuated

mechanical systems which can never be achieved by approxi-

mate linearization nor trajectory tracking control. The output

in this paper is designed to consist of linear functions with

respect to the configuration variables while the output in the

previous work consisted of nonlinear functions with respect

to the configuration variables, which made it difficult to give

zero dynamics analysis.

This paper is organized as follows: In Section II, a

dynamic model is constructed with the Pendubot. In Section

III, control strategy for throwing motion is proposed based on

the concept of explosively unstable zero dynamics via input-

output linearization and output zeroing control. In Section

IV, instability of the zero dynamics is discussed based

on second order ordinary differential equations. In Section

V, numerical simulations confirm the effectiveness of the

proposed control strategy. Section VI concludes the paper.

II. DYNAMIC MODEL AND STATE EQUATION

This section introduces a dynamic model for throwing

motion control of the Pendubot as shown in Fig. 1. The

Pendubot is an underactuated two-link planar robot with an

actuator at joint 1 but no actuator at joint 2, consisting of

links 1 and 2 which represent the upper arm and the forearm,

respectively. The end-effector holds a ball and releases it

instantaneously when it enters the first quadrant for the first

time while its center of mass rotates in a positive direction

around joint 1. The notation is fixed as follows: For i = 1,2,

mi denotes the mass of link i; li denotes the length of link i;

lgi denotes the distance from the previous joint to the center

of mass of link i; Ji denotes the moment of inertia of link i

about an axis coming out of the page, passing through the

center of mass of link i; and mb denotes the mass of the ball.

Dynamics of the Pendubot can be described by the system

of two nonlinear differential equations, originating from

Lagrangian mechanics

M(q)q̈+C(q, q̇)q̇+G(q) = Bu, (1)

with the vector of generalized coordinates

q :=
[

θ1 θ2

]T
, (2)
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the inertia matrix

M(q) =

[

p1 + p3 + 2p2 cosθ2 p3 + p2 cosθ2

p3 + p2 cosθ2 p3

]

, (3)

the matrix corresponding to Coriolis and centrifugal forces

C(q, q̇) =

[

−p2θ̇2 sinθ2 −p2(θ̇1 + θ̇2)sinθ2

p2θ̇1 sinθ2 0

]

, (4)

the gravity vector

G(q) =

[

gp4 cosθ1 + gp5 cos(θ1 +θ2)
gp5 cos(θ1 +θ2)

]

, (5)

and the input matrix mapping the applied torque to general-

ized forces

B =
[

1 0
]T

, (6)

where g is the acceleration due to gravity; θ1 is the absolute

angle of the first link; θ2 is the relative angle between the

two links; τ1 is the controlled torque, applied to the first link.

Physical parameter is combined to

p1 = I1 + lg1
2m1 + l1

2(m2 +mb), (7)

p2 = l1(lg2m2 + l2mb), (8)

p3 = I2 + lg2
2m2 + l2

2mb, (9)

p4 = lg1m1 + l1(m2 +mb), (10)

p5 = lg2m2 + l2mb. (11)

The dynamic model of the Pendubot is written in state space

form by defining

ẋ =

[

q̇

M(q)−1[−C(q, q̇)q̇−G(q)+Bu]

]

(12)

=: f (x)+ g(x)u, (13)

with the state vector

x :=
[

qT q̇T
]T

(14)

and the input vector

u := τ1. (15)

III. CONTROLLER DESIGN

This section proposes control strategy for throwing motion

of the Pendubot. Since the dynamic model is not input-state

linearizable, input-output linearization decouples the system

into linear and nonlinear dynamics. The originality of this

paper is to intentionally destabilize the zero dynamics, a

nonlinear dynamics which remains unobservable from the

output when the partially linearized dynamics converges

exponentially to zero via output zeroing control. Dynamic

acceleration of the ball is then generated by obtaining energy

from divergence of the unstable zero dynamics.

Fig. 1. Dynamic model of the Pendubot.

A. Input-Output Linearization

For the underactuation of the dynamic model which is not

input-state linearizable, input-output linearization is consid-

ered with an output

y = h(x) := θ2 −θ2d ∈R, (16)

where θ2d denotes the desired angle of joint 2. Note that

y = 0 means θ2 = θ2d . Since the designed output depends

only on the configuration variables, then, due to the second

order nature of the robot model (1), the first time derivative

of the output along solutions of the state equation

ẏ =
dy

dt
=

∂h(x)

∂x
ẋ = L f h(x) (17)

does not depend directly on the input. Hence, the relative

degree of the output is at least two. The second time

derivative of the output along solutions of the state equation

is derived as

ÿ =
d2y

dt2
=

∂L f h(x)

∂x
ẋ = L2

f h(x)+LgL f h(x)u, (18)

which indicates that the relative degree of the output is two.

The preliminary feedback

u = LgL f h(x)−1(v−L2
f h(x)) (19)

yields the output dynamics ÿ = v when v is a new input.

The dynamics of the Pendubot is then partially linearized

via input-output linearization as

d

dt

[

y

ẏ

]

=

[

0 1

0 0

][

y

ẏ

]

+

[

0

1

]

v. (20)

This differential equation called the external dynamics,

which gives a linear relationship between the input and the

output. Since the relative degree of the output is two and

is lower than the dimension of the original system, only

the external dynamics of dimension two is linearized. A
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nonlinear dynamics, called the internal dynamics, remains

unobservable from the output and is given by

d

dt

[

z

ż

]

=

[

ż

− β (y)
α(y) ż

2 − γ(y,z)
α(y)

]

+

[

0

− p3

α(y)

]

v (21)

where

α(y) = p3 + p2 cos(y+θ2d), (22)

β (y) = p2 sin(y+θ2d), (23)

γ(y,z) = p5gcos(y+ z+θ2d). (24)

The new coordinate of the internal dynamics as a counterpart

of the output

z := θ1 ∈ R
1 (25)

defines a mapping

Φ(x) :=









y

ẏ

z

ż









=









θ2 −θ2d

θ̇2

θ1

θ̇1









∈ R
4 (26)

whose jacobian matrix

∂Φ(x)

∂x
=









0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0









(27)

is nonsingular for all x as a global coordinates transforma-

tion. Note that gravity terms are all rearranged in γ(y,z).

B. Output Zeroing Control

For the linearity of the external dynamics of dimension

two, the state variable feedback

v =−KPy−KDẏ (28)

results in

ÿ+KDẏ+KPy = 0, (29)

that is
d

dt

[

y

ẏ

]

=

[

0 1

−KP −KD

][

y

ẏ

]

. (30)

For KP,KD > 0, the external dynamics converges exponen-

tially to zero. For y ≡ 0, that is θ2 ≡ θ2d , the system is

represented by a reduced order dynamics called the zero

dynamics,

d

dt

[

z

ż

]

=

[

ż

− β (0)
α(0) ż

2 − γ(0,z)
α(0)

]

, (31)

provided that initial conditions are chosen to satisfy the

constraint. Note that α(0) and β (0) are constants and γ(0,z)
is a function with respect to z = θ1, the angle of joint 1.

IV. ZERO DYNAMICS ANALYSIS

This section analyzes instability of the zero dynamics de-

rived in the previous section. The instability analysis is based

on solving second order ordinary differential equations. A

general solution of the zero dynamics is derived to reveal

the effects of changes in initial conditions on level sets. Note

that this section contains main results of this paper.

A. Formulation of Zero Dynamics

The differential equation of the zero dynamics defined in

the previous section can also be formulated as a second order

ordinary differential equation,

α(0)z̈+β (0)ż2 + γ(0,z) = 0, (32)

by substituting constraint y = 0, that is θ2 = θ2d , into

nonholonomic constraint of the dynamic model where

α(0) = p3 + p2 cosθ2d =Const., (33)

β (0) = p2 sinθ2d =Const., (34)

γ(0,z) = p5gcos(z+θ2d). (35)

Lemma 1: Physical parameter of the Pendubot satisfies

α(0) > 0 to avoid the existence of unconsidered singular

points, which results in 2l2 ≥ 3l1 when link 2 is assumed to

be J2 = m2l2
2/12 and lg2 = l2/2.

Proof: The proof is omitted for simple calculation.

Lemma 2: γ(0,z) given by (35) is bounded by a positive

constant Dγ as |γ(0,z)| ≤ Dγ for every z ∈R.

Proof: The proof is omitted for simple calculation.

With the aid of these lemmas, explosively instability of

the zero dynamics can be discussed as follows.

B. Explosive Instability of Zero Dynamics

The section shows explosive instability of the zero dy-

namics and reveals mathematical conditions for the zero

dynamics to be destabilized by output zeroing control. The

first step is to define instability and explosive instability for

a solution of the differential equation.

Definition 1: Consider an ordinary differential equation

ż = f (z), z ∈R
n (36)

where f (z) is a vector field in R
n. A solution z(t) is

unstable if the solution escapes to infinity in infinite time

as lim
t→∞

‖z(t)‖ = ∞. Moreover, a solution z(t) is explosively

unstable if the solution escapes to infinity in finite time as

lim
t→T

‖z(t)‖= ∞ where T < ∞. ⊳

Remark 1: This paper defines instability for a solution of

the differential equation to introduce the concept of blow-up

phenomena in finite escape time while instability is generally

defined for an equilibrium point. ⊳
Theorem 1: Consider the zero dynamics given by a sec-

ond order ordinary differential equation

α(0)z̈+β (0)ż2 + γ(0,z) = 0, (37)

where α(0)> 0 and |γ(0,z)| ≤Dγ for every z ∈R. If β (0)<
0 for all t ∈ R

+, then a solution z(t) with initial conditions

|ż0|>
√

Dγ/(−β (0)) is explosively unstable and the solution

escapes to positive infinity in finite time.

Proof: Due to space constraints, only a sketch of the

proof is given in the following. Substituting the differential

equation (37) into |γ(0,z)| ≤ Dγ gives

|α(0)z̈+β (0)ż2| ≤ Dγ , (38)
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indicating that a solution of the differential equation should

have upper and lower bounds. Since β (0)< 0 for all t ∈R
+,

the upper bound

α(0)z̈+β (0)ż2 ≤ Dγ (39)

is valid for all ż ∈ R while the lower bound

−Dγ ≤ α(0)z̈+β (0)ż2 (40)

is divided by ż into three discrete intervals as follows: For

|ż| >
√

Dγ/(−β (0)), a solution of the differential equation

is upper and lower bounded by

λ f t(t)≤ ż(t)≤ λ f t(t), κ f t(t)≤ z(t)≤ κ f t(t), (41)

where λ f t(t) and κ f t(t) are some functions with respect

to t which escape to positive infinity in finite time. For

|ż| <
√

Dγ/(−β (0)), a solution of the differential equation

is upper and lower bounded by

λit(t)≤ ż(t)≤ λ f t(t), κit(t)≤ z(t)≤ κ f t(t), (42)

where λit(t) and κit(t) are some functions with respect to

t that exist for infinite time. Therefore, a solution of the

zero dynamics with initial conditions |ż0| >
√

Dγ/(−β (0))
is explosively unstable and the solution escapes to positive

infinity in finite time. This completes the proof.

Remark 2: The opposite of Theorem 1 is equally true. If

β (0) > 0 for all t ∈ R
+, then a solution z(t) with initial

conditions |ż0|>
√

Dγ/β (0) is explosively unstable and the

solution escapes to negative infinity in finite time. ⊳

C. General Solution of Zero Dynamics

A general solution of the zero dynamics governed by the

differential equation (32) is derived as

I(z, ż) :=

(

ż2 +
2p5gsin(z+ψ)
√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z

=

(

ż2
0 +

2p5gsin(z0 +ψ)
√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z0

=I(z0, ż0) =: I0 =Const., (43)

where

ψ = tan−1 α(0)sin θ2d + 2β (0)cosθ2d

α(0)cosθ2d − 2β (0)sinθ2d

. (44)

Procedure for deriving the general solution is shown in the

following.

1) variable transformation,

w =
1

2
ż2. (45)

2) chain rule,

z̈ =
d

dt

(

dz

dt

)

=
dz

dt

dż

dz
=

dw

dz
. (46)

3) nonhomogeneous linear differential equation,

α(0)
dw

dz
+ 2β (0)w =−γ(0,z). (47)

Fig. 2. Integral curve of the zero dynamics.

4) integration for general solution,
(

w+
p5gsin(z+ψ)

√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z

=

(

w0 +
p5gsin(z0 +ψ)
√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z0 . (48)

D. Equilibrium and Representative Points

Fig. 2 shows integral curve of the zero dynamics. Since

gravity terms of the zero dynamics and the original system

are both rearranged in γ(0, ż) and γ(y, ż), respectively, the

equilibrium points which satisfy

γ(0, ż) := p5gcos(z+θ2d) = 0 (49)

can be derived as follows:

× zs (saddles), where the absolute angle of link 2 given

by θ1 +θ2 =: z+θ2 satisfies

zs =
π

2
+ 2nπ−θ2d , (50)

© zc (centers), where the absolute angle of link 2 given

by θ1 +θ2 =: z+θ2 satisfies

zc =−
π

2
+ 2nπ −θ2d, (51)

△ zr (representative points), where the absolute angle of

link 1 given by θ1 =: zr satisfies

sin(zr +ψ)e
2β(0)
α(0)

zr =
α(0)e

2β(0)
α(0) (

π
2 +2nπ−θ2d)

2
√

α2(0)+ 4β 2(0)
. (52)

This equation is called the transcendental function,

which cannot be solved with respect to zr. The numer-

ical solution of the equation, however, can be derived
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as

θ1 =−0.463978+ 2nπ [rad], (53)

provided that physical parameter is taken from Table I

and the desired angle of joint 2 is fixed as θ2d =−π/2

for numerical computation.

Note that changes in θ2d result in moving positions of

equilibrium and representative points.

Theorem 2: Consider the zero dynamics given by a sec-

ond order ordinary differential equation (37), where α(0)> 0

and |γ(0,z)| ≥ Dγ for every z ∈ R. Suppose that a general

solution of the differential equation (37) is derived as

I(z, ż) =

(

ż2 +
2p5gsin(z+ψ)
√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z

=

(

ż2
0 +

2p5gsin(z0 +ψ)
√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z0

= I(z0, ż0) =: I0 =Const., (54)

where

ψ = tan−1 α(0)sin θ2d + 2β (0)cosθ2d

α(0)cosθ2d − 2β (0)sinθ2d

. (55)

Note that fixing initial conditions z0, ż0 corresponds to

choosing a level set I0 of the general solution of the zero

dynamics. If the initial level set is chosen to satisfy

I (zs(n),0)≤ I0 ≤ I (zs(n− 1),0) (56)

where

zs(n) =
π

2
+ 2nπ −θ2d (57)

with β (0) < 0 for all t ∈ R
+, then a solution of the zero

dynamics with initial conditions

zs(n)≤ z0 ≤ zr(n), (58)

is explosively unstable and the solution escapes to positive

infinity in finite time where zr(n) denotes the corresponding

representative point.

Proof: Theorem 1 shows that a solution of (37) with

initial conditions |ż0|>
√

Dγ/(−β (0)) is explosively unsta-

ble and the solution escapes to positive infinity in finite time,

where Dγ is a positive constant which bounds |γ(0,z)| ≤ Dγ .

Since the partial derivative of level set I(z, ż) with respect to

z,

∂ I(z, ż)

∂ z
=

(

2β (0)

α(0)
ż2 +

2β (0)

α(0)

2p5gsin(z+ψ)
√

α2(0)+ 4β 2(0)

+
2p5gcos(z+ψ)
√

α2(0)+ 4β 2(0)

)

e
2β(0)
α(0)

z
, (59)

is a linear combination of a quadratic function with respect

to ż and sine and cosine functions with respect to z, which

results in ∂ I(z, ż)/∂ z < 0 for arbitrarily large ż when β (0)<
0 for all t ∈ R

+. Moreover, positions of the equilibrium

points are derived as z = π/2+nπ−θ2d . By the divergence

theorem, therefore, a solution of the zero dynamics which

passes through the domain (58) is explosively unstable and

the solution escapes to positive infinity in finite time with

the initial level set chosen from (56) when β (0)< 0 for all

t ∈ R
+. This completes the proof.

Remark 3: The opposite of Theorem 2 is equally true

when β (0)> 0 for all t ∈R
+. ⊳

E. Generalization of Zero Dynamics Analysis

The purpose of this section is to extend Theorem 1 for

the generalized zero dynamics, which widely covers other

mechanical systems.

Theorem 3: Consider the zero dynamics given by a sec-

ond order ordinary differential equation

α(z)z̈+β (z)ż2 + γ(z) = 0, (60)

where 0 < dα ≤ α(z)≤ Dα and |γ(z)| ≤ Dγ for every z ∈R.

If β (z) is bounded by positive constants Dβ ,dβ as −Dβ ≤
β (z)≤−dβ < 0 for every z ∈R, then a solution of z(t) with

initial conditions |ż0|>
√

Dγ/dβ is explosively unstable and

the solution escapes to positive infinity in finite time.

Proof: Due to space constraints, only a sketch of the

proof is given in the following. Substituting the differential

equation (60) into |γ(0,z)| ≤ Dγ gives

dβ ż2 −Dγ

Dα
≤ z̈ ≤

Dβ ż2 +Dγ

dα
, (61)

indicating that a solution of the differential equation should

have upper and lower bounds. Since dα ,Dβ ,Dγ > 0 for all

t ∈ R
+, the upper bound

z̈ ≤
Dβ ż2 +Dγ

dα
(62)

is valid for all ż ∈ R while the lower bound

dβ ż2 −Dγ

Dα
≤ z̈ (63)

is divided by ż into three discrete intervals as follows: For

|ż0| >
√

Dγ/dβ , a solution of the differential equation is

upper and lower bounded by

λ f t(t)≤ ż(t)≤ λ f t(t), κ f t(t)≤ z(t)≤ κ f t(t), (64)

where λ f t(t) and κ f t(t) are some functions with respect to

t that escape to positive infinity in finite time. For |ż| <
√

Dγ/dβ , a solution of the differential equation is upper and

lower bounded by

λit(t)≤ ż(t)≤ λ f t(t), κit(t)≤ z(t)≤ κ f t(t), (65)

where λit(t) and κit(t) are some functions with respect to

t that exist for infinite time. Therefore, a solution of the

zero dynamics with initial conditions |ż0| >
√

Dγ/dβ is

explosively unstable and the solution escapes to positive

infinity in finite time. This completes the proof.

Remark 4: The opposite of Theorem 3 is equally true

when 0 < dβ ≤ β (z)≤ Dβ for every z ∈ R. ⊳
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F. Internal Dynamics Analysis

This section shows that Theorem 1 and Theorem 3 can

be extended to the internal dynamics analysis, a nonlinear

unobservable dynamics when constraint of output zeroing

control is not satisfied yet such as y 6= 0, that is θ2 6= θ2d .

Theorem 4: Consider the internal dynamics given by an

ordinary differential equation

α(y,z)z̈+β (y,z)ż2 + γ(y,z) = δ (y, ẏ) (66)

where 0 < dα ≤ α(y,z) ≤ Dα and |γ(y,z)| ≤ Dγ for every

y,z ∈ R. Moreover, δ (y, ẏ) is a function with respect to

y, ẏ∈R. Suppose that Dδ ,dδ > 0 are positive constants which

bound −dδ ≤ δ (y, ẏ)≤ Dδ . If −Dβ ≤ β (y,z)≤−dβ < 0 for

every y,z ∈ R, then a solution z(t) with initial conditions

|ż0|>
√

(Dγ +Dδ )/dβ is explosively unstable and the solu-

tion escapes to positive infinity in finite time.

Proof: Substituting the differential equation given by

(66) into |γ(y,z)| ≤ Dγ gives

dβ ż2 − (Dγ +Dδ )

Dα
≤ z̈ ≤

Dβ ż2 +(dγ + dδ )

dα
. (67)

The rest of this proof is omitted since similar calculations in

Theorem 3 can be applied. Difference between Theorem 3

and Theorem 4 is the conservativeness.

Remark 5: The opposite of Theorem 4 is equally true

when 0 < dβ ≤ β (y,z) ≤ Dβ for every y,z ∈ R. ⊳
Remark 6: The internal dynamics of the Pendubot is given

by

α(y)θ̈1 +β (y)θ̇ 2
1 + γ(y,θ1) = p3(KPy+KDẏ), (68)

which can be rewritten as

δ (y, ẏ) = p3(KPy+KDẏ) (69)

when constraint of output zeroing control is not satisfied yet

as y 6= 0, that is θ2 6= θ2d .

V. NUMERICAL SIMULATIONS

This section performs numerical simulations to verify

the effectiveness of the proposed control strategy. For the

numerical validation, this section is divided into four parts

with different initial conditions. The first and second sections

show the performance of the designed controller with initial

conditions chosen to satisfy the constraint y = 0, that is

θ2 = θ2d . The third and fourth sections show the desired

and undesired effects of the internal dynamics with initial

TABLE I

PHYSICAL PARAMETER OF THE PENDUBOT.

Par. Units Value Par. Units Value

m1 kg 1.00 m2 kg 1.50

l1 m 0.20 l2 m 0.30

lg1 m l1/2 lg2 m l2/2

J1 kgm2 m1l2
1/12 J2 kgm2 m2l2

2/12

mb kg 0.05 g m/s2 9.81

conditions not to satisfy the constraint, namely y 6= 0, that is

θ2 6= θ2d . Although initial conditions change over sections,

feedback gains which converge the external dynamics expo-

nentially to zero are fixed as KP = 200 and KD = 30. The

desired angle of joint 2 is also designed as θ2d =−π/2. The

end-effector releases the ball when it enters the first quadrant

for the first time in a positive rotation as mentioned in Section

II.

A. Control via Unstable Zero Dynamics

This section deals with numerical simulations for the

initial condition chosen to satisfy the constraint y = 0,

that is θ2 = θ2d , to verify the validity of the designed

controller based on the exact analysis of explosively unstable

zero dynamics. Initial condition, thus, is chosen as x0 =
[−0.59,−1.57,0,0]T , which places the ball directly below

joint 1 when the angle of joint 2 is initialized as θ20 =−π/2.

Snapshots for dynamic acceleration of the ball driven by

the explosively unstable zero dynamics are shown in Fig. 3.

For the instability analysis in the previous section, the zero

dynamics exhibits the explosive instability if initial condition

of the zero dynamics, namely (θ10, θ̇10), lies outside of

the maximum amplitude of periodic motion, emphasized

by red lines in Fig. 2. The phase plane of the external

and internal dynamics is shown in Fig. 5(a). The red line

denotes the divergence of the internal dynamics in a positive

rotation while the blue line denotes the convergence of the

external dynamics driven by output zeroing control. Fig. 5(b)

shows the time behavior of the external dynamics which

is constrained to remain identically zero. Fig. 5(b) also

guarantees Lgh(x) 6= 0 which implies that the exhibition

of finite escape time caused by the explosive instability is

independent of singular points in the input transformation of

the preliminary feedback. The time behaviors of joint angles

and angular velocities are shown in Fig. 5(c) and Fig. 5(d),

respectively. These figures show that the designed controller

successfully achieves dynamic acceleration of the ball with

the initial condition.

B. Control via Periodic Zero Dynamics

This section deals with numerical simulations for initial

conditions chosen to satisfy the constraint y = 0, that is θ2 =
θ2d , to show periodic motion of the zero dynamics based

on the exact analysis. Initial conditions, thus, are chosen as

x0 = [−0.40,−1.57,0,0]T , which casually places the ball at

a certain point when the angle of joint 1 is initialized as

θ10 = 0.

Snapshots for periodic motion of the Pendubot driven by

the orbitally stable zero dynamics are shown in Fig. 4. For the

instability analysis in the previous section, the zero dynamics

exhibits the periodic stability if initial conditions of the zero

dynamics, namely (θ10, θ̇10), lie inside of the maximum

amplitude of periodic motion, emphasized by red lines in

Fig. 2. The phase plane of the external and internal dynamics

is shown in Fig. 6(a). The red line denotes the convergence of

the internal dynamics to a periodic orbit while the blue line

denotes the convergence of the external dynamics driven by
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Fig. 3. Snapshots of throwing motion control via the unstable zero dynamics.

Fig. 4. Snapshots of throwing motion control for the periodic zero dynamics.

(a) phase plane (b) external dynamics

(c) joint angles (d) angular velocities

Fig. 5. Results for output zeroing control via the unstable zero dynamics.

output zeroing control. Fig. 6(b) shows the time behavior

of the external dynamics which is constrained to remain

identically zero. Fig. 6(b) also guarantees Lgh(x) 6= 0 which

implies that the exhibition of finite escape time caused by

the periodic stability is independent of singular points in the

input transformation of the preliminary feedback. The time

behaviors of joint angles and angular velocities are shown

in Fig. 6(c) and Fig. 6(d), respectively. These figures show

that the designed controller causes periodic motion of the

Pendubot with the initial conditions above.

VI. CONCLUSION

This paper dealt with throwing motion control of the

Pendubot. The controller was designed based on input-output

linearization and output zeroing control. The zero dynamics

was intentionally destabilized to achieve dynamic accelera-

tion of the ball and was analytically derived to guarantee the

explosive instability. Numerical simulations confirmed the

validity of the designed controller based on the instability

analysis of the zero dynamics.

(a) phase plane (b) external dynamics

(c) joint angles (d) angular velocities

Fig. 6. Results for output zeroing control via the periodic zero dynamics.
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