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Abstract— We analyze the performance of receding horizon
controllers for the problem of keeping the state of a system
within a given admissible set while minimizing an averaged
functional. This problem does not satisfy the usual conditions
needed for the analysis of receding horizon schemes. We
give conditions under which approximate optimal performance
can be guaranteed without imposing terminal constraints and
illustrate our results by means of two numerical examples.

I. INTRODUCTION

In this paper we investigate a receding horizon (RH)
approach for the following feedback control problem: keep
the state of a (possibly nonlinear) discrete time system
within an admissible set X while minimizing an averaged
performance criterion. For the solution of the problem we
follow the usual RH (or model predictive control) paradigm.
In each time step for the current state we optimize the
averaged functional subject to the state constraints over a
finite horizon and apply the first element of the resulting
optimal control sequence as a feedback value for the next
time step.

Most results for (linear and nonlinear) RH control schemes
are developed for optimal control problems in which the
stage cost penalizes the distance to a desired equilibrium or
a more general reference solution. Stability and performance
results can be obtained under additional stabilizing terminal
constraints (see, e.g., [9], [11] or [7, Chapter 5]) or without
such constraints (see, e.g., [5], [6], [8] or [7, Chapter 6]).
These results require the stage cost to be positive definite in
the state or use a more general detectability condition as in
[5] or an input/output-to-state stability condition as in [11,
Section 2.7 and the references therein].

Here we consider optimal control problems which do not
satisfy these conditions. For such problems, which arise,
e.g., if the stage cost models economic costs instead of
penalizing a distance to a desired reference, recently a
two stage procedure was analyzed in [1], [4], [2]. In this
procedure, one first determines an optimal equilibrium or
periodic orbit for the original problem and then uses this
solution as a terminal constraint for the RH scheme. With
this approach the infinite horizon average performance of
the RH controller equals that of the original problem and
under additional conditions also convergence of the RH
closed loop solution to the optimal equilibrium or periodic
orbit can be ensured. One of the valuable insights of these
references is that an averaged functional is the right object for
obtaining such results. Consequently, in this paper we also
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use this performance criterion. In contrast to these references,
however, we do not impose any terminal constraints. Instead,
we derive conditions under which RH controllers are able to
yield (approximately) optimal performance without including
a priori information about optimal solutions in the RH
formulation.

The paper is organized as follows. After formulating the
problem and premilinary results in Section II we discuss
a numerical example for a simple 1d system in Section
III. This example on the one hand shows that convergence
can be expected and on the other hand helps to identify
suitable conditions for the main results of the paper which
can be found in Section IV. Here we first present a general
theorem which yields an upper bound for both finite and
infinite horizon average performance of the RH closed loop
and then formulate a corollary giving sufficient conditions
in terms of the system dynamics which in particular apply
to our first example. In order to make the main arguments
more transparent these results are formulated for the case
of an optimal equilibrium; an extension to optimal periodic
solutions is discussed by means of an example in Section V.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider discrete time control systems with state x ∈
X and control values u ∈ U , where X and U are subsets
of normed spaces with norms denoted by ‖ · ‖. The control
system under consideration is given by

x(k + 1) = f(x(k), u(k)) (1)

with f : X × U → X . For a given control sequence u =
(u(0), . . . , u(K − 1)) ∈ UK or u = (u(0), u(1), . . .) ∈ U∞,
by xu(k, x) we denote the solution of (1) with initial value
x = xu(0, x) ∈ X .

For a given admissible set X ⊂ X and an initial value
x ∈ X we call the control sequences u ∈ UK satisfying

xu(k, x) ∈ X for all k = 0, . . . ,K

admissible. The set of all admissible control sequences is
denoted by UK(x). Similarly, we define the set U∞(x) of
admissible control sequences of infinite length. Since the
emphasis of the analysis in this paper is on optimality rather
than on feasibility, for simplicity of exposition we assume
U∞(x) 6= ∅ for all x ∈ X, i.e., that for each initial value
x ∈ X we can find a trajectory staying inside X for all future
times. This condition may be relaxed if desired, using, e.g.,
the techniques from [7, Sections 8.2–8.3] or [10].



Given a feedback map µ : X → U , we denote the
solutions of the closed loop system

x(k + 1) = f(x(k), µ(x(k)))

by xµ(k) or by xµ(k, x) if we want to emphasize the
dependence on the initial value x = xµ(0). We say that
a feedback law µ is admissible if it renders the admissible
set X (forward) invariant, i.e., if f(x, µ(x)) ∈ X holds for
all x ∈ X. Note that U∞(x) 6= ∅ for all x ∈ X immediately
implies that such a feedback law exists.

Our goal is now to find an admissible feedback controller
which yields trajectories with minimal average cost. To this
end, for a given running cost ` : X × U → R we define the
following averaged functionals and optimal value functions.

JN (x, u) :=
1
N

N−1∑
k=0

`(xu(k, x), u(k))

J∞(x, u) := lim sup
N→∞

JN (x, u)

VN (x) := inf
u∈UN (x)

JN (x, u)

V∞(x) := inf
u∈U∞(x)

J∞(x, u)

Here we assume that ` is bounded from below on X, i.e.,
that `min := infx∈X,u∈U `(x, u) is finite. Without loss of
generality we may assume `min = 0; otherwise we may
replace ` by ` − `min. This assumption immediately yields
that all functionals are nonnegative for each x ∈ X and
all admissible control sequences. In order to simplify the
exposition in what follows, we assume that (not necessarily
unique) optimal control sequences for JN exist, i.e., that for
each x ∈ X and each N ∈ N there exists uoptN,x ∈ UN (x)
satisfying

VN (x) = JN (x, uoptN,x).

Similarly to the open loop functionals, we can define the
average cost of the closed loop solution for any feedback
law µ by

JK(x, µ) =
1
K

K−1∑
k=0

`(xµ(k, x), µ(xµ(k, x)))

J∞(x, µ) = lim sup
K→∞

JK(x, µ).

In order to find a feedback µ we will apply a receding
horizon (RH) control scheme, also known as model pre-
dictive control. This method consists of solving the open
loop optimization problem of minimizing JN (x, u) for some
given optimization horizon N ∈ N and then defining the
feedback law µN as the first element of the corresponding
optimal control sequence, i.e.,

µN (x) = uoptN,x(0).

We end this section by introducing some basic notation
and preliminary results. As usual, with K∞ we denote the
set of continuous functions α : R+

0 → R+
0 which are strictly

increasing and unbounded with α(0) = 0. With LN we

denote the set of functions δ : N → R+ which are (not
necessarily strictly) decreasing with limk→∞ δ(k) = 0.

In our analysis we will make extensive use of the dynamic
programming principle, cf. [3]. The form of this principle we
will need here states that for the optimal control sequence
uoptN,x for the problem with finite horizon N and each K ∈
{1, . . . , N − 1} the equality

VN (x) =
1
N

K−1∑
k=0

`(xuoptN,x
(k, x), uoptN,x(k))

+
N −K
N

VN−K(xuoptN,x
(K,x)) (2)

holds. As a consequence, for µN (x) = uoptN,x(0) we get

VN (x) =
1
N
`(x, µN (x)) +

N − 1
N

VN−1(f(x, µN (x))).

This implies the equation

`(x, µN (x)) = NVN (x)−(N−1)VN−1(f(x, µN (x))). (3)

III. A MOTIVATING EXAMPLE

In order to illustrate how receding horizon control per-
forms for the optimal invariance problem under considera-
tion, we look at the following motivating example.

Example 1: Consider the control system

x(k + 1) = 2x(k) + u(k)

with X = R and U = [−2, 2]. The running cost ` is chosen
such that the control effort is penalized quadratically, i.e.,
`(x, u) = u2. We consider the admissible sets X = [−a, a]
with a = 0.5 and a = 1. For these sets it is easily seen
that an optimal way of keeping the solutions inside X in
the infinite horizon averaged sense is to steer the system to
x∗ = 0 in a finite number of steps k∗ and set u(k) = 0 for
k ≥ k∗ which leads to J∞(x, u) = 0. Since `(x, u) ≥ 0 for
all x and u, this is the optimal value of J∞, i.e., V∞(x) = 0
for all x ∈ X.

This example does not satisfy the usual conditions im-
posed on receding horizon control schemes in the literature.
Indeed, since we do not impose terminal constraints neither
the techniques for stabilizing RH schemes presented, e.g., in
[11] or [9] nor the techniques for economic problems from
[1], [4], [2] apply. The results from [6], [8] do not apply,
either, because the running cost ` is not positive definite
in the state x. Finally, the detectability condition from [5]
fails to hold for the equilibrium x∗: this conditions requires
the existence of a nonnegative function W : X → R+

0

satisfying W (x) ≤ α1(|x|) and W (f(x, u)) − W (x) ≤
−α2(|x|) + γ(`(x, u)) for suitable functions α2, γ ∈ K∞
and a continuous nondecreasing function α1 : R+

0 → R+
0

with α1(0) = 0. Assuming that such a function W exists,
using u = 0 and `(x, 0) = 0 implies W (2x) − W (x) ≤
−α2(|x|) which yields W (x) ≤W (x/2)−α2(|x|/2) for all
x ∈ X with x 6= 0. By iterating this inequality and using
α2(·) ≥ 0 we get W (x) ≤ W (x/2i) − α2(|x|/2) for all
i ∈ N. For i → ∞ we get W (x/2i) ≤ α1(|x|/2i) → 0



implying W (x) ≤ −α2(|x|/2) < 0 which contradicts the
nonnegativity of W .

Nevertheless, the receding horizon feedback µN produces
approximately optimal closed loop solutions. In order to
illustrate this fact, we have simulated it numerically in
Matlab using the fmincon optimization routine (for details
see [7, Appendix A]).

Figure 1 shows the infinite horizon averaged value
J∞(x, µN ) for the receding horizon strategy thus obtained
for different optimization horizons N and the two admissible
sets X = [−1, 1] (solid) and X = [−0.5, 0.5] (dashed). The
values are plotted on a logarithmic scale and indicate that
J∞(x, µN )→ 0 as N →∞.
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Fig. 1. J∞(x, µN ) for N = 2, . . . , 15 and x = 0.5, X = [1, 1] (solid)
and X = [−0.5, 0.5] (dashed)

We observe: for increasing optimization horizon N the
closed loop infinite horizon averaged values J∞(x, µN )
improve and approach the optimum V∞(x) = 0 as N →∞.
On the other hand, for the larger admissible set X = [−1, 1]
the values are larger — despite the fact that the infinite
horizon optimal value does not depend on the choice of X.

Figure 2 shows the corresponding closed loop trajectories
for X = [−0.5, 0.5] with optimization horizon N = 5 (solid)
and N = 10 (dashed).
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Fig. 2. xµN (k, x) for N = 5 (solid) and N = 10 (dashed), both for
x = 0.5 and X = [−0.5, 0.5]

It is interesting to compare the closed loop trajectories
with the optimal open loop trajectories in each step of the
scheme, as illustrated in Figure 3 for X = [−1, 1] and N = 5.

While the closed loop trajectory approaches a neighborhood
of x∗ = 0, the optimal open loop trajectories tend towards
the upper boundary x = 1 of the admissible set X = [−1, 1].
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Fig. 3. Optimal predictions xu(k, xµN (k)) (dashed) within the receding
horizon optimization for N = 5, x = 0.5 and X = [−1, 1]

IV. MAIN RESULT

Our goal now is to investigate the dependence of
J∞(x, µN ) on N . The following theorem gives an upper
bound for this value. Its proof uses the classical RH proof
technique to prolong a suitable control sequence of length
N in order to obtain a sequence of length N + 1 for which
the difference between JN+1 and VN can be estimated.
However, since we have seen in Figure 3 that the opti-
mal trajectories for the finite horizon problem end up at
the boundary of the admissible set, using optimal control
sequences for JN for this purpose will in general not lead
to a good estimate. For instance, in the case of Example 1
we have xu(N) = 1 (cf. Figure 3) and would thus have
to use u(N) = −2 in order to obtain feasibility, i.e., to
guarantee xu(N + 1) = f(xu(N), u(N)) ∈ X. This leads
to `(xu(N), u(N)) = 4 which is much larger than the
minimal value minx,u `(x, u) = 0 of `. For this reason, in the
assumptions of the following theorem we use approximate
optimal control sequences uN,x instead of optimal ones.

Theorem 2: Assume there are N0 > 0 and δ1, δ2 ∈ LN
such that for each x ∈ X and N ≥ N0 there exists a control
sequence uN,x ∈ UN+1 satisfying the following conditions.
(i) The inequality

JN (x, uN,x) ≤ VN (x) + δ1(N)/N

holds, i.e., uN,x is approximately optimal for JN with
error δ1(N)/N .

(ii) There exists `0 ∈ R such that for all x ∈ X

`(xuN,x(N, x), uN,x(N)) ≤ `0 + δ2(N)

holds.
Then the inequalities

JK(x, µN ) ≤ N

K
VN (x) + `0 −

N − 1
K

VN−1(k)

+ δ1(N − 1) + δ2(N − 1) (4)



and

J∞(x, µN ) ≤ `0 + δ1(N − 1) + δ2(N − 1) (5)

hold for all x ∈ X, all N ≥ N0 + 1 and all K ∈ N.
Proof: Fix x ∈ X and N ≥ N0 + 1. Abbreviating

x(k) = xµN (k, x), from (3) for any k ≥ 0 we get

1
K
`(x(k), µN (x(k)))

=
N

K
VN (x(k))− N − 1

K
VN−1(x(k + 1)).

Summing up for k = 0, . . . ,K − 1 then yields

JK(x, µN )

=
1
K

K−1∑
k=0

`(x(k), µN (x(k)))

=
K−1∑
k=0

(
N

K
VN (x(k))− N − 1

K
VN−1(x(k + 1))

)
=
N

K
VN (x(0))− N − 1

K
VN−1(x(K))

+
1
K

K−1∑
k=1

(
NVN (x(k))− (N − 1)VN−1(x(k))

)
. (6)

Now we investigate the terms in (6). From (i) applied with
N − 1 in place of N and x = x(k) we get the inequality

(N − 1)VN−1(x(k)) ≥ (N − 1)JN−1(x(k), uN−1,x(k))
−δ1(N − 1).

Furthermore, by optimality of VN we get

VN (x(k)) ≤ JN (x(k), uN−1,x(k)).

Combining these inequalities, using the definition of JN and
(ii), for the summands of (6) we get

NVN (x(k))− (N − 1)VN−1(x(k))
≤ NJN (x(k), uN−1,x(k))
− (N − 1)JN−1(x(k), uN−1,x(k)) + δ1(N − 1)

= `(xuN−1,x(k)(N − 1, x(k)), uN−1,x(k)(N − 1))
+ δ1(N − 1)
≤ `0 + δ2(N − 1) + δ1(N − 1).

Inserting these inequalities into (6) yields

JK(x, µN ) ≤ N

K
VN (x)− N − 1

K
VN−1(x(K))

+ `0 + δ2(N − 1) + δ1(N − 1),

i.e., (4). Inequality (5) follows from (4) by letting K → ∞
since VN−1 is nonnegative.

The subtle point in Theorem 2 is that the approximation
error in (i) must tend to 0 faster than 1/N . The following
corollary gives conditions on the dynamics of the system on
X under which we can construct such trajectories in presence
of an optimal equilibrium. As we will see after the proof,
these conditions in particular apply to Example 1.

Corollary 3: Assume that X is bounded and that there
exists x∗ ∈ X and u∗ ∈ U such that f(x∗, u∗) = x∗

and `0 := `(x∗, u∗) = min(x,u)∈X×U `(x, u) holds. Assume
furthermore that the following two properties hold.
(a) There exists R ∈ N and α ∈ K∞ such that for each

x ∈ X there exists ux ∈ UR(x) with xux(kx, x) = x∗

for some kx ≤ R and

`(xux(k, x), ux(k)) ≤ `0 + α(‖x− x∗‖)

for all k = 0, . . . , kx − 1.
(b) There exists γ, δ ∈ LN and N0 > 0 such that for all

N ≥ N ′ ≥ N0, each x ∈ X and each trajectory xu(k, x)
satisfying ‖xu(k, x) − x∗‖ ≥ δ(N ′) and xu(k, x) ∈ X
for all k = 0, . . . , N the inequality

JN (x, u) ≥ `0 + γ(N ′)

holds.
Then V∞(x) = `0 holds for all x ∈ X and there exists

ε ∈ LN and Ñ0 ∈ N such that the inequality

J∞(x, µN ) ≤ `0 + ε(N − 1) = V∞(x) + ε(N − 1) (7)

holds for all x ∈ X and all N ≥ Ñ0 + 1.
Proof: We first derive a priori bounds on VN and V∞

for x ∈ X. From the assumptions on ` it immediately follows
that VN (x) ≥ `0 and V∞(x) ≥ `0 for all x ∈ X and N ∈ N.
In order to derive upper bounds for VN and V∞ consider
x ∈ X and the control sequence ũx ∈ U∞(x) defined by

ũx(k) :=
{
ux(k), k = 0, . . . , kx − 1
u∗, k ≥ kx

(8)

with ux and kx from (a). Then it follows that xũx(k, x) = x∗

and `(xũx(k, x), ũx) = `0 for all k ≥ kx and

`(xũx(k, x), ũx) ≤ `0 + α(‖x− x∗‖) (9)

for all k ∈ N. Thus we get

JN (x, ũx) ≤ `0 +
kx
N
α(‖x− x∗‖) (10)

for all N ∈ N from which

VN (x) ≤ `0 +
kx
N
α(‖x− x∗‖) and V∞(x) ≤ `0 (11)

follows. In particular, this implies V∞(x) = `0.
We now construct uN,x meeting the assumptions of Theo-

rem 2. Note that ũx is not suitable for this purpose, because
the difference between the lower bound `0 ≤ VN (x) and the
upper bound `0 + kx

N α(‖x − x∗‖) ≥ JN (x, ũx) tends to 0
slower than the gap δ1(N)/N allowed in Theorem 2(i). Thus,
for the construction of uN,x we need to exploit condition (b).

In order to construct uN,x we define αmax :=
maxx∈X α(‖x − x∗‖) (which is finite since X is bounded)
and for each N ≥ N0 we let η(N) ∈ {1, . . . , N} be
maximal such that γ(η(N)) > Rαmax/N holds. Note that
η is nondecreasing with η(N) → ∞ as N → ∞ because
Rαmax/N tends to 0 monotonically as N →∞ and γ ∈ LN.
We choose Ñ0 ∈ N minimal with η(Ñ0) ≥ N0.



Now we define

σ(N) := max{δ(η(N)), γ(η(N))}.

Since γ, δ ∈ LN and η(N)→∞ monotonically as N →∞
we obtain σ ∈ LN.

We claim that σ has the following property: for each x ∈ X
let uoptN,x be an optimal control sequence for JN (x, u) and
some N ≥ R and N ≥ N0. Then

‖xuoptN,x
(kσ, x)− x∗‖ ≤ σ(N) (12)

for some kσ ∈ {0, . . . , N}.
In order to show (12) let x ∈ X and assume the opposite,

i.e., ‖xuoptN,x
(k, x) − x∗‖ > σ(N) for all k ∈ {0, . . . , N}.

This implies ‖xuoptN,x
(k, x) − x∗‖ > δ(η(N)) for all k ∈

{0, . . . , N}. Since N0 ≤ η(N) ≤ N , (b) applies with N ′ =
η(N) and yields

VN (x) = JN (x, uoptN,x) ≥ `0 + γ(η(N))
> `0 +Rαmax/N ≥ `0 +Rα(‖x− x∗‖)/N.

Since R ≥ kx holds for kx from (11), this inequality
contradicts (11) which proves (12).

Now we construct uN,x by concatenating uoptN,x and ũx
from (8) for x = xuoptN,x

(kσ, x) with kσ from (12). Abbrevi-
ating xσ = xuoptN,x

(kσ, x), this amounts to defining

uN,x(k) :=
{
uoptN,x(k), k = 0, . . . , kσ − 1
ũxσ (k − kσ), k ≥ kσ.

This construction implies xuN,x(k, x) = xuoptN,x
(k, x) for k =

0, . . . , kσ and xuN,x(k, x) = xũxσ (k − kσ, xσ) for k ≥ kσ .
Thus, using (2) in the second step, (10) and (11) in the third
step and (12) and kxσ ≤ R in the fourth step we get

JN (x, uN,x)

=
1
N

kσ−1∑
k=0

`(xuoptN,x
(k, x), uoptN,x(k))

+
1
N

N−kσ−1∑
k=0

`(xũxσ (k, xσ), ũxσ (k))

= VN (x)− N − kσ
N

VN−kσ (xσ)

+
N − kσ
N

JN−kσ (xσ, ũxσ )

≤ VN (x)

+
N − kσ
N

(
−`0 + `0 +

kxσ
N − kσ

α(‖xσ − x∗‖)
)

≤ VN (x) +
R

N
α(σ(N)).

This implies Theorem 2(i) with δ1(N) = Rα(σ(N)). On the
other hand, since kσ ≤ N we get uN,x(N) = ũxσ (N − kσ)
and xuN,x(N, x) = xũxσ (N − kσ, xσ). By (9) and (12) we
thus get

`(xuN,x(N, x), uN,x(N)) ≤ `0 + α(‖xσ − x∗‖)
≤ `0 + α(σ(N)),

i.e., Theorem 2(ii) with δ2(N) = α(σ(N)). Thus, Theorem
2 applies and (7) follows with ε(N) = δ1(N) + δ2(N).
With the help of this corollary we can now explain why the
receding horizon controller exhibits approximately optimal
trajectories in Example 1.

Example 4: We reconsider Example 1 for state constraint
set X = [−a, a] with arbitrary a ∈ (0, 1] and show that the
assumptions of Corollary 3 are satisfied. Clearly, x∗ = 0
is an equilibrium for u∗ = 0 and `0 := 0 = `(x∗, u∗) ≤
`(x, u) for all x ∈ X, u ∈ U . Using the control sequence
ux(0) = −2x and ux(k) = 0 for k ≥ 1 the corresponding
trajectory satisfies xux(k, x) = x∗ for all k ≥ 1 and
`(xux(k, x), ux(k)) ≤ (2x)2. This proves Assumption (a)
of Corollary 3 for α(r) = 4r2 and R = 1.

For checking Assumption (b) of Corollary 3, we use N0 =
2 and define δ(N) := a/2N−1 and γ(N) := a2/(N22N−1).
Consider a trajectory satisfying xu(k, x) ∈ X and |xu(k, x)−
x∗| ≥ δ(N), i.e., |xu(k, x)| ∈ [δ(N), a] for all k = 0, . . . , N .
We first show the inequality

JN (x, u) ≥ 2γ(N). (13)

To this end, by symmetry of the problem we can assume
without loss of generality that xu(N − 1, x) > 0. In case
that x ≤ δ(N) there must be k ∈ {0, . . . , N − 1} such
that xu(k, x) ≤ −δ(N) and xu(k + 1, x) ≥ δ(N) implying
u(k) ≥ 3δ(N). This yields JN (x, u) ≥ u(k)2/N ≥
9δ(N)2/N = 9a2/(N22N−2) ≥ 2γ(N) and thus (13). In
case x ≥ δ(N) we observe that

a ≥ xu(k, x) =
k−1∑
n=0

2k−n−1u(n) + 2kx.

Hence, for k = N we get

N−1∑
n=0

2N−n−1u(n) ≤ a− 2Nx ≤ a− 2Nδ(N) ≤ −a

implying u(k) ≤ −a/2N−1 for some k ∈ {0, . . . , N − 1}.
This yields JN (x, u) ≥ u(k)2/N ≥ a2/(N2N−2) ≥ 2γ(N)
and thus again (13).

For N > N ′ we let i ∈ N be maximal with N ≥ iN ′

which implies (i+1)N ′ ≥ N and thus iN ′/N ≥ i/(i+1) ≥
1/2. From ` ≥ 0 we get the inequality

JN (x, u) ≥
i−1∑
j=0

N ′

N
JN ′(xu(jN ′, x), u(jN ′ + ·)).

Using (13) with N ′ = N we can then estimate
JN ′(xu(jN ′, x), u(jN ′ + ·)) ≥ 2γ(N ′) which implies

JN (x, u) ≥ iN
′

N
2γ(N ′) ≥ γ(N ′).

This proves Assumption (b) of Corollary 3.
This construction also explains why J∞(x, µN ) increases

when a in X = [−a, a] increases: the parameter a appears
linearly in σ(N), because δ(N) > γ(N) and thus δ(η(N))
is dominant in the definition of σ(N). Since α(r) = 4r2, the
parameter appears as a2 in ε(N), hence ε(N) increases with



increasing a. Moreover, the term a2 suggests that the values
for X = [−1, 1] should be four times as large than those for
X = [−0.5, 0.5]. This is exactly the case for our numerical
results shown in Figure 2.

Remark 5: Corollary 3 does not guarantee that the closed
loop solutions converge to a neighborhood of x∗. Condition
(b) and the fact that JK(xµN (k), µN ) is small for all k and
all sufficiently large N and K (which follows from (4)) only
ensure that there exist arbitrary large n for which xµN (n) is
close to x∗. Currently, it is an open question how to prove the
convergence observed numerically in Figure 2. Note that the
strong duality condition from [4] is not satisfied for Example
1, hence we cannot use the arguments from this reference.

V. AN EXAMPLE OF AN OPTIMAL PERIODIC SOLUTION

Theorem 2 is not restricted to the case of optimal equi-
libria. Even if we strengthen condition (ii) of the theorem
to convergence `(xuN,x(N, x), uN,x(N)) → `0 as N → ∞
(which is what we get from Corollary 3), this does not
necessarily mean that xuN,x(N, x) must converge as N →
∞. Thus, we can expect that the receding horizon controller
is able to approximate an optimal periodic trajectory, at least
when the running cost along this trajectory is constant to `0.
The following example shows that this is indeed the case.

Example 6: Consider the two dimensional control system
with x = (x1, x2)T ∈ R2 and u = (u1, u2)T ∈ R2 given by

x(k + 1) = A(u2(k))(2x(k) + u1(k)x(k)/‖x(k)‖),

for x(k) 6= 0 and x(k + 1) = 0 for x(k) = 0, where

A(u2) =
(

cosu2 sinu2

− sinu2 cosu2

)
∈ R2×2

and ‖ · ‖ is the Euclidean norm. We choose the admissible
set as the ring X = {x ∈ R2 | 3/4 ≤ ‖x‖ ≤ 2}, the control
value set as U = [−5, 5] × [−1, 1] and the stage cost as
`(x, u) = (u1 + 1)2 + (u2 − 0.1)2. With this cost function,
one easily sees that it is optimal to first steer the system
to the circle S = {x ∈ R2 | ‖x‖ = 1} and then use the
control u∗ = (−1, 0.1)T . Indeed, since f(x, u∗) ∈ S and
`(x, u∗) = 0 for all x ∈ X, using u∗ we stay on S with stage
cost 0 and thus for any control sequence ux which first steers
the system from x ∈ X to S in finitely many steps and then
uses the control ux(k) = u∗ we get J∞(x, ux) = 0. Since
` ≥ 0, this is obviously the optimal value. Since u∗2 = 0.1
and thus A(u∗2) 6= Id, the corresponding optimal trajectory
is not an equilibrium but a periodic orbit.

Figure 4 shows the resulting receding horizon closed loop
trajectories for N = 4, 6, 8 and initial values x0 = (0, 2)T

(outer trajectories) and x0 = (0, 3/4)T (inner trajectories),
respectively. The corresponding averaged infinite horizon
closed loop costs are J∞(x0, µ4) = 0.35, J∞(x0, µ6) =
0.0022 and J∞(x0, µ8) = 0.00014 for x0 = (0, 2)T

and J∞(x0, µ4) = 0.0022, J∞(x0, µ6) = 0.00014 and
J∞(x0, µ8) = 0.0000086 for x0 = (0, 3/4)T .

As we see, the resulting limit cycle depends on the initial
value and its radius is > 1 for x0 = (0, 2)T , < 1 for
x0 = (0, 3/4)T and converges to 1 in both cases for
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Fig. 4. xµN (k, x) for N = 4 (solid), N = 6 dashed and N = 8
(dotted) for x0 = (0, 2)T (outer trajectories) and x0 = (0, 3/4)T (inner
trajectories)

increasing N . Furthermore, in both cases for increasing N
the solutions improve and the infinite horizon closed loop
costs approach the optimal value V∞(x0) = 0. A formal
proof of the convergence of the cost could be achieved by an
extension of Corollary 3 to the periodic case followed by an
analysis similar to Example 4 which is quite straighforward
but is omitted here due to space limitations.

It is also interesting to look at the open loop predictions
for the different initial values which are depicted in Figure 5
for N = 4 and x0 = (0, 2)T and x0 = (0, 3/4), respectively.
As in Figure 3, the optimal open loop solutions approach the
boundary of the admissible set X but now it depends on the
initial value whether the “outer” boundary ‖x‖ = 2 or the
“inner” boundary ‖x‖ = 3/4 is approached.
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Fig. 5. Optimal predictions xu(k, xµN (k)) (dashed) within the receding
horizon optimization for N = 4 with x0 = (0, 2)T (outer trajectories) and
x0 = (0, 3/4)T (inner trajectories)

VI. CONCLUSIONS AND OUTLOOK

We have derived conditions under which a receding hori-
zon control scheme yields approximately optimal infinite
horizon averaged performance for the resulting closed loop
trajectories. The results show that such behavior can be
obtained without positive definiteness or detectability as-
sumptions and without imposing terminal constraints and



incorporating a priori information about the optimal solution
in the scheme.

Future research will include the investigation of conditions
under which the (approximate) convergence of the closed
loop solution to the optimal solution can be shown and the
extension to periodic orbits along which ` is not necessarily
constant.
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