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Best-effort Highway Traffic Congestion Control via Varialbpeed Limits

Carlos Canudas de Wit*

Abstract— The problem of controlling the congestion front in The variable-length two-cell lumped model model is used
a single link road section is considered in this paper. For tts  as a basis to design a simple “best-effort” controller tiegt r
purpose, we introduce a new variable-length two-cell lumpeé |at65 (at its best) the congestion front to some pre-specifi

model composed of; one congested cell, and another in free | Th trol is desi d und traint .
flow. This model has the advantage of having few states while value. The control IS designed under constraints concgrnin

preserving the vehicle conservation property. This models Magnitude step changes, and dwell-time. The control law
used as a basis to design a simple “best-effort” controller discrete-time implementation only needs information oa th
that regulates (at its best) the congestion front to some pre congestion front position. This information can be estidat
specified value. The control law can be implemented using oyl directly from camera sensors networks, or indirectly by
information about the congestion front position. S . ! .
building a density observed based on the proposed variable-

|. INTRODUCTION length model. This issues will not be treated in this paper,

The front congestion control problem consists at re uj;atinand are under current investigation.
9¢ P . reg The paper first recall the derivation grounds of the LWR
the front congestion to some pre-specified value in order to

avoid that the congestion oversoread uostream blocki Othmodel with constant and multiple cells, then we introduce
9 b P g ur new two-cell variable-length model. The subsequent

exit ramps (produ_c_lng even Iarge;t congestion Con.dltlonsgections presents the best-effort control design, andrrepo
or/and reaching critical safety sections (i.e. tunnel&rsec- ; :
some simulations.

tions, etc.).
In the traffic control literature, the control can be formu- \

lated either by ramp metering regulation [4], [5], [7], [8],

[9], or by variable speed limit control [6], [13]. The first — (P(vmax)| - - - - -

method aims at regulating the inflow on some (or several)

input ramps of the road. This control setup is highly effesti

in regulating flows and densities on the main lane, at the @(Vmin)| - -~ /">V___ }

price of reallocate the vehicles distribution into othertp®f max

the network (usually at upstream location of the considered J

network where demands are lowers). A complete overview ///

on ramp metering strategies can be found in [15]. The ad ‘ >
second method consists in regulating the speed limits. By p*(Vmax)  P*(Vmin) Pm

this mean, the maximum capacity of the regulated section o _ _

can be modified. Lowering the speed limits will results in ef ig. 1. Variation of the fundamental diagram as a functiortiaf speed

reduction of the road maximum capacity. This will reduc it v; the maximum capacitp, = w(vm“-””)*'s reach for the maximum
_capacity. . Quailable velocityv,nq., at the critical densityy* (vinaz). The capacity of

the grown rate of the congestion front spreading, but ihe section will decrease tom = ¢ (vmin ) when the speed limit is set to its

will increase the traveling time along the free sectionslt ir'l'r(‘;)m‘fm)”mi”' Nevertheless the critical density s increased substnti

also possible to envision the combination of both contrdl ™"

strategies, as reported in recent results [1], [14], [16].

In this paper we consider the problem of controlling the

congestion front in a single link highway section usingll. MULTIPLE-CELLS, CONSTANT-LENGTH LWR MODEL

variable speed control. To this aim, we propose a new The traffic dynamics models are based on the vehicle

variable-length two-cell '“”_‘ped model, composed Of_ongonservation principle. The simplest continuous macmisco
congested cell and another in free flow. Compared to eXISthgafﬁC model, involving only the density, is the LWR

multi-cell models W'th constant d|men3|on., this ”?Ode' ha%ell transmission model introduced in [11], [17]. It is also
the advgntage of having only few states (3 in total mcludmgK own under the name of cell transmission model, and it
2 density sftateti for thlet_cong(festtr(]ed and th?. fre(fa Cetlls_’l_r?ﬂas been shown to be consistent with hydrodynamic theory
one more '1or the evoiution ot the congestion ront) _?2]. Validation tests with real data have been reported in
model is build such that the cells are variable in length Wh||[12] The constitutive assumption of this model, motivated
preserving the vehicle conservation property. by experimental data, is that the vehicles tend to travehat a

*Director of reearch at the CNRS, GIPSA-Lab. NeCS team, Ghés) equ”ibriur_n_ speeqb = v(p), Whgr_ep_represents the density
France.car | 0s. canudas-de-w t @i psa-| ab.inpg.fr of a specific section at a specific time.
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In variable speed limit control the velocity, in the e

decongested cell, becomes the main control input that can P . o+

be actuated (under the assumption that drivers will respect ——

in average—-the suggested speed limits) using variable sign(;y, Ny pf N. pe Dout

panels located at the road side. —> | ) —
The equilibrium speed depends implicitly on the location Free cell Congested cell

and on the time. Since the flow is defined@®) = pv(p), - l

one can depict an equilibrium flow functiop = ©(p) I

called the fundamental diagram. As shown in Fig. 1, the

fundamental diagram can be defined, in its simplest form, as Fig. 2. Schematic diagram of the two-cell variable-lengthde.
a triangle with its maximum ap,, = ¢(p*) describing the
maximum capacity of the road. The critical dengitydefines

the boundary between the decongested and the congested
zonesp,, is the maximum density that the road can support.
The slope—w defines the speed at which congestion will pi(k +1) = pi(k) + - (pi(k) — i1 (k) 3)
travel upstream. !

If the speed limits are changed during operation, theherek is the time indexT is the discrete time intenl
fundamental diagram will be affected as show Fig. 1: andy; is the interface flow between the cells- 1 and+
decrease iny will reduce the maximum road capacity,, given as:
but will increase the critical densitp*. The net effect @i =min{D;_1,S;} (4)
of this action will be that congestions grown rate will be
reduced. If a great portion of the road is congested then thewith
total traveling time may be also improved. Inversely, if the
majority of the road is decongested, then the traveling time )
may be increased. In cases (not studied here) when an exit Si = min{pm i, wi(pm.,i = pi)}

ramp is block due to the congestion arrival, further potnti \, here the demand,_; is the flow that can be delivered

improvement.s may be expected. . . by the celli — 1 to the celli while the supplysS; is the
The evolution of the number of vehicles within any spatia}jow that can be received by the celfrom the celli — 1.

section(0, L), is given by the following car conservation law ©m.i is the maximum flow allowed by the capacity of c&ll

Sl

D;_1y = min{v;—1pi—1, Pm,i—1}»

in term of the number of vehiclesy, in the celt: pm.i is the jam density (i.e. the maximum density that can
L be reached)y; corresponds to the free flow speed andis
SN = i — out, N = / pla, t)dz @) the congestion wave speed in celAll these parameters can
dt 0 be the same for all the cells or allowed to vary for each cell.

In variable speed control, the value of may be modified

wherey,,, andy,,,; are the input (at- = L) and output (at
1A Pout put ( ) put ( for each cell, or for a group of them.

x = 0) flows at the boundaries of the road section.
Consider now that the road section is dividedrircells

of constant lengtti;. Let us denote by, density of thei*"

cell of the section. Then, the number of vehicles per cell is For purposes of controlling the congestion front of a road

noted asN; = p;l;. section, we consider a section split into two cells of vdaab
As conservation laws generate irregular flows, they canntgngth; a congested downstream cell of length (), and

be integrated numerically using standard methods (see [1@ decongested (free flow) one of length- [, whereL is

[2]). An efficient first-order numerical method to treat suctthe total length of the considered section, see Fig. 1.

conservation laws is the Godunov scheme [3] which is a

first order scheme that reproduce correctly the propagatién Vehicle conservation law

of the shock waves avoiding oscillating behavior and having | et introduce the number of vehicles in the fre¥,) and

a physical interpretation. Using the Godunov mathematicg} ihe congestedX,) cells as lumped quantities
formalism, the conservation law (2) takes the following

discrete representation Ny = (L-1)py
N, = lpc

IIl. A NEW TWO-CELL VARIABLE -LENGTH MODEL

1Equation (1) can be rewritten (see [11]) as a hyperbolic &oua

involving only the density: beingp, andp, the associated (lumped) densities. Following

Bep+ Bao(p) = 0 1) the conservation law (2), and using the flows boundaries as

The macroscopic continuous density dynamics is then giyetihd LWR 2The conditionvT < I, with v the free-flow speed, is a sufficient
Cauchy problem described by (1) with the initial conditjefx, 0) = p°(z).  condition for (3) to converge.



indicated by the Godunov formalism, we get the followingB. Dynamics of the congestion front

model Note that at this point, the control variable does not
o . . o explicitly appear in the vehicle conservation model above.
Ny = m%n{(pm’ S} HTm{Df’ Se} ®) This wil happen when the variabl§ will be replaced by its
Ne min{Dy, Sc} — min{De, Pour } (6)  relation with the density and associated length. To this, aim

where the demand and supply functions for the free flow ceﬁ]e conservation model above needs to be completed with
pply nother equation describing the evolution of the congestio

is given as position!.
Dy = min{vsps, om(vs)}, The pro'posed variation law fdris
Sy = min{pn(vr), ws(pm — pr)} I = c(pc —¢l) =c(Dsf=5c)

while the demand and supply function for the congested cell = ¢ (mlln{“fpfv em(ve)}—
are give by — min{m (Ve), We(pm — pe)}) 9)

wherec [m/Vehicle] is a constant describing the mean spatial
occupance per vehicle on the section. It can be approximated
min{y, (ve), We(pm — pe)} from the maximum density as8 ~ 1/p,,. The equation

. ) describe the growing rate of the congestion as the product
¢in, @Nd o, are the input and output flows respectivelyy oy veen the difference between left-( = o) and right
Note that in this formulation, the maximal capacity,(-), (¢ = ) flows at the congestion line, and the constant

IS Ia fl:nﬁtmn of tT? free. roav velgcny; that fW'” p:ay the Congestion will increase when the flow at the free cell is
role of t e.contro Input N t e subsequent formulation. greater than the flow at the congested one, pg.> ¢,

As mentioned before, it is assumed that the downstreag?]d it will decrease otherwise
cell is congested while the upstream cell is free. This iegli
that:

Dc = min{vcpc7 (pm(vc)}’
Se

Remark 1 A parallel with physical law can be made by
understanding equatio9) as a force law produced as a
consequence of the (integral of) the differential pressure
pr< pe <pm (stress) between neighborhood cells. The constatdn be

From the these equations, and assuming that the input and " &5 the stiffness of the diaphragm supporting thissstres

output flows are below the maximum admissible ones, i.
Pin < @m(vf), Pout < Spm(vc)a then we have:

0< pr <p°

Remark 2 In the context of traffic engineering, the equation
(9) can be seen as a simplification of the Rankine-Hugoniot
condition, that specify that the shock speed can be written

min{pin, Sg} = Qin as
min{Dca (pout} =  Pout _ +
o) —elp) 1 ? () d
Therefore model (5)-(6) simplifies to: - ot —p- Tt —p ) - ¥
Nt = @in—nlv) (7) inthe context of distributed PDEs models, whete p— are
N = onlv)— ¢ @) the right/left densities at the from congestion line, respe
¢ " out tively. Equation(9) is intended for a lumped model that will
where be used for control synthesis, as show latter in the paper.
©n(v) = n(vy,ve) = min{Dy, Sc} C. Implicit and explicit full model forms
withn =1,2, i.e. The following hypothesis are adopted:
. i D.<sg H1) The whole section has the same fundamental diagram.
er(v) min{vypr, om (v7)} nPrs e That is;v = v, = vy, andw = w, = wy, Wherev =
p2(v) min{em (ve), we(pm — pe)}  else

v(t) is time-varying butw is assumed to be constant.
The model has then operational modes. Wher= 1 the H2) The critical densityp*(v), and its associated road max-

model is say to be in théabsorption” phase as in this imum capacityy,, (v), are both functions of,
condition,D; < S., the congested cell is able to absorb the . . WPM . WPm
arriving flow making the congestion to decrease. Inversely, pr=p) = Tw’ Pm(v) = vp" = v T w

the whenn = 2, there is an surplus of arriving flow at the
congestion frontD; > S.. The model is then say to be at the
“expansion” phase, as the congestion will tends to expand
upstream. The difference betweéry, and S. will be used

as a basis to build a dynamics of the congestion front. Ne = lpe + lpe, Nf =(L—-1U)ps— ipf

but the maximum density,,, is independent of, see
Figure 1.

Noticing thatN = p - [, we have that



the implicit form of model (2)-(9) writes as: ‘(P(P) : :

‘ |
. qromomomomososomososeses ® a
pr = ﬁ (wm — n(v) +lpf) (10) | i ‘
pc = % ((Pn (U) — Pout — ipc) (11) i};“; Ty :
i = c(min{ops,om(v)}- /. ‘

—min{@m (v), we(pm — pe)}) (12)

where i, pour are exogenous inputgpy, p.,l) are the
state variables, and is the control input. It should be
noted that this is a lumped and highly nonlinear model. The
model implicitly assume a separation between the free and
congested cell, i.go; € [0, p*(v)], pe € [p*(v), pm)- pf pe p
The explicit version of this model including explicit sat- _ _ S _
uration functions can be introducing in the model by using% > lllustration of the optimal solution given by Equati (15).
. . hree cases are considered for illustration: a) the peilbrresponds to
the relation Sgt(z) = min{a,z},v,a > 0,2 > 0, the case whereS. — %1 > sup, max,{¢(p)}, the optimal solution is
1 . projected on the upper boundaries of the admissible set lotigus U,
pr = ] (me — @n(v) + [pf) b) the pointb corresponds case wheief, min,{¢(p)} < Sc — %l <
o sup,, max,{y(p)}, the optimal solution i% [—wpc + wpm — %l , C)

1 . -
pe = = (@n (v) — Yout — lpc) the pointc corresponds to the case whee — £7 < inf, min,{¢(p)},
l the optimal solution is projected on the lower boundarieshefadmissible

i = ¢ (Sagm(v){vpf}, —Saﬁm(v){w(pm _ pc)}) set of solutionsU.

»
g

o (v) = { Sag””(”){vpf} if, n=1 B. Best-effort control under dynamics and magnitude con-

Saﬁm(v){w(pm —p)} if, n=2 straints
An alternative to the previous continuous-time state feed-
ack law, is to derive a variation law ferwith a prescribed
Dwell-time T, and a maximum steep variatiof,,. This
requirement is motivated by constraints in the actuated
variable speed signal (variable speed limit actuation isemo
V. FRONT-CONGESTION REGULATION VIA VARIABLE likely to change by steps of sever&lm/h). This implies
SPEED-LIMIT CONTROL that the variation of the contral should be constraint to

The problem of front-congestion regulation control vigchange as,
variable speed-limit consists in finding a control law fgr
) . Vu(k) =v(k+1)—vk) eV
function of the model states, such that the front congestion v(k) = v(k+1) = v(k)
[ can be regulated around the reference vajue whereV is the finite 3-valued set defined as
In this section we present several options for this design.

this version of the model makes explicitly the role of theb
control law v in the model; its change road maximum
capacity ¢, (v), and the slope of the demand function of
the free cell.

V= {_Ava 07 Av}
A. Best effort control

Let [ = [ —I,, then usingV = [2/2, a Lyapunov-like
control law forv can be derived as the one that set I(k +1) = I(k) + Ty (Dg (0(k)) — Se(k))

k
Df(U) — Sc +

c

Let now V (k) = i?(k), and] be approximated as:

1=0 (13) " The constrained best-effort law can be derived by obseyving

eading toV/ — —k2. with v(v(k), k) = T, (Dg(v(k)) — Se(k)), that

Nevertheless if the speed limits are constrained to live in Vk+1)-V(k) = ZQ(k +1) — [Q(k)
the setU = {v Umin }» then the best-effort constrained s 2
) maxy Ymn . = 2[ k ,k k ,k
control with respect to the metri, will be (W (k), k) + 77 (v(k), k)
. k- As the rate of change af(k) is constrained to only 3-values
vt = min|Dy(v) = Sc + -] (14) iV, the magnitude of the demaal; (v(k)), and hence the
agnitude ofy(v(k), k), cannot be arbitrarily set to make

This problem can be solved graphically as shown in Fig. g\;(k) to decrease uniformly. In this context, the best effort

and leads to the solution .
control is

x 1 k~ ~
o =St (; [—Wc = le =) o= _min_ {25 (k), k) +20k).K) }



Cases]| sign(y(v(k), k)) | signi(k)) | Vv(k) |

Then, by measuring onli(k), and the above control can

a) 1 1 0 )

b) 1 1 o be implemented.

c -1 1 0

d)) -1 -1 Ay 150 ‘ Tlmee‘vo\utlon u‘fthespee‘d limits
TABLE |

1201

SET OF BEST POSSIBLE SOLUTIONS OF THE CONTROL LA{46)

which is indeed an optimization problem having constraints
implying past values of the decision variablg¢k). Due
above described limitations on the admissible values for
v(k), and hence fof, a relaxation of this problem is possible
by making the minimization problem-size insensitive, i.e.

v [Km/h]

701

making the best possible choice fafk) so as sign ofy be, “T
when possible, opposed to the onel pf L
~ Time [h]
omin_ [sign(d) + sign(: (v(k). k) 4 :

an approximated solution of this problem results in

[sionty (o). )+ signi)] ) o
(16)
the rationality of this solution can be explained by looking
the Table I, where four cases can be identified:
The first two caseéu)— (b) correspond to situations where
the demand in the free cell is greater than the supply at the -
congested cell, implying a grow in the congestion-from, i.

v
min 2

v(k +1) = Safme~ (v(k) _A

258 Without speed regulation

front congestion | [Km]

[ > 0 as show Eqg.-(12). In this case, the "best control action” With Speed Regulation
is : OQ 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘.7 0‘.8 0‘.9 1
a) to keep the speed limits constant/« = 0) when the et
front congestion is below the reference valdie<(l,.), Fig. 4. Congestion front regulation via variable speed tlirfihe upper
and figure shows the time-evolution of the controlThe lower figures compares

e line frontl obtained using variable-speed limit control (continuduos),

b) to take a corrective action by reducmg the speed “mﬁ: the one obtained without regulation (dashed lines).

velocity by an amountA, during a time periodl’,
when the front congestion is above the reference value
@ >1).
The last two case&) — (d) concerns situations where the
congestion front is likely to decrease ile< 0. In this case,
the "best control action” is:

c) to keep the speed limits constariv{ = 0), if the

V. SIMULATION RESULTS

The simulated example concerns a road section of length
L = 8[Km], with input/output flows (¢n,pout). The
characteristic curve is represented by the constant values
) t - (w = 16 [Km/h], pm = 200 [veh/Km]),while the section
congestion front is already larger than its referenCEapacity and its associated critical density, (v), p*(v),

(>1), and o _ _are function of the selected speed limit The relaxation
d) toincrease the speed limit¥¢ = A,) if the congestion  ¢gnstant ise = 0.008 [Km/veh]. The control parameters
front is below its reference valué € I,). are: the Dwell timel’, = 2[min], the variable speed limit set

C. Implementation issues U = {vmaz = 110, vpmin = 70} [K'm/h], and its associated

It is worth to note that the implementation of this controlle steep (?hangekv = 10 [K'm/h].

requires the measure of the sign of the error distdnemd ~ 1he input flow is selected as;, = 1800 + 200 cos(151),
the sign ofy. From Eq.(12) we see that sigr) = sigr‘(i), and Pout = 1809. In this example there are phases v_vhere
therefore, the control law (16) has the following altermeti th€ input flow is larger than than output flow causing a
representation,which simplify its implementation congest!on increase. There are also other. phgses Whgn the
congestion will tends to decrease. The objective here is to
regulate the congestion front, as best as possible, to the va
of I, = 1[K'm]|. Simulation are shown in Fig. 4. The upper

Ay T s figure show the speed regulation values as produced by the
Y sign(i(k +1) — i(k)) + &gn(l(k))D control law. The lower curve shows the time-evolution of the

v(k+1) = Safme (v(k)— a7)

nin



congestion front when this controller is used, and comparg¢®] R.J. LeVequeNumerical methods for conservation lavgirkhauser,
the case when non speed limit regulation are used, and t[h

regulation speed limit are fixed to = 110 [K'm/h]. It can

be observed that the case with variable speed limits preserv

the congestion close to the desired reference value.

VI. CONCLUSIONS

In this paper we treated the problem of front congestions3]

[12]

control. For this, we have introduced a new traffic lumped

model with only two cells (one free, and another congested)
the cells have variable length, and a variation law for teatr [14]
congestion completes the 3-dimensional model. In opositi

to fixed-length cell models that are commonly represented
by a set of linear state-dependent switching systems, oiipl

model results in a lower dimensional nonlinear system which

solutions are continuous.

[16]

Based on this model, we have designed a “best-effort”
control strategy using variable speed limits. The notion of

best effort control is here linked to the physical variablei7]

speed limit constraints which limits its size and as well as

its rate variation. This results in a relative simple cohtro

in closed-form that can be implemented by using only

information about the front congestion location.
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