
HAL Id: hal-00648230
https://hal.science/hal-00648230

Submitted on 5 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Formula for the Stabilization of Event-Based
Controlled Systems

Nicolas Marchand, Sylvain Durand, Fermi Guerrero-Castellanos

To cite this version:
Nicolas Marchand, Sylvain Durand, Fermi Guerrero-Castellanos. A General Formula for the Stabiliza-
tion of Event-Based Controlled Systems. CDC 2011 - ECC 2011 - 50th IEEE Conference on Decision
and Control and European Control Conference, Dec 2011, Orlando, Floride, United States. Paper
ThC16.5. �hal-00648230�

https://hal.science/hal-00648230
https://hal.archives-ouvertes.fr


A General Formula for the Stabilization

of Event-Based Controlled Systems

Nicolas Marchand∗, Sylvain Durand†and Jose Fermi Guerrero Castellanos‡
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Abstract

In this paper, a universal formula is proposed for event-based stabilization of general
nonlinear systems affine in the control. The feedback is derived from the original one pro-
posed by Sontag. Under the assumption of the existence of a smooth Control Lyapunov
Function, it enables smooth (except at the origin) global asymptotic stabilization of the
origin while ensuring that the sampling interval do not contract to zero. Indeed, for any
initial condition within any given closed set the minimal sampling interval is proved to be
strictly positive. Under homogeneity assumptions the control can be proved to be smooth
anywhere and the sampling intervals bounded below for any initial condition.

1 INTRODUCTION

The classical so-called discrete time framework of controlled systems consists in sampling the
system uniformly in time with a constant sampling period T and in computing and updating
the control law every time instants tk = k · T . This field, denoted as the time-triggered case
(or the synchronous case in sense that all the signal measurements are synchronous), has been
widely investigated for linear control systems (see [1] and the references therein), even in the
case of delays, sampling jitter and measurement loss that can be seen as a kind of asynchronicity
[2]. In the case of nonlinear control systems, one way to address a discrete-time feedback is
to implement a continuous time control algorithm with a sufficiently small sampling period [3].
However, the hardware used to sample and hold the plant measurements or compute the feedback
control action may make it impossible to reduce the sampling period to a level that guarantees
acceptable closed-loop performance. Other way to tackle this problem is the application of
sampled-data control algorithms based on an approximate discrete-time models of the process
[4] which is not a trivial task. Another proposed approach consist to modify a continuous time
stabilizing control using for instance Sontag’s general formula to obtain a redesigned control
suitable for sampled-data implementation [5].

To overcome these drawbacks, event-based control - also called event-triggered control - has
been recently proposed. In this control strategy, the control task is executed after the occurrence
of an external event, generated by an event mechanism. Thus in this scheme, the term sampling
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time denotes a time interval between two consecutive events (e.g. level crossings of the measure).
Hence, two successive sampling instants may not be equidistant in time. Let us first consider
general nonlinear systems of the form:

ẋ = f(x, u) (1)

where x ∈ X ⊂ R
n, u ∈ U ⊂ R

p, and f a Lipschitz function vanishing at the origin. For sake of
simplicity, we only consider in this paper null stabilization with initial time instant t0 = 0. By
event-based feedback, it is usually meant a set of the two following functions:

• an event function e : X × X → R that indicates if one needs (when e ≤ 0) or not (when
e > 0) to recompute the control. In its more general form, the event function e takes the
current state x as input and a memory m of its value last time e became negative. A
memoryless version is also possible, that is an event function e : X → R that only requires
the current value of the state. There is a priori no constraint on the regularity of e.

• a feedback function k. We talk about static event-based feedback when k : X → U . The
time (then k : X × R

+ → U) or simply the sampling index (then k : X × N → U) can be
added to build a dynamic event-based feedback.

Additionally, e can depend upon the time (then e : X×R
+ → {0, 1}) or simply upon the sampling

index (then e : X×N → {0, 1}) and one then talks about dynamic event-based feedback. Classical
sampled feedback of period T can be seen as a dynamic event-based feedback with e(x, t) ≤ 0 if
and only if t/T ∈ N.

Typical event-detection mechanisms are functions on the variation of the state (or at least
the output) of the system, like in [6, 7, 8, 9, 10]. Although the event-triggered control is well-
motivated and allows to relax the periodicity for computations of the control law, only few works
report theoretical results about the stability, convergence and performance of event-triggered
control systems. In [11] for instance, it is proved that such an approach reduces the number
of sampling instants for the same final performance. Recent works deal with the problem of
scheduling the control task for continuous-time linear systems [11, 12, 13, 14] and discrete-
time linear system [15] where stability and some robustness proprieties such as ISS and L∞-
performance are exploited. Furthermore, in [15] a Model Predictive Control scheme is used where
the event-triggered policies are used for relaxing the computationally demanding algorithms.
Some of the above contributions do not need the memory of the last sample, the event function
e is memoryless, that is, it can simply be formulated as a function of X .

An alternative approach consists in taking e related to the variation of a Lyapunov function
- and consequently to the state too - between the current state and the previous sample, like in
[16, 17], or in taking e related to the time derivative of the Lyapunov function. Convergence and
stability in the nonlinear case is studied in [18, 19, 20]. The main contribution from the above
mentioned works is the existence of a minimal time between consecutive executions of the control
task guaranteeing desired levels of performances in the absence of accumulation points. However,
in these works is assumed the Input-to-State Stability (ISS) property of the system which is a
very strong assumption. Moreover, these techniques are developed for two classes of nonlinear
control systems, namely, state-dependent homogeneous systems and polynomial systems.

The solution of (1) with event-based feedback (e, k) starting in x0 ∈ X at t = 0 is then defined
as the solution of the differential system (when it exists, a discussion follows on that subject):

ẋ = f(x, k(m)) (2)

m(x) =

{

x if e(x,m) ≤ 0, x 6= 0
m elsewhere

(3)

with: x(0) = x0 and m(0) = x(0) (4)



If f is assumed to be Lipschitz, and events are punctual, a unique solution in the Caratheodory
sense always exists without any smoothness assumption on k similarly to [21] when . However,
this solution may not exists for all t ≥ 0 as shown in item 3 of section 2. Let t → x(t, x0) denote
this solution. Given an event function e, and a feedback k defined as above, for any initial
condition x(t = 0) = x0 it fully defines a sampling set Te,k,x0

:= {t0, t1, t2, . . . } as the set of time
instant t0 = 0, t1, etc. (called sampling instants) at which e is negative. The duration between
two successive sampling instants will be called inter-sampling duration. The event-based closed-
loop solution is therefore defined at least for all positive t in [0, sup(Te,k,x0

)[. This interval is
closed if sup(Te,k,x0

) ∈ Te,k,x0
. To illustrate this we give in the next section different examples of

possible phenomena. This will introduce new notions and definitions given in section 3. Section 4
is dedicated to the main theorem that extends Sontag’s universal formula for smooth feedback
stabilization to event-based stabilization.

Notations: In the following, B(d, x) will stand for the ball of radius d centered at x and B(d) for
the ball of radius d centered at the origin. x(t;x0, t0, u) will denote the solution of a differential
system starting in x0 at t0 with control u. For sake of simplicity, u will be omitted when trivial
and x(t;x0) will stand for x(t;x0, 0).

2 WHAT CAN HAPPEN WITH EVENT-BASED

CONTROL ?

To illustrate different phenomena that can arise with event-based feedback systems, we consider
the simple linear integrator ẋ = u. All event functions considered in these examples are assumed
to be memoryless that is to be just functions of X . Between two sampling instants ti and ti+1,
u remains constant so that: xi+1 = xi + (ti+1 − ti) · u, xi denoting the value of the state when
the ith event occurs. With the following different feedback laws and event functions and initial
conditions, it gives:

1. k(x) = −x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 0. Then

Te,k,x0 := {0}

and the trajectory x(t) = 0 is defined for all t ∈ [0,+∞[.

2. k(x) = −x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 1. Assuming
that at time ti of the sampling set Te,k,x0

, the state of the system is xi = ± exp(−κi), then
at the next sampling instant ti+1, the state of the system becomes xi+1 = ± exp(−κi+1) =
± exp(−κi − 1). The sampling is therefore periodic of period 1− exp(−1):

Te,k,x0 := {j · (1− exp(−1)), j ∈ N}

The trajectory is well-defined for all t ∈ [0,+∞[.

3. k(x) = −x, e(x) = 0 when |x| = exp(−κ · |κ|), κ ∈ Z and initial condition x0 = 1. In that

case, one can calculate that ti = i −
∑i

j=1 exp(−2j + 1). And when i tends to infinity, ti

tends to t̄ := exp(−1)
1−exp(−2) . The trajectory is then well-defined only for all t ∈ [0, t̄[.

4. k(x) = −x3, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 1. In that
case,

ti+1 − ti =
xi+1 − xi

−x3
i

= exp(2i) · [1− exp(−1)]



and when i tends to infinity, ti+1 − ti also tends to infinity. Although the inter-sampling
duration tends to infinity, the trajectory is well-defined for all t ∈ [0,+∞[ as in case 2.

5. k(x) = −x · (1− exp(−1)) · (1− log |x|) if |x| ≤ 1, k(x) = −x · (1− exp(−1)) elsewhere, and
k(0) = 0 by continuity, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 1.
Here, one can prove that ti+1 − ti =

1
i+1 and therefore ti+1 − ti tends to zero when i tends

to infinity as in case 3 but the ti’s do not converge to a finite limit.

Consider now the unstable system ẋ = (x + u)3. The control u being constant between each
sampling instant, the solution is the one of a Bernoulli differential system whose solution is:

xi+1 =
xi + u

√

1− 2(ti+1 − ti) · (xi + u)2
− u

Then, taking

6. k(x) = −2x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 1. Then the
inter-sampling duration is:

ti+1 − ti =
exp(2i)

2
·
[

1− 1

(2− exp(−1))
2

]

and when i tends to infinity, ti+1−ti also tends to infinity. However, the origin of the closed
loop system can be proved to be asymptotically stable and the trajectories well-defined on
[0,+∞[ for all initial condition.

In cases 1 to 6, the system can trivially be proved to be globally null-asymptotically stable taking
V (x) := 1

2x
2. Cases 1 and 2 show that the sampling set is clearly initial condition dependent.

Case 2 to 5 show that for the same system and initial condition, the sampling can be periodic,
contractile or expansile (with a finite or infinite limit) depending upon the event function or the
feedback. Case 6 shows the inconsistency of the Shannon criteria in the event based paradigm
and in particular that the inter-sampling duration can infinitely increase even when insuring the
stability of the closed loop of an open-loop unstable system.

3 PRELIMINARY DEFINITIONS FOR EVENT-

BASED SYSTEMS

Usually, the event is of null measure, in the sense that the control is recomputed only at distinct x
(in the countable sense). However, taking e(x) = 0 for all x ∈ X would mean that one recomputes
the control at each x and therefore that one applies a classical continuous-time feedback. On the
sets of non null measure where e(x) = 0, the solution is understood in the classical sense (with
all possible solution existence problems if the field is discontinuous). Elsewhere, the solution can
be intended in the Caratheodory sense. To go further on that, we define:

Definition 3.1 (Well-defined event-based control). An event-based control (k, e) will be said
well-defined if and only if for any initial condition x0 at t = 0, the solution t → x(t;x0) exists
for all t ≥ 0.



Property 3.1 (Minimal Sampling Interval - MSI). An event-based control (k, e) will be said to
fulfill the Minimal Sampling Interval property (MSI) if and only if for any initial condition
x0 at t = 0, there exists a non zero minimal sampling interval τ(x0) defined by:

τ(x0) := inf
i∈N,ti∈T (x0)

ti+1 − ti > 0

In that case, the control is piecewise constant between each time sample and we define:

• xi, i ∈ I ⊂ N with x0 := x(t = 0) as the series of successive values of the state at which e
is negative for a given initial condition x0

• ti, i ∈ I ⊂ N with t0 := 0 as the corresponding series of time instants

The aim of definition 3.1 is to exclude solutions with sampling intervals converging to zero
at some time (case 3 of section 2) or to infinity (case 5 of section 2). It quite trivially follows:

Theorem 3.2. An MSI event-based control is well-defined.

Proof. of Theorem 3.2 The proof is trivial since if the event-based control is MSI, then T (x0) is
either finite or countably infinite and the ti are isolated in R

+. The solution t → x(t;x0) hence
exists for all t ≥ 0 in the Caratheodory sense.

This minimal sampling period is useful for implementation purpose but also when the feedback
k is discontinuous for robustness purpose [22]. However, it would be more suitable to have such
a bound less depending upon initial condition:

Property 3.3 (Semi-uniformly MSI event-based control). An event-based control (k, e) will be
said semi-uniformly MSI if and only if for any δ > 0:

τ(δ) := inf
i∈N,ti∈T (x0),x0∈B(δ)

ti+1 − ti > 0

Property 3.4 (Uniformly MSI event-based control). An event-based control (k, e) will be said
uniformly MSI if and only if:

τ := inf
i∈N,ti∈T (x0),x0∈X

ti+1 − ti > 0

Properties 3.1 to 3.3 can be specified using the qualifying term “global” when X = R
n in

opposition to the term “local” that was omitted above for sake of simplicity. Now that the
above notions for event-based controlled systems are appropriately defined, notions like stability,
asymptotic stability and stabilizability naturally follow since they rely on the resulting trajectory.
The question that arises then is: does a universal formula for uniformly discrete event-based
feedback stabilization exist similarly to the continuous time case ? This is the purpose of the
next section.



4 A UNIVERSAL FORMULA FOR EVENT-BASED

STABILIZATION

In the sequel, the analysis is restricted to systems affine in the control:

ẋ = f(x) + g(x)u = f(x) +
∑

i

gi(x)ui (5)

where f and g are smooth functions with f vanishing at the origin. We assume that a Control
Lyapunov Function (CLF) exists for system (5), that is a smooth and positive definite function
V : X → R so that for each x 6= 0 there is some u ∈ U such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)u < 0 (6)

In addition, one may require that the CLF V fulfills the small control property [23], that is
that for each ε > 0 there is some δ > 0 such that for any x in the ball B(δ)\ {0}, there is
some u with ‖u‖ ≤ ε such that (6) holds. Then, it is known that it is possible to design a
smooth feedback control that asymptotically stabilizes the system. This is known as the Sontag’s
universal formula:

Theorem 4.1 (Sontag’s universal formula). If there exists a CLF for system (5), then the
feedback k : X → U , smooth on X\ {0} is such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(x) < 0, x ∈ X\ {0} (7)

for k defined by:
ki(x) := −bi(x)φ(a(x), β(x)), i ∈ {1, . . . , p}

where a(x) := ∂V
∂x

f(x), b(x) := ∂V
∂x

g(x), β(x) := ‖b(x)‖2 and

φ(y1, y2) :=

{

y1+
√

y2
1+y2q(y2)

y2
if y2 6= 0

0 if y2 = 0
(8)

with q : R → R is any real analytic function such that q(0) = 0 and y2q(y2) > 0 whenever y2 6= 0.
Moreover, if the CLF satisfies the so called small control property, then taking q(y2) := y2, the
control is continuous at the origin [23].

The main purpose of this paper is to establish that a universal formula also exists in the
event-based context up to a slight modification of the original formula proposed by Sontag:

Theorem 4.2. If there exists a CLF for system (5), then the event-based feedback (e, k) defined
below is semi-uniformly MSI, smooth on X\ {0}, and such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(m) < 0, x ∈ X\ {0} (9)

where m is defined by (3) and:

ki(x) :=−bi(x)γ(x) (10)

e(x,m) :=−a(x)−b(x)k(m)−σ
√

a(x)2+β(x)α(x) (11)



where a(x), b(x) and β(x) are as in Theorem 4.1, α : X → R
+ is any smooth function strictly

positive on S := {x ∈ X |β(x) 6= 0}, σ ∈]0, 1[, and

γ(x) :=

{

a(x)+
√

a(x)2+β(x)α(x)

β(x) if x ∈ S
0 if x /∈ S

(12)

As in Theorem 4.1, if the CLF satisfies the so called small control property, then the control is
continuous at the origin. Moreover, if there exists some smooth function w : X → R

+ strictly
positive on S and such that w(x)β(x) − a(x) ≥ 0 on S, then the control is smooth on X with
the choice:

α(x) := w(x)2β(x)− 2w(x)a(x) (13)

Before giving the proof of Theorem 4.2, let us explain the ideas behind the construction of
feedback (10). In the event function, a(x) + b(x)k(m) is the time derivative of the Lyapunov
function V and therefore the event function detects when the Lyapunov function V stops to be
enough decreasing. In the control, the term a(x) outside the square root is here to compensate
the autonomous evolution of the CLF. The term a(x) inside the square-root is linked to the
one outside by smoothness considerations. In the term β(x)α(x), β(x) is added for smoothness
reasons in connection with the β(x) at the denominator and α(x) plays a fundamental role by
tuning how fast the CLF must decrease when an event occurs. This is the term that enables to
avoid too close successive events.

We next focus on homogeneous systems that gave rise to an important literature for general
nonlinear systems (see for instance [24, 25] and the references therein) and more recently for
event-based approaches (mainly in [20, 16, 18]). However, in these event-based contributions,
ISS is assumed contrary to the proposed result. We shortly recall some definitions given for
general nonlinear system (see the cited references for more detailed definitions and properties):

Definition 4.1. For n positive real numbers ri, i ∈ {1, . . . , n}, d > −mini ri, all λ > 0, and
Λr = diag(λr1 , λr2 , . . . , λrn),

1. a function V : X → R is homogeneous of degree d if for all x ∈ X ,

V (Λrx) = λdV (x)

2. a function e : X × X → R is homogeneous of degree d if for all x,m ∈ X ,

e(Λrx,Λrm) = λde(x,m)

3. a vector field h : X → X is homogeneous of degree d if for all x ∈ X ,

h(Λrx) = λdΛrh(x)

4. a controlled system of the form (1) with feedback u = k(x) is homogeneous of degree d if k
is such that x → f(x, k(x)) is homogeneous of degree d

5. an event-based controlled system of the form (2-4) is homogeneous of degree (d1, d2) if k
is such that (x,m) → f(x, k(m)) and (x,m) → e(x,m) are respectively homogeneous of
degree d1 and d2.



6. the notation ‖·‖Λr will denote the homogeneous p-norm, that is:

‖x‖Λr =

(

n
∑

i=1

|xi|
p
ri

)
1
p

with p sufficiently large so that the norm is smooth except at the origin.

Property 4.3. Consider now an event-based controlled dynamical system homogeneous of
degree (d1, d2) then as long as the trajectory exists and is unique, the solution is such that:

x(t; Λrx0) = Λrx(λd1t;x0) (14)

Proof. of Property 4.3 Between events, (14) holds by homogeneity of f(x, k(m)). e being ho-
mogeneous of degree d2, e(Λ

rx,Λrm) = λd2e(x,m). λ being strictly positive, e(Λrx,Λrm) and
e(x,m) have the same sign, therefore events along the trajectories of t → x(t; Λrx0) appear for
the same t as for t → Λrx(λd1t;x0).

For homogeneous systems, Theorem 4.2 becomes:

Theorem 4.4. Assume that f and each gi are homogeneous respectively of degree df and
dg, identical for all gi, i ∈ {1, . . . , p} with dg < df . Assume in addition that the CLF V is
homogeneous of degree dV , then the following feedback proposed in [26], that corresponds to

(10) with α as in (13) and w(x) = ‖x‖df−2dg−dV

Λr ,

ki(x) := −νbi(x) ‖x‖df−2dg−dV

Λr (15)

with ν > 0 sufficiently large and e as in (11) is such that:

1. the event-based controlled system is homogeneous of degree (df , dV + df )

2. the event-based control is smooth and uniformly MSI

3. the CLF is strictly decreasing for all x ∈ X\ {0}

The end of the section is dedicated to the proofs of Theorems 4.2 and 4.4.

Proof. of Theorem 4.2 We begin the proof by establishing that γ is smooth on X\ {0}. For this,
consider the algebraic equation:

F (x, p) := β(x)p2 − 2a(x)p− α(x) = 0 (16)

Note first that p = γ(x) is a solution of (16) for all x ∈ X . It is easy to prove that the partial
derivative of F with respect to p is always strictly positive on X\ {0}:

∂F

∂p
:= 2β(x)p− 2a(x)

Indeed, when β(x) = 0, equation (6) gives ∂F
∂p

= −2a(x) > 0 and when β(x) 6= 0, equa-

tion (12) gives ∂F
∂p

= 2
√

a(x)2 + β(x)α(x) > 0, ∂F
∂p

never vanishes at each point of the form



{(x, γ(x))|x ∈ X\ {0}}. Furthermore, F is smooth with respect to x and p since so are functions
a, β and α. Therefore, using the implicit function theorem, γ is smooth on X\ {0}.

The decrease of the CLF is trivial to prove. Indeed, for each xi, i ∈ N:

dV

dt
(xi) =

∂V

∂x
(xi)f(xi) +

∂V

∂x
(xi)g(xi)k(xi)

= −
√

a(xi)2 + β(xi)α(xi)

< 0 for all x 6= 0

With the updated control, the event function becomes strictly positive: e(xi, xi) = (1 −
σ)
√

a(xi)2 + β(xi)α(xi) > 0. Therefore, by smoothness of the Lyapunov function V , f and
g, it clearly follows that dV

dt
(x(t;xi, ti)) < 0 for all t ∈ [ti, ti+1[, that is until the next event

occurs. ti+1 is necessarily bounded since, if not, the Lyapunov function V should converge to a
constant value where dV

dt
= 0. The event function precisely prevents this phenomena detecting

dV
dt

is close to vanish and updates the control if it happens.
To prove that the event-based control is MSI, we have to prove that for any initial condition in

a priori given set, the sampling intervals are bounded below. First of all, notice that events occur
only when V̇ vanishes or when x = 0 and therefore from equation (9) there is no event on the
set {x ∈ X |β(x) = 0} ∪ {0}. We therefore restrict the study to the set S\ {0} where α is strictly
positive by assumption. Let us rewrite the time derivative of the CLF along the trajectories:

dV

dt
(x) = a(x) + b(x)k(m)

= −
√

a(x)2+β(x)α(x)+b(x)(k(m)−k(x)) (17)

where, defining for m ∈ S, ϑm := V (m) and the set Vϑm
:= {x ∈ X |V (x) ≤ ϑm}, x belongs to

Vϑx
⊂ Vϑm

. Note that although m must belong to S, this is not necessarily the case for x. First
see that for t = ti, x = m and therefore, since α is strictly positive on S and a necessarily non
zero on the frontier of S (except possibly at the origin):

dV

dt
(x) = −

√

a(m)2 + β(m)α(m)

≤ − inf
m∈S

s.t. V (m)=ϑm

√

a(m)2 + β(m)α(m) =: −χ(ϑm) < 0

Considering now the second time derivative of the CLF:

V̈ (x) =

(

∂a

∂x
(x) + k(m)T

∂bT

∂x
(x)

)

(f(x) + g(x)k(m))

By continuity of all the functions involved, both terms can be bounded for all x ∈ Vϑm
by the

following upper bounds ̺1(ϑm) and ̺2(ϑm):

̺1(ϑm) := sup
m∈S s.t. V (m)=ϑm

x∈Vϑm

∥

∥

∥

∥

∂a

∂x
(x) + k(m)T

∂bT

∂x
(x)

∥

∥

∥

∥

̺2(ϑm) := sup
m∈S s.t. V (m)=ϑm

x∈Vϑm

‖f(x) + g(x)k(m)‖

Therefore, V̇ is strictly negative at any event instant ti and can not vanish until the time τ(ϑm)
is elapsed and this minimal sampling is only depending on the level ϑm of the CLF in m:

τ(ϑm) ≥ χ(ϑm)

̺1(ϑm)̺2(ϑm)
> 0 (18)



which ends the proof, the event-based feedback (10-11) is semi-uniformly MSI.

To prove the continuity of k at the origin, we only need to consider the points where β(x) 6= 0
since we already have k(x) = 0 if β(x) = 0. Considering first the subset where a(x) > 0, we
have:

‖k(x)‖ ≤ |a(x)|+
√

a(x)2 + β(x)α(x)
√

β(x)

≤ 2 |a(x)|
√

β(x)
+
√

α(x)

With the small control property, for any ε > 0, there is δ > 0 such that for any x ∈ B(δ)\ {0},
there exists some u with ‖u‖ ≤ ε such that a(x) + b(x)u < 0. Therefore |a(x)| <

√

β(x)ε. The
continuity of α at the origin where it vanishes yields that for the same ε there is a δ′ > 0 such
that for all x ∈ B(δ′)\ {0},

√

α(x) ≤ ε. Therefore, for any x ∈ B(min(δ, δ′))\ {0}:

‖k(x)‖ ≤ 3ε

Now, if a(x) ≤ 0, using the triangular inequality:

0 ≤ a(x) +
√

a(x)2 + β(x)α(x) ≤
√

β(x)α(x)

And therefore using again the continuity of α:

‖k(x)‖ ≤
√

α(x) ≤ ε

which ends the proof of the continuity.

Finally, with α as in (13), the control becomes ki(x) = −bi(x)w(x) which is obviously smooth
on X .

Proof. of Theorem 4.4 Take ν such that:

ν > sup
x∈{x∈X|‖x‖Λr=1,a(x)≥0}

a(x)

β(x) ‖x‖df−2dg−dV

Λr

(19)

As in [26], k is homogeneous of degree df − dg and the system is therefore homogeneous of
degree df . In addition e is homogeneous of degree dV + df . Item 1 therefore holds. Thanks to
Theorem 4.2, item 3 also holds and k is smooth on X . To finish the proof, remains to establish
that the event-based feedback is uniformly MSI. For this, we invoke the homogeneity of the
Lyapunov level sets Vϑm

together with (14), it follows that for all ϑm > 0:

τ(ϑm) = τ(1)

5 EXAMPLES

Consider the linear time-invariant system:

ẋ = Ax+Bu (20)



Take P , a positive definite matrix solution of the Riccati equation PA+ATP−4εPBBTP = −P
(that can be proved to exist as soon as (A,B) is a stabilizable pair). Then V (x) := xTPx is
a CLF for system (20) since for all x 6= 0, u = −2εBTPx renders V̇ strictly negative. Since
a(x) = xT (PA+ATP )x, b(x) = 2xTPB and β(x) = 4xTPBBTPx, the Riccati equation gives:

εβ(x)− a(x) = xTPx = V (x) ≥ 0 ∀x 6= 0

Therefore, taking w(x) = ε, and α(x) according to (13) the control is smooth everywhere and
linear:

k(x) = −εb(x)T

We next consider the nonlinear system proposed in [27]:

ẋ1 = −x5
1 + x1x2

ẋ2 = x2
2 + u

(21)

which admits V (x) = 1
2 ‖x‖

2
as CLF and a(x) = −x6

1 + x2
1x2 + x3

2, b(x) = x2. Taking

α(x) = β(x) + a(x)2

and σ = 0.1, it gives the trajectories of the states, control and event function represented in
Figure 1. Now, taking w(x) = 1

2 (1 + x2)
2,

w(x)β(x)− a(x) =
(

x3
1 x2

)

(

1 −1
2

−1
2

1
2

)(

x3
1

x2

)

+
1

2
x4
2

is strictly positive for all x 6= 0. Therefore with α(x) as in (13), the control is smooth. The
resulting trajectories with σ = 0.1 are represented in Figure 2.

6 CONCLUSION

In this paper, we proposed an extension of the universal formula for smooth feedback stabilization
to event-based controlled systems. A modification of the original formula is necessary to ensure
that there is a minimal sampling interval between two consecutive events avoiding phenomena like
accumulation points. As in the original work, if the Control Lyapunov Function fulfills the small
control property, then the control is continuous at the origin. With additional homogeneity
assumptions, the control can be proved to be smooth everywhere and the minimal sampling
intervals bounded below for all initial conditions.
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[25] L. Grüne, “Homogeneous state feedback stabilization of homogeneous systems,” in Proc. of
the IEEE Conference on Decision and Control (CDC), vol. 4. IEEE, 2000, pp. 3409–3414.

[26] J. Tsinias, “Remarks on feedback stabilizability of homogeneous systems,” Control Theory
and Advanced Technology, vol. 6, pp. 533–542, 1990.

[27] M. Jankovic, R. Sepulchre, and P. Kokotovic, “CLF based designs with robustness to dy-
namic input uncertainties,” Systems and Control Letters, vol. 37, no. 1, pp. 45–54, 1999.


