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Abstract—In this work, we develop a computational framework
for fully automatic deployment of a team of unicycles from a
global specification given as an LTL formula over some regions
of interest. Our hierarchical approach consists of four steps: (i)
the construction of finite abstractions for the motions of each
robot, (ii) the parallel composition of the abstractions, (iii) the
generation of a satisfying motion of the team; (iv) mapping this
motion to individual robot control and communication strategies.
The main result of the paper is an algorithm to reduce the
amount of inter-robot communication during the fourth step of
the procedure.

I. INTRODUCTION

Motion planning and control is a fundamental problem that
have been extensively studied in the robotics literature [1].
Most of the existing works have focused on point-to-point
navigation, where a mobile robot is required to travel from
an initial to a final point or region, while avoiding obstacles.
Several solutions have been proposed for this problem, in-
cluding cell decomposition based approaches that use graph
search algorithms such as A∗ [1], [2], continuous approaches
involving navigation functions and potential fields [3], and
sampling-based methods such as Rapidly-Exploring Random
Trees (RRTs) [4], [5]. However, the above approaches can-
not accommodate complex task specifications, where a robot
might be required to satisfy some temporal and logic con-
straints, e.g., “avoid E for all times; visit A or B and then be
at either C or D for all times”.

In recent years, there has been an increased interest in using
temporal logics to specify mission plans for robots [6]–[12].
Temporal logics [13]–[15] are appealing because they provide
formal, rich, and high level languages in which to describe
complex missions. For example, the above task specification
translates immediately to the Linear Temporal Logic (LTL)
formula �¬E ∧♦((A∨B)∧♦�(C∨D)), where ¬, ∨, ∧ are
the usual Boolean operators, and ♦, � are two temporal
operators standing for “eventually” and “always”, respectively.
Computation Tree Logic (CTL) and µ-calculus have also been
advocated as robot motion specification languages [7], [11].
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To use formal languages and model checking techniques for
robot motion planning and control, a fundamental challenge
is to construct finite models that accurately capture the robot
motion and control capabilities. Most current approaches are
based on the notion of abstraction [16]. Enabled by recent
developments in hierarchical abstractions of dynamical sys-
tems [17]–[21]), it is now possible to model the motions
of several types of robots as finite transition systems over
a cell-based decomposition of the environment. By using
equivalence relations such as simulations and bisimulations
[22], the motion planning and control problem can be reduced
to a model checking or formal synthesis problem for a finite
transition system, for which several techniques are readily
available [14], [23]–[25].

Some recent works suggest that such single-robot tech-
niques can be extended to multi-robot systems through the
use of parallel composition (synchronous products) [11], [26].
The main advantage of such a bottom-up approach is that
the motion planning problem can be solved by off-the-shelf
model checking on the parallel composition followed by
canonical projection on the individual transition systems. The
two main limitations, both caused by the parallel composition,
are the state space explosion problem and the need for inter-
robot synchronization (communication) every time a robot
leaves its current region. In our previous work, we proposed
bisimulation-type techniques to reduce the size of the syn-
chronous product in the case when the robots are identical [27]
and derived classes of specifications that do not require any
inter-robot communication [26]. By drawing inspiration from
distributed formal synthesis [28], we have also proposed top-
down approaches that do not require the parallel composition
of the individual transition systems [29]. While cheaper, this
method restricts the specifications to regular expressions.

In this paper, we focus on bottom-up approaches based on
parallel composition and address one of the limitations men-
tioned above. Specifically, we develop an algorithm that deter-
mines a reduced number of synchronization (communication)
moments along a satisfying run of the parallel composition.
Our approach is heuristic - we do not minimize the necessary
amount of communication. However, our approach can be
directly modified to produce minimal sets of synchronization
moments. Our extensive experiments show that the proposed
algorithm leads to a significant reduction in the number of
synchronizations. We integrate this algorithm into a software
tool for automatic deployment of unicycles with polyhedral
control constraints from specifications given as LTL formulas
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over the regions of an environment with a polyhedral partition.
The user friendly tool, which is freely downloadable from http:
//hyness.bu.edu/∼software/MRRC.htm, takes as input a user-
defined environment, an LTL formula over some polytopes, the
number of unicycles, and their forward and angular velocity
constraints. It returns a control and communication strategy
for each robot in the team. While transparent to the user, the
tool also implements triangulation and polyhedral operation
algorithms from [8], [30], [31], LTL to Büchi conversion [32],
and robot abstraction by combining the affine vector field
computation from [21] with input-output regulation [20].

The remainder of the paper is organized as follows. Sec.
IIpresents some preliminary notions necessary throughout the
paper. Sec. III formulates the general problem we want to
solve, outlines the solution and then presents a specific prob-
lem of interest. The main contribution of the paper is given
in Sec. IV. To illustrate the method and the main concepts, a
case study is examined throughout the paper and concluded
in Sec. V, while an additional case study is included in Sec.
VI. The paper ends with conclusions and final remarks in Sec.
VII.

II. PRELIMINARIES

Definition 2.1: A deterministic finite transition system is a
tuple T = (Q,q0,→,Π,ρ), where Q is a (finite) set of states,
q0 ∈ Q is the initial state, →⊆ Q×Q is a transition relation,
Π is a finite set of atomic propositions (observations), and
ρ : Q→ 2Π is the observation map.

To avoid supplementary notations, we do not include control
inputs in Definition 2.1 since T is deterministic, i.e. we can
choose any available transition at a given state. A trajectory
or run of T starting from q is an infinite sequence r =
r(1)r(2)r(3) . . . with the property that r(1) = q0, r(i)∈Q, and
(r(i),r(i+ 1)) ∈→, ∀i ≥ 1. A trajectory r = r(1)r(2)r(3) . . .
defines an infinite word over set 2Π, w = w(1)w(2)w(3) . . .,
where w(i) = ρ(r(i)). With a slight abuse of notation, we will
denote by ρ(r) the word generated by run r. The set of all
words that can be generated by T is called the (ω-) language
of T .

In this paper we consider motion specifications given as
formulas of Linear Temporal Logic (LTL) [14]. A formal
definition for the syntax and semantics of LTL formulas is
beyond the scope of this paper. Informally, the LTL formulas
are recursively defined over a set of atomic propositions Π,
by using the standard boolean operators and a set of temporal
operators. The boolean operators are ¬ (negations), ∨ (disjunc-
tion), ∧ (conjunction), and the temporal operators that we use
are: U (standing for “until”), � (“always”), ♦ (“eventually”).
LTL formulas are interpreted over infinite words over set
2Π, as are those generated by transition system T . For LTL
formulas satisfied by continuous systems, we restrict the class
of specifications to LTL−X, which are LTL formulas without
the “next” temporal operator. We note that, the class of LTL−X
is not at all restrictive, since for continuous systems LTL−X
captures the full expressivity power of LTL [8].

All LTL formulas can be converted into a generalized Büchi
automaton [32] defined below:

Definition 2.2 (Generalized Büchi automaton): A gen-
eralized Büchi automaton is a tuple B = (S,s0,Σ,→B,F),
where
• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• Σ is the input alphabet,
• →B⊆ S×Σ×S is a (nondeterministic) transition relation,
• F ⊆ 2S is the set of sets of accepting (final) states.
The semantics of a Büchi automaton is defined over infinite

input words over Σ. An input word is accepted by automaton
B if and only if there exists a run produced by that word
with the property that all sets from F are infinitely often
visited. Due to the complicated acceptance condition (multiple
sets have to be infinitely often visited), a generalized Büchi
automaton is usually converted into a regular (degeneralized)
Büchi automaton. A regular Büchi automaton has only one set
of final states, i.e. F ∈ 2S. Any generalized Büchi automaton
can be transformed into a regular Büchi automaton that accepts
the exact same words. A conversion algorithm can be found
in [32].

For any LTL formula φ over a set of atomic propositions
Π, there exists a (generalized or regular) Büchi automaton
Bφ with input alphabet Σ⊆ 2Π accepting all and only infinite
words over Π satisfying formula φ [33].

Given a transition system T with set of observations Π and
an LTL formula φ over Π, one can find a trajectory of T which
generates a word satisfying φ . This can be done by using
model checking inspired tools [8], which begin by translating
φ to a regular Büchi automaton Bφ . Then, the product of T
with Bφ is computed, operation that can be informally viewed
as a matching between observations of T and transitions
of Bφ . An accepted run (if any) of the obtained product
automaton is chosen. This accepted run is projected into a
run r of T , which generates a word satisfying φ . Although r
is infinite, it has a finite-representable form, namely it consists
of a finite string called prefix, followed by infinite repetitions
of another finite string called suffix (such a run is said to be
in the prefix-suffix form). A cost criterion can be imposed
on the obtained run r, e.g. the minimum memory for storing
it, or a minimum cost on transitions of T encountered when
following the prefix and a finite number of repetitions of the
suffix. The run r can be be directly generated on T if one can
deterministically control (impose) the transition that appears in
each state (which is true for a deterministic transition system
T defined in 2.1).

III. PROBLEM FORMULATION AND APPROACH
In this paper we are interested in developing an automated

framework for deploying identical unicycle robots in planar
environments. Assume that such a robot is described by
(x,y,θ), where (x,y) ∈ R2 gives the position vector of the
robot’s center of rotation, and θ is its orientation. The control
w = [v,ω]T ∈ W ⊆ R2 consists of forward driving (v) and
steering (ω) speeds, where W is a set capturing control bounds.

http://hyness.bu.edu/~software/MRRC.htm
http://hyness.bu.edu/~software/MRRC.htm


We assume that W includes an open ball around the origin,
which implies that v can be also negative (i.e. the robot can
drive backwards). The kinematics of the unicycle are given
by: 

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω

(1)

Assume that some robots move in a polygonal convex
environment with kinematics given by (1), where a set Π of
non-overlapping convex polygonal regions1 are defined. The
general deployment problem for a team of unicycle robots
satisfying an LTL formula is given by:

Problem 3.1: Given a team of n unicycles and a task in the
form of an LTL−X formula φ over a set of regions of interest
Π, design individual communication and control strategies for
the mobile robots such that the motion of the team satisfies
the specification.

We assume that the unicycles are identical and have a small
(negligible) size when compared to the size of the environment
and of the predefined regions. Moreover, we consider that a
unicycle visits (or avoids) a region when a specific reference
point on it visits (or avoids) that region. To fully understand
Problem 3.1, we say that the motion of the team satisfies
an LTL formula φ if the word generated during the motion
satisfies φ . The word generated by a set of n continuous
trajectories is a straightforward generalization of the definition
of the word generated by a single trajectory [8]. Informally, the
word generated by the team motion consists of a sequence of
elements of 2Π containing the satisfied propositions (visited
regions) as time evolves. In a generated word, there are no
finite successive repetition of the same element of 2Π, and
infinite successive repetitions of the same element appear if
and only if each robot trajectory stays inside a region.

Case study: For better understanding of introduced con-
cepts, throughout this paper, we consider a case study with
the environment illustrated by Fig. 1, where 3 unicycle-type
mobile robots evolve. The reference point of each unicycle
is its “nose”, the center of rotation is the middle of the rear
axis, and the initial deployment of robots is the one from Fig.
1. The imposed specification requires that “regions π1 and
π4 and π6 are simultaneously visited, and regions π2 and π5
are simultaneously visited, infinitely often, while region π3 is
always avoided”. This specification translates to the following
LTL formula:

φ =�¬π3∧�♦((π1∧π4∧π6)∧♦(π2∧π5)) (2)

To provide a deployment strategy for Problem 3.1, we will
first combine various techniques from computational geom-
etry, motion planning and model checking until we obtain a
solution in the form of a sequence of tuples of smaller regions
and feedback control laws in each of these regions. After this,

1Note that convex non-polygonal regions can be bounded by convex
polygonal regions with arbitrary accuracy, and non-convex regions can be
divided into adjacent convex regions
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Fig. 1. A polygonal environment, six regions of interest, and the initial
deployment of three unicycle robots. Robot 1 is green, robot 2 is blue, and
robot 3 is red; there is no relation between the robot and the region colors.

Fig. 2. Triangular partition consisting of 40 regions, corresponding to the
environment from Fig. 1.

we focus on the main contribution of the paper, namely finding
a reduced set of communication (synchronization) moments
among robots, while still guaranteeing the satisfaction of the
specification. The main steps of the algorithmic approach for
solving Problem 3.1 are given in the following 3 subsections.

A. Robot Abstraction

We first abstract the motion capabilities of each robot to a
finite transition system. To this end, the environment is first
partitioned into convex regions (cells) such that two adjacent
cells exactly share a facet, and each region from Π consists
of a set of adjacent cells. Such a partition can be constructed
by employing cell decomposition algorithms used in motion
planning and computational geometry, e.g. one can use a
constraint triangulation [21] or a polytopal partition [8]. Let us
denote the set of partition elements by C = {c1,c2, . . . ,c|C|}.
For a clear understanding, Fig. 2 presents a triangular partition
obtained for the environment from Fig. 1. We use a triangular
partition for the case study presented throughout this paper,
although our approach can be applied to any partition scheme.

The second step is to reduce each unicycle with kinematics
(1) to a fully-actuated point robot placed in unicycle’s ref-
erence point. We use the approach from [20], where a non-
singular map relates the velocity u of the reference point to the



initial controls w = [v,ω]T . Note that u can be conservatively
bounded by a polyhedral set U , such that the resulted control
w is in W .

Definition 3.1: The transition system abstracting the mo-
tion capabilities of unicycle i, i = 1, . . . ,n has the form
Ti = (Qi,q0i,→i,Π∪{ /0},ρ), where:
• Qi = C, i.e. the set of states is given by the cells from

partition;
• The initial state q0i ∈ C is the cell where the reference

point of unicycle i is initially deployed;
• The transition relation →i∈C×C is created as follows:

– (ci,ci) ∈→i if we can design a feedback control
law making cell ci invariant with respect to the
trajectories of the reference point of unicycle i, and

– (ci,c j)∈→i, i 6= j if ci and c j are adjacent and we can
design a feedback control law such that the reference
point of unicycle i leaves cell ci in finite time, by
crossing the common facet of ci and c j;

• Π labels the set of regions of interest, and symbol /0
corresponds to the space not covered by any region of
interest;

• The observation map ρ associates each cell from the
partition with the corresponding proposition from Π, or
with the symbol /0.

Considering the unicycles reduced to their reference point,
the construction of the continuous controllers corresponding
to the transition relation from Definition 3.1 is done by using
results for facet reachability and invariance in polytopes [21].
We just mention that designing such feedback control laws
reduces to solving a set of linear programming problems in
every cell from partition, where the constraints result from the
control bounds U and the considered adjacent cells. Also, since
the reference point is fully-actuated and the control bounds
U include the origin, we obtain a transition between every
adjacent cells, as well as a self-loop in every state of Ti.
Therefore, a run of Ti can be implemented by unicycle i by
imposing specific control laws for the reference point in the
visited cells, and by mapping these controls to w. We note that,
since the unicycles are identical, the only difference between
transition systems Ti is given by their initial states.

Case study revisited: The partition from Fig. 2 enables us
to construct a transition system with 40 states corresponding
to each robot, where the transitions are based on adjacency
relation between cells from environment, and the observations
are given by the satisfied region. Fig. 3 illustrates some vector
fields obtained from driving-to-facet control problems and
from invariance controlled design, as well as the corresponding
transitions from system Ti.

B. Satisfying Behavior of the Team

In this part of the solution, we use ideas from [26], [27] to
find a run (for the whole team) satisfying the formula φ . The
n transition systems Ti are combined into a global one, TG,
capturing the synchronized motion of the team (synchronized
in the sense that robots change at the same time the occupied
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Fig. 3. Left: vector fields driving any initial state from cell c8 to a neighbor
(blue and red colors), and vector field making c6 invariant (black). Right:
transitions from Ti are colored in accordance with the colors of the created
vector fields. Observation given by map ρ is placed near each state.

cells from partition, or states from Ti). Then, by using model
checking inspired techniques as mentioned in Sec. II, we find a
run for the whole team, in the form of a prefix-suffix sequence
of tuples.

Definition 3.2: The transition system TG = (QG,qG0,→G
,Π,ρG) capturing the behavior of the group of n robots is
defined as the synchronous product of all Ti’s, i = 1, . . . ,n:

• QG = Q1× . . .×Qn,
• qG0 = (q01, . . . ,q0n),
• →G⊂ QG × QG is defined by
((q1, . . . ,qn),(q′1, . . . ,q

′
n)) ∈→G if and only if

(qi,q′i) ∈→i, i = 1, . . . ,n,
• Π is the observation set,
• ρG : QG → 2Π is defined by ρG ((q1, . . . ,qn)) =
∪n

i=1{ρ(qi)}.
We now find a run R of TG such that the generated word

ρG(R) satisfies φ . For this, we use the tool from [8], and we
impose the optimality criterion that during the prefix and one
iteration of the suffix, the total number of movements between
partition cells is minimized. This is accomplished by adding
weights to transitions of TG, where the weight of a transition
equals the number of robots that change their state from Ti.
These weight are inherited when taking the product of TG with
Bφ . This optimality criterion minimizes the memory used on
robots for storing motion controllers (feedback control laws
driving robots from one cell to an adjacent one).

In [26], [27], such a global run was projected to individual
runs of robots. Then, the robots can be controlled by the affine
feedback controllers that map to unicycle controls from Sec.
III-A. In deployment, when the team makes a transition from
one tuple of the run to the next, the robots must synchronize
(communicate) with each other and wait until every member
finishes the previous transition. The synchronization will occur
on the boundaries of the cells when crossing from a cell to
another.

Remark 3.1: Since the robots are identical, the number
of states from TG can be reduced by designing a bisimilar
(equivalent) transition system (the quotient induced by robot
permutations) [27]. Thus, the computation complexity of find-
ing a run R is manageable even for large teams.



Case study revisited: For the above introduced example
(Fig. 1 and 2, and specification (2)), we obtain a team run
R= prefix, suffix, suffix, . . ., with 7 states in prefix and 8 states
in suffix, as shown in Eqn. (3).

prefix =

 c7
c4
c28

 c2
c3
c28

 c1
c6
c28

 c10
c8
c28


 c9

c17
c25

 c18
c11
c26

 c16
c11
c24


suffix =

 c31
c12
c38

 c31
c11
c38

 c31
c17
c24

 c31
c8
c27


 c31

c6
c20

 c31
c8
c27

 c31
c17
c27

 c31
c11
c24



(3)

Run R means that the robots start from their initial cells,
and the first to robots evolve to cells c2 and c3 respectively.
The synchronization imposed by the construction of TG and
used in [26], [27] would require that the first two robots cross
from c7 to c2 and from c4 to c3 synchronously (at exactly the
same time), and so on. By construction, the word generated
by R over the set of propositions Π, ρG(R), satisfies formula φ

from Eqn. (2). However, the mentioned synchronizations are
disadvantageous, because they require a lot of communication
and waiting, and they imply many discontinuities is the control
input of each robot (due to the frequent stops at the facets of
traversed cell). Intuitively, one can observe that synchroniza-
tions along prefix of R for example do not contribute to the
satisfaction of the formula, nor they would lead to its violation,
because the robots just head towards some regions they have
to visit.

As evident from the case study, deployment strategies for a
satisfying run R as proposed in [26], [27] require a significant
amount of synchronization (and thus communication) among
the team. In this paper, rather than synchronizing robots for
each transition in R, we aim in finding a reduced set of
transitions along R that require synchronization. This problem
is formalized in Sec. III-C. Its solution is given in Sec.
IV, in the form of an algorithmic procedure returning a
reduced number of necessary synchronization moments along
R, together with deployment strategies for robots. We note
that in [26], we developed an algorithmic tool that tests if
unsynchronized motion of the team can lead to a violation
of the formula. If the answer is yes (such is the case for
the case study considered in this paper), then synchronization
required in [26] cannot be reduced. Therefore, the solution to
the problem formulated in Sec. III-C constitutes a significant
improvement over [26].

C. Minimizing Communication
Problem 3.2: Given a run R of TG that satisfies the LTL

specification φ , find a team control and communication strat-
egy that requires a reduced number of inter-robot synchroniza-
tions than in the synchronization-based deployment, while at

the same time guaranteeing that the produced motion of the
team satisfies φ .

Central to our approach to Problem 3.2 is an algorithm
that takes as input the satisfying run R = R(1)R(2)R(3) . . .
and returns a reduced number of necessary synchronization
moments, where the ith moment along R is defined as the
index i corresponding to R(i). Motivated by the fact that
synchronization by stopping and waiting at region boundaries
is not always necessary to produce a desired tuple, we consider
two types of synchronizations: in a weak synchronization,
a certain tuple is generated because there exists an instant
of time at which the robots are in the corresponding cells;
a strong synchronization ensures that a sequence of two
successive tuples from R is observed. Note that a strong
synchronization at each moment in R is exactly the stop and
wait strategy from [26], [27]. Since the run is given in the
prefix-suffix form, our algorithmic framework will return a
finite set of moments that require synchronization, as well as
the type for each synchronization moment.

IV. SOLUTION TO PROBLEM 3.2
This section provides a solution to Problem 3.2. We first

construct an algorithmic procedure for finding a set of neces-
sary synchronization moments (Sec. IV-A - IV-C), and then
we present a communication strategy guaranteeing that the
synchronization moments are satisfied (Sec. IV-D).

Without loss of generality, we assume that run R =
R(1)R(2)R(3) . . . is in the prefix-suffix form (see Sec. II).
Assume that the prefix has length k− 1 and the suffix has

length l− k+1, with R( j) =
(

c1
j ,c

2
j , . . . ,c

n
j

)T
, for j = 1, . . . , l

(and R(l + 1) = R(k), R(l + 2) = R(k+ 1), . . .). For avoiding
supplementary notations implying repetitions of the suffix, we
assume that whenever an index along R exceeds l, that index
is automatically mapped to the set {k, . . . , l}, i.e. if j = l,
then index j+1 is replaced with k, and so on. For an easier
understanding, we use superscripts for identifying a robot and
subscripts for indexing the cells.

For any robot i = 1, . . . ,n and for any moment j = 1, . . . , l−
1, cells ci

j and ci
j+1 are either adjacent or identical, and the

same is true for cells ci
l and ci

k. Recall that from the abstraction
process of continuous robot trajectories, R does not contain
any successive and finite repetition of a n-tuple.

A. Finding Synchronization Moments

The idea of constructing a solution to Problem 3.2 is to start
with no synchronization moments, and iteratively test if the
formula can be violated and update the set of synchronization
moments and their type.

Let S ⊆ {1, . . . , l} be an arbitrary set of synchronization
moments, and let us impose the type of each synchronization
moment by creating a map τ : S → {weak,strong}, where
τ( j) = weak means a weak synchronization at position j, and
τ( j) = strong means a strong synchronization at position j,
∀ j ∈ S.

As mentioned in Sec. III-C, a weak synchronization at
moment j along run R means that the tuple R( j) is reached



by the robots, i.e., there is a moment when the robots are in
cells c1

j , c2
j , . . . ,c

n
j , respectively. A strong synchronization at

moment j along run R means that there is a weak synchro-
nization at j, and additionally the robots synchronously enter
the next tuple (R( j+1)). In other words, all moving robots i
cross from cells ci

j to cells ci
j+1 at the same time.

One can observe that a strong synchronization at position j
is not equivalent to two weak synchronizations at j and j+1.
The strong synchronization guarantees that in the generated
team run the tuple R( j) is immediately followed by the tuple
R( j + 1). However, the weak moments guarantee that the
R( j) and R( j+1) tuples are generated, but there may appear
different tuples between them. It can be noted that a weak
synchronization at moment j is equivalent with a strong one
at the same moment if and only if j = k and the suffix of R
has length 1 (k = l).

For testing the correctness of a set of synchronization
moments, we developed a procedure test f easibilityφ (R,S,τ),
which takes as inputs the formula φ , the run R, a set S of
synchronization moments and a map τ . The returned output is
either “feasible” (set S with map τ guarantees the satisfaction
of the formula, no matter how the robots move in between
synchronization moments) or “not feasible” (it is possible to
violate the formula by imposing just the moments from S with
type τ). We postpone the details on test f easibilityφ (R,S,τ)
until Sec. IV-B.

We use Algorithm 1 for obtaining a solution to Problem
3.2, in the form of a set S of synchronization moments and
a map τ . The intuition behind this algorithm is to start with
no synchronization moment (S = /0) and increase S until we
obtain a feasible set together with a corresponding map τ . We
show the correctness of the solution given by Algorithm 1 in
Sec. IV-C, together with more informal explanations on the
provided pseudo-code.

Remark 4.1 (Complexity): Algorithm 1 is guaranteed to
finish, because in the worst case it returns the set S= {1, . . . , l},
meaning that strong synchronizations are needed at every
moment (see Sec. IV-C). The worst case complexity requires
3l(l +3)/2 iterations of the test feasibility procedure.

Remark 4.2 (Optimality): Algorithm 1 can be tailored
such that it returns an optimal solution (with respect to a
cost defined by weighting different synchronization moments).
This can be done by first constructing all possible pairs
S,τ (there are 3l such pairs). Then, these pairs should be
ordered according to their associated cost. Finally, the pairs
should be tested (in the found order) against the test feasibility
procedure, until a feasible response is obtained. Of course, the
worst case would require 3l iterations of test feasibility (when
the only solution is S = {1, . . . , l} and strong synchronization
at every moment).

B. Testing a Set of Synchronization Moments

Procedure test f easibilityφ (R,S,τ) follows several main
steps:

(i) It produces an automaton AR,S,τ generating all the infinite
words (sequences of observed propositions) that can

Algorithm 1 Solution to Problem 3.2
Inputs: Run R, formula φ

Outputs: Set S, map τ

1: for synch type ∈ {weak,strong} do
2: S = /0, τ undefined
3: lowerbound = 1, moment = l
4: while moment ≥ lowerbound do
5: if test f easibilityφ (R,S,τ) = “feasible” then
6: Return set S and map τ

7: end if
8: Stemp = S∪{moment,moment +1, . . . , l}
9: τtemp(i) = τ(i), ∀i ∈ S

10: τtemp(i) = synch type, ∀i ∈ {moment +1, . . . , l}
11: for τtemp(moment) ∈ {weak,strong} do
12: if test f easibilityφ (R,Stemp,τtemp) = “feasible”

then
13: S := S∪{moment}
14: τ(moment) = τtemp(moment)
15: lowerbound = moment
16: moment = l
17: Break “for” loop on τtemp
18: else
19: moment := moment−1
20: end if
21: end for
22: end while
23: end for

result while the robots evolve and obey synchronization
moments from S (this automaton has the form of a Büchi
automaton with an observation map);

(ii) If necessary, AR,S,τ is transformed into a standard (de-
generalized) form;

(iii) The product automaton between AR,S,τ and the Büchi cor-
responding to negated LTL formula (B¬φ ) is computed
and its language is checked for emptiness;

(iv) If the language is empty, the procedure returns “feasible”
and otherwise it returns “not feasible”.

For step (i), the run R is projected to n individual runs, each
corresponding to a specific robot. In each of these individual
runs, we collapse the finite successive repetitions of identical
states (cells) into a single occurrence (such repetitions mean
that the individual robot stays inside a cell). Let us denote the
resulted runs by Ri = qi

1 qi
2 . . .

[
qi

ki
. . .qi

li

]
. . ., where prefix has

length ki−1 (ki≤ k) and suffix has length li−ki+1 (li≤ l), i=
1, . . . ,n. Together with individual projections and collapsing,
we construct a set of maps βi : {1,2, . . . , l}→ {1,2, . . . , li}, i =
1, . . . ,n, mapping each index from run R to the corresponding
index from the individual run Ri (e.g. βi( j) = βi( j+1) if we
have the same ith element in tuples R( j) and R( j+1)).

Next, we obtain a generalized Büchi automaton AR,S,τ (see
Def. 2.2) whose runs are the possible sequences of tuples of
cells visited during the team evolution. Thus, the language
of AR,S,τ contains all possible sequences of elements from



2Π observed during the team movement. Each robot moves
without synchronizing with the others, except for the moments
from set S with type τ .

Definition 4.1: The automaton AR,S,τ is defined as AR,S,τ =
(QA,qA0 ,→A,FA,Π,ρ), where:
• QA = {q1

1,q
1
2, . . . ,q

1
l1
} × {q2

1,q
2
2, . . . ,q

2
l2
} × . . . ×

{qn
1,q

n
2, . . . ,q

n
ln} is the set of states,

• qA0 = (q1
1,q

2
1, . . . ,q

n
1) is the initial state,

• →A: QA→ 2QA is the transition relation,
• FA ⊂ 2QA is the set of sets of final states,
• Π is the observation set,
• ρA : QA→ 2Π is the observation map, ρA(q1,q2, . . . ,qn) =
∪n

i=1{ρ(qi)}.
The transition relation →A is defined as follows: ∀q,q′ ∈

QA, with q = (q1
j1 ,q

2
j2 , . . . ,q

n
jn) and q′ = (q′1j1 ,q

′2
j2 , . . . ,q

′n
jn),

(q,q′) ∈→A if and only if the following rules are simultane-
ously satisfied:
(a) q = q′ if and only if ji = ki and ki = li, i = 1, . . . ,n;
(b) q′ij ∈ {qi

j,q
i
j+1} if j ∈ {1,2, . . . , li−1}, and q′ij ∈ {qi

li
,qi

ki
}

if j = li, i = 1,2, . . . ,n;
(c) if ∃s ∈ S such that ji = βi(s) for i ∈ I ⊆ {1, . . . ,n}, where

I is the largest possible subset of robots satisfying this
requirement, then:
(1) if I 6= {1, . . . ,n}, then q′iji = qi

ji , ∀i ∈ I;
(2) if I = {1, . . . ,n} and τ(s) = strong, then q′iji = qi

βi(s+1),
∀i ∈ I.

Informally, requirements (a) and (b) capture a global
progress/movement along individual runs of robots, by also
capturing the possible situations when some robots advance
“slower” (from the point of view that it takes more time for
them to reach the next cell from partition). Requirement (c)
restricts transitions by assuming that the agents satisfy all
synchronization moments from S with type given by τ .

Before detailing the construction of FA, we say that we
consider as a generated word of AR,S,τ any trajectory that
infinitely often visits all sets of states from FA. This definition
of generated words is exactly the definition of accepting
words of generalized Büchi automata. Moreover, AR,S,τ has
a structure similar to a Büchi automaton, which has final sets
of states that are infinitely often encountered along an accepted
run.

The set of sets of final states of AR,S,τ (FA) is created
by using Algorithm 2. The construction from Algorithm 2
matches the purpose of generated runs of AR,S,τ , in the sense
that any run contains infinitely many revisits to tuples from
suffix of R where synchronization is imposed. More details on
the construction of AR,S,τ are given in Sec. IV-C.

Once AR,S,τ is constructed, we have to check if there exists
a generated word of AR,S,τ that violates the LTL formula (by
satisfying the negation of the formula). As mentioned at the
beginning of this section, this basically implies checking for
emptiness the language of a product between AR,S,τ and B¬φ

(steps (ii)-(iv)).
Similar to finding a run as mentioned in Sec. II, this

emptiness checking can be done by using available software

Algorithm 2 Set of final sets of automaton AR,S,τ

1: Ssu f f ix = S∩{k, . . . , l}
2: if Ssu f f ix = /0 then
3: FA = {q1

k1
, . . . ,q1

l1
}×{q2

k2
, . . . ,q2

l2
}× . . .×{qn

kn
, . . . ,qn

ln}
4: else
5: Assume Ssu f f ix = {s1,s2, . . . ,s|Ssu f f ix|}
6: FA = {F1,F2, . . . ,F|Ssu f f ix|}
7: for j = 1,2, . . . , |Ssu f f ix| do
8: Fj = {q1

β1(s j)
,q2

β2(s j)
, . . . ,qn

βn(s j)
}

9: end for
10: end if

tools for normal (degeneralized) Büchi automata. In case that
FA contains more than one set, AR,S,τ has the structure of a
generalized Büchi automata. If this is the case, we first convert
AR,S,τ into a degeneralized form (as mentioned in Sec. II), and
then we construct the product with B¬φ . The construction of
this product is similar to the one constructed between transition
systems and Büchi automata [8]. The only difference is that
the set of final states of product equals the cartesian product
between final states of (degeneralized) AR,S,τ and the final
states of Büchi.

Example of constructing AR,S,τ : We include here a simple
example, solely for the purpose of understanding the construc-
tion of AR,S,τ . Therefore, we do not define an environment, nor
we impose an LTL formula. Consider a team of 2 robots and
the following run R:

R =

(
c5
c6

) [(
c1
c2

) (
c7
c2

) (
c3
c4

)]
. . . (4)

R has a prefix of length 1, and a suffix of length 3 (the
suffix is represented between square brackets).

First, assume an empty set of synchronization moments,
S = /0. By projecting R to individual runs and collapsing
successive identical states, we obtain: R1 = q1

1
[
q1

2q1
3q1

4
]

and
R2 = q2

1
[
q2

2q2
3
]
, where q1

1 = c5, q1
2 = c1, q1

3 = c7, q1
4 = c3, q2

1 =
c6, q2

2 = c2, q2
3 = c4. The obtained automaton AR, /0, /0 is given

in Fig. 4(a), where the initial state is (q1
1,q

2
1). This automaton

is already in degeneralized form (it has a single set of final
states), because S does not contain synchronization moments
along suffix. Also, note that once the final set of AR, /0, /0 is
reached, it is never left. This corresponds to the fact that both
robots reach and follow their suffixes (independently), and any
possible observed sequence during the movement corresponds
to a word generated by AR, /0, /0.

Now, assume a set S = {2,4}, with τ(2) = strong and
τ(4) = weak. This means there is a strong synchronization at
the beginning of every iteration of suffix of R (state (c1,c2))
and a weak synchronization at the end (state (c3,c4)). The
automaton AR,S,τ created as described in this subsection is
given in Fig. 4(b). This automaton has the same set of states
and observations as AR, /0, /0, but the set of transitions is reduced
because of synchronization rules. AR,S,τ is in generalized form,
because it has 2 sets of final states (F1 = (q1

2,q
2
2) and F2 =

(q1
4,q

2
3)). They gray states become unreachable because the
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Fig. 4. Examples of two automata constructed as described in Sec. IV-B, from
run R from Eqn. (4): (a) AR, /0, /0; (b) AR,{2,4},τ , with τ(2) = strong and τ(4) =
weak. Final states are double encircled, with different line types corresponding
to different final sets, and the gray states are not reachable.

reduced transitions of AR,S,τ . Note that any word generated by
AR,S,τ infinitely often visits state (q1

2,q
2
2) (which corresponds

to the first synchronization moment from S) and state (q1
4,q

2
3)

(corresponding to the second synchronization moment from
S). Also, there is only one outgoing transition from (q1

2,q
2
2),

in accordance with the strong synchronization in this state.
It should be clear why in this case we have 2 sets of final
states: if we had a single set, containing both (q1

2,q
2
2) and

(q1
4,q

2
3), then AR,S,τ would have been accepting words like

(q1
1,q

2
1)
[
(q1

2,q
2
2)(q

1
3,q

2
2)(q

1
4,q

2
2)
]
. . .. However, such a word

would correspond to a spurious (impossible) movement of
robots, because state (q1

4,q
2
3) would never be visited, although

it corresponds to a synchronization moment.

C. Correctness of Solution to Problem 3.2

Theorem 4.1: Any solution returned by Algorithm 1 is a
feasible solution to Problem 3.2, and Algorithm 1 returns a
solution in a finite number of steps.

Proof: The correctness of Algorithm 1 and of the
“test feasibility” procedure results by the construction we
performed in this section, as detailed below.

Correctness of “test feasibility” procedure: We first
prove that the “test feasibility” procedure cannot yield a
“feasible” output if the inputs S and τ can produce a vio-
lation of the formula. This comes from the requirements of
the transition relation →A and from the construction of FA.
Requirement (a) from definition of→A means that AR,S,τ does
not self-loops, except for the case when all individual runs
have suffixes of length 1 (in this case a self-loop exists for
reiterating the suffix). Requirement (b) results from the fact
that every robot i follows its individual run Ri and iterates
the suffix; the fact that there is no synchronization (a moving
robot might not change its current cell, while others advance
along their individual runs) is captured by the possibility of
having q j = q′j for some robots. Thus, requirements (a) and
(b) capture a global progress/movement along individual runs
of robots, by enforcing iterations of individual suffixes. If we
ignore requirement (c), and we assume that FA is just a single
set constructed as in line 3 of Algorithm 2, AR,S,τ can generate
any possible run resulted while robots evolve without any
synchronization (set S and map τ were not yet used). Thus,

if “test feasibility” returns a “feasible” answer, it means that
even the unsynchronized movement is feasible, so the motion
restricted by (S,τ) would definitely imply a satisfaction of
φ . However, such an approach would be very conservative,
because it does not restrict the possible generated runs of AR,S,τ
based on S and τ2.

Conservativeness reduction of →A: Requirement (c) re-
stricts transitions based on synchronization moments and their
type. Thus, (c.(1)) guarantees that if one or more robots arrived
at a synchronization moment, then they will not continue
following the individual runs (by changing their states) unless
all other robots arrived at that synchronization moment. This
way, (c.(1)) captures the fact that the weak synchronization
moments and the first part of the strong ones (visiting a certain
tuple) are satisfied. Requirement (c.(2)) ensures that a tuple
of cells corresponding to a strong synchronization moment
is synchronously left by all robots that have to move at that
index (the moving robots synchronously go to the next state
from their individual run, while for other robots βi(s + 1)
implies remaining in the same state/cell). The reduced set of
transitions of AR,S,τ captures the satisfaction of all synchro-
nization moments, and includes all possible unsynchronized
(independent) movements of robots between synchronization
moments. Therefore, the correctness of “test feasibility” is not
affected, while its conservativeness is reduced.

Construction of FA: If there is no synchronization moment
in the suffix of R, then FA contains only one set, equal to the
cartesian product of the sets of states composing the suffixes
of individual runs Ri, i = 1, . . . ,n (line 3 in Algorithm 2). This
is because no synchronization moment in suffix of R means
no synchronization moments in suffixes of individual runs.
Therefore, the robots independently follow their suffixes and
any n-tuple from set FA can be infinitely often observed during
the team evolution. In this case AR,S,τ is still too conservative,
because it can generate many runs that cannot result from the
actual movement of robots (e.g. infinite surveillance of just
two states from FA).

The set of accepted runs is drastically reduced if there
are x synchronization moments in suffix of R (and also in
individual suffixes). In this case, FA will contain x sets (in
Algorithm 2, x = |Ssu f f ix|). Each of these sets contains just
one tuple, which corresponds to one synchronization moment
along individual suffixes. This construction comes from the
following aspects: (i) due to synchronization moments along
suffixes, we have additional information about some infinitely
visited states, and considering FA as in line 3 of Algorithm 2
would be too conservative. (ii) If there are more synchroniza-
tion moments along suffix, having a single set of final states
that contains all the corresponding tuples would be again too
conservative. This is because the transitions of AR,S,τ might
allow infinitely often revisits to just a single element of that
set, and we might get spurious counterexamples when testing
AR,S,τ against the negation of LTL formula. (iii) In case of

2A similar conservative approach was used in [26], where only unsyn-
chronized movements could be tested, and synchronization moments could
not be handled.



a strong synchronization moment j along the suffix, adding
two states (tuples corresponding to R( j) and R( j+1)) in the
corresponding element of FA would not bring any additional
benefit than adding just R( j) (as done in Algorithm 2). This
is because requirement (c.(2)) implies that the only possible
transition from state corresponding to R( j) is to the state
corresponding to R( j + 1). Therefore, construction of FA as
in Algorithm 2 further reduces the conservativeness of AR,S,τ
by restricting its set of generated runs with respect to S and τ .
AR,S,τ still generates all possible sets of tuples that the team
can follow while moments from S with type τ are satisfied.

There is one more step in proving the correctness of
“test feasibility”, namely that there exists a pair S,τ for
which “test feasibility” returns a “feasible” output. This pair
is S = {1, . . . , l} and τ( j) = strong, ∀ j ∈ S. Indeed, in this case
every state of AR,S,τ has only one outgoing transition, and the
only run generated by AR,S,τ is R. The word generated by R
satisfies formula φ (because R was constructed by assuming
it is strongly synchronized at every position). Therefore, the
language of the product between the degeneralized AR,S,τ and
B¬φ is empty, and “test feasibility” returns “feasible”.

Correctness of Algorithm 1: We now prove that Algorithm
1 returns a feasible pair (S,τ) in a finite number of steps.
First, we explain Algorithm 1 and we show that the worst
case (S = {1, . . . , l} and τ( j) = strong, ∀ j ∈ S) is returned, if
no other less restrictive pair (S,τ) was encountered.

Algorithm 1 starts with S= /0 and τ undefined, and increases
S with at most one moment at every iteration of the “while”
loop from line 4. For this, it goes from the last index in
suffix of R (moment l) towards the first one, and it con-
structs a temporary set of synchronization moments (Stemp).
Stemp includes all the moments from S (initially none) and
all indices after the current moment until l. All moments
following the currently tested one are first assumed to be
weakly synchronized, and if no solution is obtained, they
will be assumed strong (line 10 and “for” loop starting on
line 1). This is because we consider a strong synchronization
more disadvantageous than a weak one, due to the waiting
and communication at borders separating adjacent cells. The
current moment is first tested with a weak synchronization,
and if no feasible answer results, it is tested with strong
synchronization (loop starting on line 11). If the current test
(with Stemp and τtemp) is feasible, we add to set S only the
current moment, with its current synchronization type stored
in map τ (lines 13, 14). Then, on line 15 we update the lower
bound for the current synchronization moment (it doesn’t make
sense to go lower than the just found moment), and we start
again the while loop on line 4 (from moment l towards the
lower bound). For each disjoint assignment of “synch type”
(“for” loop on line 1), the currently tested moment inside the
“while” loop from line 4 is build on the feasible moments
existing in S and τ until that instant (those moments are
included in Stemp and τtemp on lines 8, 9).

Once a feasible pair Stemp,τtemp is encountered, all future
iterations from Algorithm 1) try to reduce the number of
moments from Stemp and relax their synchronization type. In

the worst case the same pair will be returned: if no other
feasible pair included in this one is found, after a number
of iterations of the “while” loop the same pair is again
encountered (but this time, the first element of the old/feasible
Stemp is already in S). Now, the second element from the old
Stemp (the first from the new Stemp) is added to S and the
“while” loop is again iterated, and so on. Thus, once a feasible
pair is encountered, Algorithm 1 finishes in a finite number of
steps.

For proving that a feasible pair (Stemp,τtemp) is ever en-
countered, we show that, if no other feasible pair is found, the
algorithm eventually tests the pair where Stemp = {1, . . . , l}
and τtemp( j) = strong, ∀ j ∈ Stemp (this pair is deemed feasible
by the “test feasibility” procedure, as shown before). When
synch type = weak (first iteration of “for” loop on line 1),
we iterate the “while” loop for l times and we do not get
any feasible result. For synch type = strong we would get
Stemp = {1, . . . , l} and τtemp( j) = strong, ∀ j ∈ Stemp after
another l iterations of the “while” loop. Even though we get
a “feasible” answer from “test feasibility”, we add just the
first moment from Stemp to S (so S = {1}) and reiterate. This
time, at the (l− 1)th iteration of the “while” loop we would
get the same pair (Stemp,τtemp) (when moment = 2). Now, S
is updated to S = {1,2} and the “while” loop is reiterated
with lowerbound = 2. Since each iteration of “while” loop
includes 3 calls to the “test feasibility” procedure, the total
number of such calls is: 3(l + l +(l−1)+(l−2)+ . . .+1) =
3l(l +3)/2.

By using a similar reasoning as above, it can be easily
shown that if there exists a set S ⊆ {1, . . . , l} and a map τ

for which test f easibilityφ (R,S,τ)=“feasible”, then the pair
(S,τ) will be encountered by Algorithm 1 if other feasible
pair is not encountered before. This shows why Algorithm 1
does not necessarily find an optimal solution (with respect to a
cost defined by weighting different synchronization moments):
once a feasible pair (Stemp,τtemp) is encountered, all future
iterations test only subsets of Stemp, not other sets from
{1, . . . , l}.

D. Communication and Control Strategy

We complete the solution to Problem 3.2 by providing a
deployment strategy such that the synchronization moments
from set S with type τ are correctly implemented. A weak
synchronization at moment j along R is achieved by enforcing
each robot i to wait inside cell ci

j (and signal this to others)
until it receives a similar signal from all other robots. A
strong synchronization at moment j is accomplished by first
enforcing a weak synchronization at moment j, and then
temporary stopping the robots for which ci

j 6= ci
j+1 just before

leaving cell ci
j (and entering ci

j+1).
Since we need individual strategies, we have to adapt the set

S and map τ to descriptions suitable for each robot i that moves
along its individual run Ri, i = 1, . . . ,n. To solve this, for each
robot i we construct a queue memory Qi, where each entry
contains the index along Ri when there should be enforced a
synchronization, and the synchronization type. Alg. 3 creates



these queue memories by adding |S| entries, in the ascending
order of moments from S.

Algorithm 3 Queue memory Qi

1: Qi = /0
2: for all s ∈ S do
3: Assume that S is sorted and states in S are enumerated

sequentially
4: moment = βi(s)
5: type = τ(s)
6: Add entry [moment, type] at the end of Qi

7: end for

The queues Qi will be used by the robots in a FIFO manner,
as in Alg. 4. Each robot follows the infinite run Ri, by applying
correct feedback controllers and by synchronizing with other
robots when required. After fulfilling a synchronization mo-
ment, the corresponding entry from Qi is removed or moved to
the end, depending on the inclusion of the current moment in
prefix or suffix. The current index in Ri is incremented based
on specific conditions, for correctly handling the situations
when two or more synchronization moments from S yield the
same value through map βi. Note that the robots not changing
their cell when a strong synchronization moment is required
still synchronize twice on that moment (for the weak and then
the strong part), but they apply a convergence controller inside
current cell.

V. CASE STUDY REVISITED
This section concludes the case study illustrated throughout

the paper, by applying the procedure described in Sec. IV
to the run from Eqn. (3). We obtain only two weak syn-
chronization moments, at indices 8 and 12 of run R (first
and fifth positions of every repetition of suffix). This makes
sense, since the propositions satisfied by the team at the
two synchronization moments are the two sets of regions
({π1, π4, π6} and {π2, π5}) that are required to be visited for
the satisfaction of the formula.

The individual runs of the robots are given in Eqn. (5),
where the square brackets delimitate each suffix, and the two
weak synchronization moments are marked in bold:

R1 = c7 c2 c1 c10 c9 c18 c16 [c31] [c31] . . .
R2 = c4 c3 c6 c8 c17 c11 [c12 c11 c17 c8 c6 c8 c17 c11] . . .
R3 = c28 c25 c26 c24 [c38 c24 c27 c20 c27 c24] . . .

(5)

The control and communication protocol from Sec. IV-D
points to the following deployment strategy for each robot: the
robot moves along its individual run without any communica-
tion, until it encounters a required synchronization moment.
Then, it broadcasts that it is in a “ready” mode for the syn-
chronization moment, and it waits inside the current cell until
it receives “ready” signals for the current moment from all
other robots. After this, each robot evolves again individually
(without any synchronization) until the next synchronization
moment. Note that for the above example, once robot 1 reaches
its suffix it keeps applying a convergence controller inside c31

Algorithm 4 Individual strategy for robot i
1: j = 1
2: while TRUE do
3: Read first entry [moment, type] from Qi

4: Read second entry [next moment,next type] from Qi

5: if moment = j then
6: while “ready” signals not received from all other

robots do
7: Broadcast a “ready to synchronize” signal
8: Apply convergence controller inside current cell qi

j
from run Ri

9: end while
10: if next moment 6= j then
11: Apply controller driving to the next cell qi

j+1 until
border between qi

j and qi
j+1 is reached

12: end if
13: if type = strong then
14: while “ready” signals not received from all other

robots do
15: Broadcast a “ready to synchronize” signal
16: if next moment 6= j then
17: Stop robot
18: else
19: Apply convergence controller inside current

cell qi
j

20: end if
21: end while
22: end if
23: if j < ki then
24: Remove first entry from Qi

25: else
26: Move first entry from Qi to the end of Qi

27: end if
28: if next moment 6= j then
29: j := j+1
30: end if
31: else
32: if qi

j 6= qi
j+1 then

33: Apply controller driving to the next cell qi
j+1 until

border between qi
j and qi

j+1 is reached
34: j := j+1
35: else
36: Apply convergence controller inside current cell qi

j
37: end if
38: end if
39: end while



and broadcasting a “ready” signal (so that it does not induce
waiting for other robots).

Some snapshots from the deployment (implemented accord-
ing to Sec. IV-D) are shown in Fig. 5, where two repetitions
of the suffix for each robot are included. A movie for the case
study is available at http://hyness.bu.edu/∼software/unicycles.
mp4. For comparison, if we avoided solving Problem 3.2 and
instead used the deployment strategy from [26], we would
get the team trajectory illustrated by the movie http://hyness.
bu.edu/∼software/unicycles-full-synch.mp4. In this movie, we
can see that the motions of the robots are not as “smooth”
as our proposed approach, and the iterations for each suffix
require more time. Our approach is more suitable for real
experiments as robots have less frequent stops at region
borders.

Computation time: The most computationally intensive
part of the solution to Problem 3.1 is finding a run R (as
in Sec. III-A and III-B). For our case study, this took about
100 minutes on a medium performance computer. In contrast,
the solution we proposed for Prob. 3.2 (Sec. IV) took only 30
seconds. To generate a solution for Prob. 3.2, 26 iterations of
the test feasibility procedure were performed until the set of
synchronization moments was found.

VI. ADDITIONAL EXAMPLE

This section briefly presents another example on the same
environment as in Fig. 1, but considering two robots and the
LTL formula:

φ = {¬(π3∨π5)U(π1∧π2)}∧
{¬(π3∨π4∨π5)U(π4∧π5)}∧{♦�(π3∨π6)}

(6)

The curly brackets are only inserted to logically delimitate
the requirements: (i) black and cyan regions (π3 and π5) should
be avoided until red and green regions are visited, and (ii)
black region is avoided until blue and cyan regions are entered
at the same time, and (iii) eventually either the black or the
magenta region should be visited and never left after that.

By considering the robots initially deployed in regions c1
and c26 respectively, we obtained a run for the team with 12
tuples in prefix and one in suffix. Informally, first robot goes to
red region and the second one to the green one, then the robots
move toward blue and cyan regions, and after these regions
are simultaneously entered, the second robot goes to the black
region and converge there, while the first robot remains in the
blue region.

By searching synchronization moments, we obtain only
two such moments: a weak one, at the tuple when robots
visit the red and green regions, and a strong one at the
tuple before visiting the blue and cyan regions. The second
synchronization moment guarantees that the blue and cyan
regions are entered at the same time. These synchronization
moments automatically found by our approach are natural at
an insightful study of the requirement. The movement of the
robots is depicted in the movie available at http://hyness.bu.
edu/∼software/unicycles-example2.mp4. In this movie one can
observe both synchronization moments: (1) red robot arrives

in the red region and it starts to converge there until the green
robot visits the green region; (2) green robot arrives in cell
c40 and starts to converge there until red robot visit cell c37
(this is the weak synchronization part of the strong moment),
and then the robots move towards blue and cyan regions. Red
robot stops at the border between c37 and c29 and waits until
the green robot reaches the border between c40 and c21 - this
ensures the strong part of the synchronization (simultaneously
change occupied cells). After this, no other communication
between robots is required.

VII. CONCLUSIONS

We presented a fully automated framework for deploying a
team of unicycles from a task specified as a linear temporal
logic formula over some regions of interest. The approach con-
sists of abstracting the motion capabilities of each robot into a
finite state representation, using model checking tools to find
a satisfying run, and mapping the solution to a communication
and control strategy for each unicycle. The main contribution
of the paper is the development of an algorithmic procedure
that returns a reduced set of moments when the robots should
communicate and synchronize, with the guarantee that the
specification is satisfied. A secondary contribution is the inte-
gration of this algorithm as part of a fully automatic procedure
for deployment of teams of unicycles from specifications given
as LTL formulas over regions of interest in an environment.
Future research direction includes extending this framework
to probabilistic systems such as Markov Decision Processes
(MDPs) or Partially Observable Markov Decision Processes
(POMDPs), for satisfaction of probabilistic temporal logics,
such as probabilistic LTL or probabilistic CTL.
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