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Abstract— We consider the problem of sensor selection for geometric sensor selection schemes for error minimization
time-optimal detection of a hypothesis. We consider a group in target detection. Debouk et al [5] formulate a Markovian
of sensors transmitting their observations to a fusion center. decision problem to ascertain some property in a dynamical

The fusion center considers the output of only one randomly T ?
chosen sensor at the time, and performs a sequential hypothesis system, and choose sensors to minimize the associated cost.

test. We study sequential probability ratio test with randomized ~ Williams et at [15] use an approximate dynamic program
sensor selection strategy. We present optimal open loop sensor over a rolling time horizon to pick a sensor-set that optésiz

selection policies for three distinct cost functions: We qtilize the information-communication trade-off. Zhao et al [16]
these policies to develop an adaptive sensor selection policy. Westudy information driven sensor collaboration. They study

rigorously characterize the performance of the adaptive policy . . - . .
and show that it asymptotically achieves the performance of information gain and cost trade-off in target tracking tgb

the globally optimal policy. directed diffusion rouFing. Wan.g et al [14] design en_tropy—
based sensor selection algorithms for target localization
|. INTRODUCTION Joshi et al [8] present a convex optimization-based hearist

The advent of cheap sensors has resulted in their extensigeselect multiple sensors for optimal parameter estimatio
deployment. This makes plethora of information availabl®ajovic et al [1] discuss sensor selection problems for
for decision making. Such a data overload diminishes th§eyman-Pearson binary hypothesis testing in wirelessosens
efficiency of the operator processing this information amd inetworks. Casfén [4] study an iterative search problem as
often the root cause for missing critical information [10].a hypothesis testing problem over a fixed horizon.

This calls for development of policies that help the opearato In this paper, we analyze the problem of time-optimal
focus her attention to the most pertinent information. sequential decision making in the presence of multiple

In large scale sensor networks, it may not be energywitching sensors and determine a sensor selection strateg
efficient to have all the sensors activated all the time. Ao achieve the same. We consider a sensor network where all
energy efficient technique is to activate the most pertinesensors are connected to a fusion center. The fusion center,
sensors and censor the remaining sensors. This needataach instant, receives information from only one sensor
characterization of the most pertinent sensors. and implements the SPRT with the gathered information.

In this paper, we consider the problem of quickest decisionhe sensors may be heterogeneous (e.g., a camera sensor,
making and the Sequential Probability Ratio Test (SPRTa sonar sensor, a radar sensor, etc), hence, the time needed
Recent advances in cognitive psychology [2] show thab collect, transmit, and process data may differ signifigan
human performance in decision making tasks, such as tfer these sensors. We extend our previous work [12] where
"two-alternative forced choice task,” is well modeled by ave develop a version of the SPRT algorithm in which the
drift diffusion process, i.e., by the continuous-time vens sensor is randomly switched at each iteration, and determin
of SPRT. Roughly speaking, modeling decision making asptimal open loop sensor selection policies that minimize
an SPRT process may be appropriate even for situationstime expected decision time. Here, we develop closed loop
which a human is making the decision, e.g., an operateensor selection policies where we learn the true stateeof th
processing the feeds of a camera network [3]. nature and adapt our sensor selection policy accordingty. W

Recent years have witnessed a significant interest in thigorously analyze this closed loop policy and show that it
problem of sensor selection for optimal detection and estimis asymptotically optimal. The major contributions of this
tion. Tay et al [13] discuss the problem of censoring sensopaper are:
for decentralized binary detection. They assess the gualit i
sensor data by the Neyman-Pearson and a Bayesian binary
hypothesis test and decide on which sensors should transmi}.)
their observation at that time instant. Gupta et al [6] foons
stochastic sensor selection and minimize the error cavegia i)
of a process estimation problem. Isler et al [7] propose

We present a version of the SPRT where the sensor is
selected randomly at each observation.

We present optimal open loop policies for this version
of SPRT for three distinct cost functions.

We develop an adaptive sensor selection policy and
rigorously characterize its performance.
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way. Some preliminaries are presented in Section Il. In I1l. PROBLEM SETUP

Section Ill, we present the problem setup. We present the\we consider a group of agents (e.g., robots, sensors,

SPRT procedure with randomized sensor selection strategy cameras), which take measurements and transmit them to

in Section IV. In Section V, we present open loop policies fog fysion center. We generically call these agents “sefisors.

time-optimal sensor selection. An adaptive sensor selectiy,e identify the fusion center with a person supervising the

policy is presented in Section VI. We elucidate the resultggents, and call it the “supervisor.” The goal of the supsai

obtained through some numerical examples in Section Vlis to decide, based on the measurements it receives, which

Our concluding remarks are in Section VIII. one of two alternative hypotheses or “states of nature” is
Il. PRELIMINARIES cor_rect. T(_) do so, the supervisor i_mpleme_znts the SPR'_I'_ al-

. , gorithm with the collected observations. Given pre-spedifi

A. Kullback-Leibler divergence accuracy thresholds, the supervisor aims to make a decision

Given two probability mass functiong : S — R>p and  in minimum time.
f2: S — R>p, whereS is some countable set, the Kullback-

Leibler divergenceD : £! x £! — RU{+oo} is defined by B
D(fi, f2) = Ep, [log 20| = 57 0 1og 212
’ T RX) fa(z)’

zesupp(f1) u u u

wheresupp(f1) is the support off;. It is known that0 <

D(f17f2) < +oo, that the lower bound is achieved if andFig. 1. The agentsi transmit their observation to the supervis®rone

only if fi = f2, almost surely, and that the upper bound it the time. The supervisor performs SPRT to decide on the lyimtpr
achieved if and only if the support of, is a strict subset hypothesis.

of the support off;. Note that equivalent statements can be \ve assume that there are more agents than hypotheses
given for probability distribution functions. (i.e., n > 2), and that only one sensor can transmit to the
supervisor at each (discrete) time instant. Equivalerlig,
supervisor can process data from only one of thagents

. . o . 0 at each time. Thus, at each time, the supervisor must decide
tional probability distribution functiong™(y) := f(y|Ho) \yhich sensor should transmit its measurement. We aim to

i .
and fi(y) = flylH). le_en repeated m_easurementsdetermine the optimal sensor(s) that the supervisor must
{y1,92,...}, the SPRT algorithm collects evidence abouBbserve in order to minimize the decision time.

the hypotheses and_ compares the_ integrated eviden_ce 10 tWQy/e adopt the following notation. Lgtto, 1, } denote the
thresholds)y andn; in order to decide on a hypothesis. ThetWO hypotheses. The time required by senser {1,...,n}

SPRT procedure is presented in Algorithm 1. to collect, process and transmit its measurement is a random

B. Sequential Probability Ratio Test
Consider two hypothese#, and H; with their condi-

Algorithm 1 Sequential Probability Ratio Test variableT; € R+, with finite first and second moments. We
1: at timer € N, collect sampley, denote the expected value of processing time of sengyr

2. compute the log likelihood ratid., := log ﬁ)gzﬁg Ts. Let s, € {1,.. ._7n} indicate which sensor transmits its
U measurement at time € N. The measurement of senser

3: integrate evidence up to current time := > ;_, \;
% decide only if a threshold is crossed

4. if A >ny, then acceptH;

s if A <mn, then acceptH,

6: else(A; € Jno,m[) continue sampling (step: )

at timet is y(t, s). For the sake of convenience, we denote
y(t,s¢) by y;. Fork € {0,1}, let f¥(y) denote the proba-
bility that the measurement at sensois y conditioned on
the hypothesig, anday, denote the desired bound on the
probability of incorrect decision conditioned on hypotikes

Given the probability of false alar®(H,|Hy) = ap and Hx- We make the following standard assumption:
probability of missed detectioR(Hy|H;) = o, the Wald’s ~Conditionally-independent observations: Conditioned on

thresholdsy, andn; are defined by . hypothesisH, the measurement(t, s) is independent
m=log——, and m=log—*. (1) of y(t,5), for (t,s) # (£,5). .
1 —ag Qo We adopt arandomized strategin which the supervisor

Let N, denote the number of samples required for decisiophooses a sensor randomly at each time instant; the proba-
using SPRT. Its expected value is approximately [11] givehility to choose sensos is stationary and given by, for

b _ s € {l,...,n}. Also, the supervisor uses the data collected
’ E[Na|Ho] ~ U 50)7070*[0‘0"1, and from the randomized sensors to execute the SPRT. We
(F%.11) (2) study our proposed randomized strategy under the following
E[Ny|H,] = a1flo + (11 _0041)771. assumptions about the sensors.
D(f f0) Distinct sensors: There are no two sensors with identical
The approximations in equation (2) are referred to as the conditioned probability distributiorf*(y) and process-
Wald’s approximations [11]. It is known that these ex- ing time 7T,. (If there are such sensors, we club them

pressions are accurate for large thresholds and small error together in a single node, and distribute the probability
probabilities. assigned to that node equally among them.)



Finitely-informative sensors: Each sensog € {1,...,n} decision times and, therefore, multiple distinct cost fiors
has the following property: for hypothesksj € {0,1}, are of interest. In Scenario | below, we aim to minimize the

k#3j decision time conditioned upon one specific hypothesisghein

i) the support off* is equal to the support of?, true; in Scenarios Il and Il we will consider worst-case and
iy fE £ fi almost surely inf*, and ' average decision times. In all three scenarios the decision

iii) conditioned on hypothesi#/},, the first and second Vvariables take values in the probability simplex. We state
moment oflog(f*(Y)/f(Y)) are finite. the results without proofs. The interested reader may refer
Remark 1: The finitely-informative sensors assumption ist® [12] for detailed proofs. , _

equivalently restated as follows: each senser {1, ...,n} Before we pose the problem of optimal sensor selection,
satisfiesd < D(f9, f1), D(fL, f°) < +o0. p Wwe introduce the following notation. We denote the prob-

ability simplex in R™ by A,_;, and the vertices of the
IV. SPRTWITH RANDOMIZED SENSOR SELECTION probability simplexA,,_; by e;, i € {1,...,n}. We refer

We call the SPRT with the data collected fromsensors (© the line joining any two vertices of the simplex as an
while observing only one randomly chosen sensor at a tinf¥9e Elnally, we define the condltlinal expected deglsmn
as the SPRT with randomized sensor selection. The sendtp€ 9" : An—1 — R, k € {0,1}, by g"(q) = ¢-T/q-I",
to be observed at each time is sampled from a stationaY"fg‘ereT € RZ, is the array of expected processing times,
distribution, and the probability of choosing sensois ;. € RZ, is an array with element® = —D(f!, f3)/((1-
The SPRT with randomized sensor selection is defined ideﬁf)% + Ofomo)’ andI" € RZ, is an array with elements
tically to the Algorithm 1, where the first two instructions Ls = D(fs f5)/(eano + (1 — ar)m).

(stepsl: and2:) are replaced by:

1: at time 7 € N, select a random sensef according to
the probability vector; and collect a sampleg,

A. Scenario | (Optimization of conditioned decision time):
We consider the case when the supervisor is trying to

£ (y0) validate the true hypothesis. The corresponding optiruzat
2: compute the log likelihood ratia., := log =>—=" problem for a fixedk € {0, 1} is:
12 (yz)
St yT - . k
minimize .
Theorem 2 (SPRT with randomized sensor selection): q€N, 1 9(a) ®)
Assume finitely-informative sensors{1,...,n}, and

The conditional expected decision tingé is a quasi-linear
F}unction and achieves its minimum at some vertex of the
feasible simplex. This is rigorously characterized in the
] = . ) following theorem:
) Conditioned on a hypothesis, the sample size for thaqrem 3 (Optimization of conditioned decision time):
__ decisionN, is finite almost surely. The solution to the minimization problem (5) ig = e,-,
i) The sample size for decisioV,; satisfies wheres* is given by
(I —ag)no + aom and . P

S qsD(fO, 1) 2 s* = argmin{Ts/I;] | s € {1,...,n}},
oo + (1 —ay)m ) and the minimum objective function BT’ | Hy] = Ty /I%..

21 asD(f3 1)

iiiy The decision timeT,; satisfies ,

independent observations conditioned on hypothelgs
k € {0,1}. For the SPRT with randomized sensor selectio
the following statements hold:

1

E[Nq|Ho

1

E[Ng|Hi]
B. Scenario Il (Optimization of the worst decision time):

N _ We consider the multi-objective optimization problem of
E[Tu|Hi) = E[Na|Hi] Y ¢sT. (4)  minimizing both conditional expected decision times. We
construct single aggregate objective function by consider

tion y, is sampled from the distributiorf* with probabil- the maximum of the two objective functions. The associated

ity ¢s,s € {1,...,n}. Therefore, the pairg(s,y:)}ren optimization p.ro_blgm is:
are i.id. FurtherE[\|Hy = — 3", ¢.D(f, f1), and minimize max {4°(q), 9" (q)} - (6)

E\|H1] =30, ¢sD(fL, f2). The remaining proof of the
first two statements follow similar to the proof of SPRTThe conditional expected decision timeg§ are monotone

s=1
Proof: Conditioned on hypothesi¢/;, the observa-

in [11]. along any line in the feasible simplex, and hence, the swiluti
Let{T},...,Tn,} be the sequence of the processing timesf the optimization problem (6) lies either at some vertex of
at each iteration. Note that the decision tiffie= nggl T,. the feasible simplex or at the intersection of the graphs of
It follows from Wald's identity [9] that E[T;|H,] = ¢° andg'. Further, the minimum along the the intersection
E[Nq4|H]E[T]. This completes the proof. m of the graphs ofg® and ¢! is achieved at some edge of
the feasible simplex. To rigorously characterize thesadde
V. STATIONARY SENSOR SELECTION we introduce some notation. We assume that the sensors

In this section we consider sensor selection problentsave been re-ordered such that the entrieg’in- I' are in
with the aim to minimize the expected decision time ofascending order. We further assume that,[for I'*, the first
the SPRT with randomized sensor selection. As exemplified entries,n < n, are non positive, and the remaining entries
in Theorem 2, the problem features multiple conditionedre positive. For eack € {1,...,m},r € {m+1,...,n}



andi € {1,...,n}, we define the optimal point at an edge
joining verticese,. ande, by
(IS B ‘[7}) if i =
I Ny v T M
R i if i=r,
0, otherwise

The optimal edge and the associated minimum value is:

[0 — 101 and

(s*,r*) € argmin
re{m+1

)

(I — IL) Ty — (1% — TL)T,.
TL10. —10.TL '
The optimal vertex and associated minimum value is:

gtwo—sensorés*a 7"*) =

. Tw T
w" = argmin max —;U,# , and
we{l,...,n} Iw Iw
Eu* Eu*

gone-senscfrw*)

max{lo*’ll*}'

Theorem 4 (Worst case optimizatiorfjor the optimiza-
tion problem (6), an optimal probability vector is given by:

o~

and the minimum value of the objective function is:

if gone-sens&w*) < gtwo-sensorQS*a T*)v
if gone—sens&w*) > gtwo—sensorQS*; T*)v

Ew*,

* ok
~5 T

q

i

min {gone—senscfrw* ) s gtwo—sensorQS* s r )} .

C. Scenario Ill (Optimization of the average decision time)

For the multi-objective optimization problem of minimiz-
ing both conditional expected decision times, we formulat
the single aggregate objective function as the average
these decision times. Let; be the prior probability offy
being true, the resulting optimization problem is posec t
following way:

minimize 7og°(q) + m19"(q).
qeEAN 1

()

. . 8:
For a generic set of sensors, the Jacobian of the average
expected decision time does not vanish in the interior of
the feasible simplex, and the optimal solution lies at some

edge of the simplex. The global optimal can be computed
comparing the optimal values at each edge. We rigorou
characterize the solution in the following theorems:
Theorem 5 (Optimal number of sensor§or n > 2, if
each3 x 3 submatrix of the matrix( T —I1° —I'] €
R™*3 is full rank, then the following statements hold:

i) every solution of the optimization problem (7) lies on
an edge of the probability simpleXx,,_; and

i) if g%es) < g%e,), and g'(es) > g'(e,), then the
minima, along the edge joining; ande,, lies at the
point ¢* = (1 — v*)es + v*e,, where

1 +
v* = min(1, (7> ), and
1+p
7y (T I} — T, 1Y) — 7o (1,19 — T,I0)
ro(T 10— T10) — 19\/m (LI — 1,11

and the optimal value is given by

m09°(q") + mg' (%) =
71-090(65) + ngl(es)a

Wogo(er) +mig'(er),

(\/WO(TSI,},—TTI&)_F\/

10711071
V1. ADAPTIVE SENSORSELECTION

if v*=0,
if v*=1,

w1 (T 10T, 19)
RIT—I21]

2
) , otherwise.

In the previous sections, we considered the open loop
policies, i.e., we did not incorporate the information éaalie
from the observations to modify our policy. We now present
an adaptive policy where we learn the likelihood of the true
hypothesis from each observation, and utilize it to modify
our sensor selection policy at each iteration. The SPRT with
adaptive sensor selection policy is presented in Algorithm
We now present a formal analysis of this policy.

Algorithm 2 SPRT with adaptive sensor selection policy

1: set(wo,m) = (05,05)

2: solve problem (7) to obtaig*

3: at time7 € N, select a random sensef according to
the probability vectoig* and collect a samplg,_

fi, (yr)

o )
5: integrate evidence up to current time := >/, A
6: computery = 1/(1 +exp(A;)), m =1 —mg

% decide only if a threshold is crossed

if A >, then acceptH;

if A, <mn, then acceptH,

else(A; € Jno,m[) continue sampling (step: )

e
compute the log likelihood ratia., := log

7.

We introduce the following notation. As stated in Theo-
m 3, conditioned on a hypothesis, optimal policy is to pick

sb/ne sensor deterministically. Let be the optimal sensor

conditioned of hypothesi#iy.
Forr, s € {1,...,n}, we define the following quantities

N (TN ((B10 - T\

=max{( - | .| =5 (T.IV —T.11) )
10 10 (T,I} =T, 1})

nmax _ maX{n;r;aX | r,s e {1, . ,TL},’I‘ 7& 8}’

max

nTS

ii) every time-optimal policy requires at most two sensors 72" = ((¢°(e,:) — ¢%(es)) /(9" (es) — g' (es:)), and

to be observed.

Theorem 6 (Optimization on an edgefiven two ver-
ticese, ande,, s # r, of the probability simplexA,,_1,
then for the problem (7), the following statements hold:

i) if ¢°es) < ¢°(er), and g'(es) < g'(e,), then the

minima, along the edge joining, ande,., lies ate,,
and optimal value is given byg"(es) + m1g'(es);
and

n°"® = max{n®"| s e {1,...,n} \ {s]}}.

Let Dy(0) := D(f),f;), and Ds(1) = D(f,, f]). We
now state some asymptotic properties of the adaptive sensor
selection policy.

Theorem 7 (Adaptive sensor selectio®iven finitely in-
formative sensorg1,...,n}, the following statements hold

for the SPRT with adaptive sensor selection policy:



) " ) . Ny—1
i) Conditioned on hypothesigf,, the sample size re- fo. ()
quired to cross a thresholg-1)**1y, n € R is Z 0g° > m, and Z log 0 ()
finite almost surely. _
ii) Conditioned on a hypothesis, the sample size fo¥Ve takeliminf andhmsup as Ny — +oo, respectively, on

< 771.

decisionN; — +oco almost surely asy, a; — 0. the two inequalities to obtain
iii) Conditioned on hypothesidi;, the sample size for 1 yt
decisionN,; satisfies Ndlgr}roo Zl t =1,
N,
ﬁ - Do: (k) almost surely, as, a1 — 07 and thus, the third statement of the Theorem follows.
] k ) o The proof of the remaining three statements is similar to
iv) The expected sample size satisfies the proof of Theorem 1 in [12] with a construction as in the
E[Ng|Hy] 1 proof of third statement. [ |

+
asag,ay — 07 Now we establish bounds on the performance of the

adaptive policy. We denote the least expected decision, time
conditioned on hypothesi§, among all the sensor selection
policies byT”; . Let T,qpbe the decision time of the adaptive
sensor selection policy. We now establish the following
bounds on the performance:

Theorem 8 (Global bounds on performancé@he

following statements hold for the SPRT with adaptive

- )
v) Conditioned on hypothesi#l;, the decision timeT;
satisfies

T, Ts:
=4, "% almost surely, asg,a; — 0.
|77k| ,Ds;_ (k;)

vi) The expected decision time satisfies

E|[Tq|Hk) Ts; i sensor selection policy as, a; — 07
— , aSagp,a; — 07 . -, .
7% Dgx (k) i) Conditioned on a hypothesi#/;, the least expected

Proof: The proof of the first two statements follow from decision time among all the sensor selection policies
Theorem 1 and Lemma 1 in [12]. Note that the observations  satisfiesT};, > g*(e: ).
in the adaptive policy are not identically distributed, kg i) The expected decision time for the adaptive sensor se-
prqof of convergence requires only independence and sensor  |ection policy, conditioned on hypothesi$,, satisfies
bemg fmltely informative. E[Tadp|Hk] < min {gone-sens&w*)vgtwo-sensorQS*a7"*)}~

To prove the third statement, we observe from Theorem 6
that the optimal solution on the ledge joining veresxanq first note that asg, oy — 0%, —10, 11 — +o00. It is known
e, always occurs at a vertex i .S 0, which hOId.S if that conditioned on a hypothesis, the decision time of the
w1 /T > ne*, Therefore, the solution on any edge lies at BPRT 7, — oo almost surely as—no,m — 0* [12].
vertex if m /mo > n™2*. Without loss of generality assume Further, as—ro,m — +oo, the correct decision is made

that hypothe5|sH1 is true. From Theorem 3, it follows with probability one. Without loss of generality, suppdge

that ¢ (e.;) Sog () for all s € {1,...,n}. It.can be g i e Syppose that, is the number of times the senseor
verified thatmog(es;) +m1g (€s;) < Tog (e g (€s) s chosen. For a given expected decision tifpethe optimal
if m /7o > n2"€ Therefore, it follows that the adaptive sensor bolicy will maximize the expected aggregate likelihoodaat

selection policy aIwayflagmkoiesensﬂ[r if log(71/m0) > 1", Therefore, the optimal sensor selection policy is the amut
wherey” = log(max{n 1) Note thaty” < +oo,and 40 following optimization problem
hence, from the first statement of the theorem, condltlone

Proof: We first establish the global lower bound. We

on hypothesisi, the SPRT with adaptive sensor selection mxe?gzrr:loze Lia=17sDs(1) 9)
crossesn* in finite time, almost surely. LetV* be this subjectto >0z, T, < T,

time. From second statement of the theorem, it follows th
Ny — +oo almost surely asy, a; — 0. We now observe
that

aIthe relaxation of the optimization problem (9) is a linear
program. Therefore, the relaxed solution lies at one of the
vertex of the feasible simplex and is given by:

—Z ” ) _ 1 ilo LA T,/T, if s=argmax D,(1)/T,
€70 xs_{ d/Ls, e{1,..n} &r g (10)

st yf Nd =1 St (yf)

0, otherwise.
n Ng—N* 1 %’é log o () ®) The non-zero component of the solution in equation (10)
Ny Ng— N* N ffjl( ) may not be an integer, but the fractional part is negligisle a

T4 — +oo. This establishes the first statement.
Note that the observations are i.i.d. for N*+1. Therefore, ~ We observe thatg°(q)+m19" (q) < max(¢°(q), g'(q)),

it follows from strong law of large numbers [9] that and the second statement follows immediately. ]
Na VIlI. NUMERICAL EXAMPLES

. 1 fa, () fe: (ye)
Ndlinioo Ny Zlog 9 (yy) =B {1 fO (y4) } =Dy (1), We now elucidate on the results in previous sections with

=1 ' an example. We first demonstrate that the expressions for
Since, N, is sample size for decision, ane,«; — 0%, expected decision time in equation (4) provide a lower bound
there is no false alarm or mis-detection, it follows to the empirical expected decision time. We show that the
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optimal policies for the worst case decision time and the
average expected decision time in Section V may vyield an
expected decision time much larger than the optimal expecte
decision time conditioned on the true hypothesis. We show

; ; ; . 4. Performance of the adaptive sensor selection pdiieg.solid blue
that the adaptlve sensor selection pOHCy works better th #(]a represents the expected decision time for the adaptinscs selection

the open loop optimal policies for the worst case decisiOpolicy. The dotted black line and dashed red line repregenoptimal worst

time and the average expected decision time. case expected decision time and the optimal conditioned tegbelecision
Example 9:We consider a set of four sensors. Conlime: respectively. _ _

ditioned on hypothesisil,, the observations from each studied the set of optimal sensors to be observed in order to

sensor is normally distributed with mean val{@, 0,0, 0} decide in minimum time. We observed the trade off between

and variance{1, 4,9, 16}, respectively. Conditioned on hy- the information carried by a sensor and its processing tkng.
pothesis ;, the observations from each sensor are nofandomized sensor selection strategy was adopted. Optimal
mally distributed with mean valuél,1,1,1} and variance ©P€Nn loop policies were developed for three performance

{9,1,16, 4}, respectively. The expected processing time oinetrics. An adaptive sensor selection policy was developed
sensors ard4, 5, 10, 2} secs, respectively. that learns the true hypothesis and accordingly adapts the

A comparison of the empirical and analytic conditionaS€NSOr selection strategy. The asymptotic performance of
expected decision time for different sensor selection @robthe adapyve sensor selection policy was characterlzed._An
bilities is shown in Figure 2. It can be seen that the analyti@Symptotic lower bound on the performance of SPRT with
expected decision time is a lower bound to the empiricdNUltiple sensor for any sensor selection strategy was devel
expected decision time. Conditioned dii,, the optimal opeq. It was shown that the adaptlvg sensor selection policy
policy for the average expected decision time performs vedchieves this lower bound asymptotically.
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