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A Result On Implicit Consensus with Application to Emissions Control

Florian KNORN, Martin J. CORLESS, and Robert N. SHORTEN

Abstract— This paper is concerned with a class of decen-
tralised control problems that arise in contemporary applica-
tions where agents cooperate to control and regulate a global
quantity, are limited in the manner in which they communicate
with each other, and are required to reach consensus on some
implicit variable (for instance, CO2 emissions). An algorithm
is presented for achieving this goal. A simplified application of
the algorithm to emissions control for a fleet of Plug-in Hybrid
Electric Vehicles (PHEVs) is given.

I. I NTRODUCTION

Recent survey papers such as [1, 2] give a good overview
of the large interest in coordination, cooperation and consen-
sus in multi-agent systems. While the field appears mature,
most of the work focuses on so-calledunconstrainedand
explicit consensus problems. The former refers to situations
where the network is to agree on a common value / state,
but the actual value of the consensus is not important. The
consensus problem is explicit if the agents can directly
manipulate the value of interest that consensus is to be
reached on. However, in many applications, neither assump-
tion can be made. Oftentimes an aggregate measure of system
behaviour (assumed to depend onall the network’s states) is
of interest as well, and it is not always possible to directly
change the quantity of interest in each agent. There is thus
not only a desire for cooperation among the agents in order
for the network to achieve a common goal (“cooperative
control”), but, whatever protocol is considered, it must not
assume that the agents can directly manipulate the consensus
value.

In the present paper we review recent cooperative control
algorithms that allow a network to reach consensus on one
quantity of interest, while additionally meeting a separate,
global goal. The main contributions of this paper is a theorem
coupled with an application which consists of a cooperative
control scheme designed for city-wide CO2 emissions control
with Plug-in Hybrid Electric Vehicles (PHEVs). It is based
on results of a recently accepted paper [3], which we re-
produce here in a condensed form.

The remainder of the paper is structured as follows: Next,
we will review related work in the area. We then introduce
the problem setting more concretely and define some nec-
essary notation. This is followed by a presentation of an
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algorithm that can achieve the desired goal. An applicationof
our results to emissions control for a fleet of hybrid vehicles
is given, followed by a closing discussion in the last section.

Previous work

For a good introduction into the field and examples of
its many diverse applications see for instance the surveys
[1, 2]. Consensus problems have been formulated in many
different ways, often dictated by particular applications. Just
to illustrate a few: Variations include whether or not the
topology of the communication network changes over time;
whether or not it is undirected or directed; whether or
not the agents can manipulate the state on which to reach
consensus directly or not (and instantly or only with finitely
fast dynamics); whether the consensus value is scalar or
multidimensional; whether or not there are delays in the
information exchange; and whether states are updated in a
synchronous or asynchronous fashion;etc. Initial work in
the field [4–8] assumed bi-directional information exchange
between neighbouring nodes (which leads to undirected com-
munication graphs). Extensions to directed communication
graphs can be found in [9, 10]. Further generalisations
allowed asynchronous consensus protocols [9, 11], changing
graph topologies [8, 12, 13], linear agent dynamics [12, 13],
or implicit consensus [14]. This latter paper inspired much
of the present work.

For unconstrained consensus problems, three basic ap-
proaches appear to exist [15]: leader-following [16, 17],
virtual structure based [18, 19] or behaviour based [20, 21]
approaches. The first concept is a common technique used in
formations of autonomous mobile agents that are to follow a
prescribed trajectory. The second treats the entire network of
agents as a single entity with the desired behaviour, relative
to which each member then adjusts its own behaviour. The
behavioural approach makes use of weighted sums of several
desired behaviours (such as goal seeking, formation keeping
and obstacle avoidance). A different approach is taken in [22]
where constrained consensus is formulated as an optimisation
problem.

It is in this third class that our work should be placed, as
the desired behaviour of the nodes in our network is also
a combination of a localised constraint (consensus on the
utility values) and a global constraint.

II. OVERALL SETTING

A. Problem setting

To facilitate the discussion, let us introduce our general
set-up and some necessary terminology. The overall multi-
agent system is assumed to consist of individual agents
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or nodes that are linked together via some form of local,
broadcast based communication. In other words, we assume,
loosely speaking, that only communication among “nearby”
nodes is possible, and that this communication is not nec-
essarily bi-directional (i. e. nodeA may send information
to nodeB, but may not necessarily receive any information
back). Each agent in the network has aphysical state(or just
“state”) that describes an actual property of the agent (e. g. a
car’s driving speed) that the agent can change. Additionally,
to each node is also associated autility valuewhich depends
directly on the physical state (e. g. CO2 emission, which, in
a first approximation, can be assumed to depend on the car’s
driving speed). This value represents the quantity of interest
on which consensus is to be reached. The dependency
between physical state and utility value is given by theutility
function, and these functions can vary between agents. This
implies that when consensus is reached on the utility values,
the agents’ states may not necessarily be equal.

Additionally, we define aglobal value that depends di-
rectly onall the nodes’ physical states through the so-called
global function. By suitable means of communication (or
decentralised estimation) either all or just some nodes in
the network have access to this global value.1 Finally, we
assume that the nodes use the inter-agent communication
system to share their current utility value with neighbouring
nodes. This set-up is illustrated in Figure 1.

Measurement of global property

r,t

r,t

r,t

r,t
r,t

r,t

r,t

r,t

Feedback of

global property

r

t t=f(r)

Node with some
utility function

Unidirectional
comm. link

Network Base station

Fig. 1. Illustration of our basic setting.

B. Problem statement

The objective is for all agents in the system to reach
consensus on their utility values, while also driving a global
value to a target value. This should be achieved in a de-
centralised way, using simple algorithms that will operate
in a variety of settings, including time-varying topologies
of the communication network, non-linear utility functions
that are only known approximately, when not all nodes have
access to the global value and when the state updates are not
necessarily performed synchronously.

1That is, either it can be measured / estimated locally by the nodes, or it
will be communicated to them by some “external” broadcast (for instance
sent from a base station that itself can estimate or measure that value).

In the following, we present a recursive update rule for
each node’s physical state that solves this problem. The
basic idea behind the algorithm is to use classic consensus
techniques together with an additional term that takes into
account the global objective.

C. Notation

Throughout, we use superscripts in parentheses to denote
individual elements in a vector, and subscripts to denote the
time index. Vectors and matrices are typeset in bold letters
to improve readability.

We represent the communication network topology at each
time stepk = 0, 1, . . . as a directed graph where each agent
forms a node, and the (directed) communication links the
arcs. The set of (in-)neighbours of nodei at timek is called
N

(i)
k ; it contains all the nodesj that can send information

to nodei (including itself). The network is calledconnected
(in the literature also referred to asstrongly connected) if
there exists a path from every node to every other node in
the network, respecting the orientation of the arcs.

A matrix P ∈ R
n×n is called row-stochasticif all its

entries are non-negative and all its row-sums equal one,
in other wordsp(ij) ≥ 0 and P1 = 1, where1 denotes
the all-ones vector of appropriate dimensions. Similarly,row
sub-stochasticmatrices are defined to be real valued, non-
negative matrices whose row-sums are less than or equal to
one (but with at least one row-sum strictly less than one).
A strictly row sub-stochastic matrixis a row sub-stochastic
matrix whereall row-sums are strictly less than one.

Let r(i)k ∈ R be thephysical stateof nodei at timek, so
thatrk forms the state vector of the network. Nodei’s utility
value t(i) ∈ R depends on the physical statevia the utility
functionf (i) : R→ R, that ist(i)k = f

(i)(
r
(i)
k

)

. Furthermore,
let g : Rn → R be theglobal functionthat depends on all
the statesr(i). Desired values are denoted with subscript
asterisks, so that, for example, the desired value for the global
function is denoted byg∗. Based on this desired value, the
solution to the problem thus consists of a vectorr∗ for which
f
(i)(

r
(i)
∗

)

= t∗ for all i = 1, . . . , n andg(r∗) = g∗.

D. Growth conditions and feasibility

We require that the utility functions be continuous and
strictly increasing with a rate that is bounded away from
zero and upper bounded; the global function must also be
continuous and strictly increasing coordinate-wise with non-
zero but also upper bounded rates. Formally (usingei to
denote theith unit vector of appropriate dimension) there
must be positive constantsd(i), d̄(i), h(i), h̄(i) such that for
all i = 1, . . . , n

d(i) ≤
f (i)(ra)− f (i)(rb)

ra − rb
≤ d̄(i)

for all ra, rb ∈ R with ra 6= rb, and

h(i) ≤
g(r +∆rei)− g(r)

∆r
≤ h̄(i)

for all r ∈ Rn and all∆r ∈ R with ∆r 6= 0.
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These conditions guarantee that the continuous utility
functions are strictly monotone increasing and unbounded
and thus have continuous inverse functionsφ(i) so that
φ(i)

(

f (i)(r)
)

= r and f (i)
(

φ(i)(t)
)

= t for all t, r ∈ R.
Given these conditions, it can easily be shown that the
problem always has a unique feasible solution, [3].

III. A N ALGORITHM TO ACHIEVE IMPLICIT,
CONSTRAINED CONSENSUS

In this section we now present an algorithm that allows
a network to achieve implicit consensus and to coopera-
tively control a global goal. Its implementation only requires
knowledge of theboundson the growth rates of the utility
functions as well as the global function, but not the functions
themselves.

Comment Different assumptions to the ones presented in the
following theorem are possible. For instance, there may be
situations where the utility functions are perfectly known. In
that case, they can be inverted and the algorithm is essentially
reduced to the problem discussed in [23]. Conversely, the
utility functions may not be of static but dynamical nature.
In this case, the utility values may be filtered values of the
physical state, a set-up that is also considered in [3]. Due to
space limitations, we cannot discuss these results here.

Theorem [3] Consider the standard situation as described
in the Notation section and assume that the utility functions
f (i) and the global functiong are continuous and satisfy
the growth condition. For any initial conditionr0 ∈ Rn and
any sequence of strongly connected communication graphs,
suppose that the nodes iteratively update their physical states
based on

r
(i)
k+1 = r

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(i)
k σk (1)

whereσk = g∗ − g(rk+1−M ) if k+1 is a multiple ofn −
1, or σk = 0 otherwise. Furthermore, suppose there exist
constantsε1, ε2, µ, µ̄ > 0 such that for eachi = 1, . . . , n,
j ∈ N

(i)
k and k ≥ 0 all the gainsη(ij)k satisfy

∑

j∈N
(i)
k

η
(ij)
k ≤ 1/d̄(i) − ε2 with η

(ij)
k ≥ ε1 (2)

and 0 < µ ≤ µ
(i)
k ≤ µ̄.

Then, if µ̄ is sufficiently small, the state vectorrk con-
verges asymptotically to the vectorr∗ for whichf (i)(

r
(i)
∗

)

=
t∗ for all i and g(r∗) = g∗. •

Comment The update law (1) can roughly be interpreted as
a controller that contains two terms: One that produces the
consensus on the utility values and one that adjusts the state
so as to drive the global value to the desired level. In each
time step, each nodei only incorporates information from
neighbouring nodesN (i)

k to reach consensus on the utility
values; access to the global value is only required everyn−1
time steps.

Extensions

The algorithm can easily be extended to cases where not
all nodes have access to the global value (it can be shown
that it is sufficient for only one node to have access to this
value) as well cases of asynchronous communications and
state updates, see [3] for more details.

We would now like to demonstrate the use of the above
algorithm by applying it to a proposed emissions control
scheme for a fleet of plug-in hybrid electric vehicles.

IV. A PPLICATION TO EMISSIONS CONTROL WITH

PLUG-IN HYBRID ELECTRIC VEHICLES

A. Introduction

Reducing greenhouse gas emissions as well as emissions
of directly harmful gasses and particulates are one of the
major challenges of the future. In the European Union for
instance, see [24], attempts to reduce emissions include
schemes to encourage optimum driver behaviour (emissions
reducing driving style for instance), more efficient use of the
transport network (traffic management and smart navigation
systems to reduce congestion, dedicated lanes for specific
vehicle types, real-time information systems for locations of
available parking spaces,etc.), or to modify the transport
demand (improved logistics to reduce commercial traffic,
better public transport, more low-polluting vehicles,etc.).

Attempts by large cities like London [25] or Berlin [26]
to reduce emissions have received much public attention,
particularly due to the direct impact they have on the public’s
mobility. They try to either discourage drivers from taking
their cars into the city centre by charging a significant fee for
doing so, or by strictly only allowing (certified) low-polluting
vehicles to enter. While these attempts indeed succeed in
somewhat diminishing the number of vehicles in the typically
congested city centres, they basically are open-loop schemes
that do not use feedback to respond to the actual situation.
Factors like the weather, the time of day, day of the week,
or public holidays all have a significant impact on air quality
and green house gas emissions. Another problem is that
although cars become greener and greener, there are more
and more cars in circulation so that the effects of more
efficient and less polluting engines is offset by the ever
growing number of cars, [25].

Research and development in the field of electric vehicles
has progressed significantly in recent years.Hybrid elec-
tric vehicles(HEV), which combine a conventional internal
combustion engine (ICE) based propulsion system with an
electric engine, were introduced to the mass market around
the early 2000s, and, apart from their economic advantages
in terms of fuel economy and their “green appeal”, a number
of additional factors have led to fast growing sales, [27]. Just
to name a few, strong tax incentives in most country make
a compelling argument for these low-emission vehicles;
social preferences and awareness for environmental quality
or energy security have increased; fuel prices can rise and
already have risen sharply in the past, with a consistent
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upward trend over time; etc. However, consumer adopting
rates could still be improved upon, [28].

A new generation of hybrid vehicles are so-calledPlug-
in Hybrid Vehicles(PHEV). These cars have a much larger
battery than traditional hybrids and are designed to be
charged not only while driving (through regenerative braking
for instance), but more importantly by means of “plugging”
into an external power supply when the car is parked, [29].
At the current state of the art, this allows the car to drive
several tens of kilometres purely on electric power, hence
producing zerolocal emissions. The electrical energy still
needs to be produced somewhere, either in a “clean” way
(such as wind, solar, water or nuclear power based) or
“dirty” way (traditional coal or oil based power plants). But
while the latter also pollute the air and produce greenhouse
gases, the overall emissions and harmful particulates may be
filtered more effectively and, since power plants are usually
located far away from urbanised zones, their pollution does
not accumulate in the cities as is the case with traditional,
fossil fuel based transport. Thus, the air quality in densely
populated areas — which pose major health concerns, [30]
— will be improved either way.

Unfortunately, market adoption of PHEVs is still some-
what slow, mainly due to economical and technical reasons
with the batteries. It appears that battery technology still
needs to improve in order for this class of vehicle to be
economically viable, and very few vehicles currently can
drive farther than 100km in purely electrical mode (a figure
drastically reduced in cold weather conditions). For that
reason, the combustion engine serves mainly as a range ex-
tender, allowing the car to run severalhundredsof kilometres
— but at the expense of local air pollution.

B. Controlling emissions, maximising driving distance

Hybrid electric vehicles offer new possibilities for urban
mobility. For the first time, cars can be truly context-aware.
In principle, it is possible to combine GPS and engine
management unit to enable vehicles to choose where to
be most polluting. For example, it makes eminent sense
for a hybrid vehicle to switch to full electric mode in the
neighbourhood of schools or hospitals. In the following
application we explore, at a very high level, a fleet-wide
notion of such context awareness. We wish to, in a manner
that is fair, adjust the behaviour of the hybrid electric vehicles
such that city-wide pollution and/or emissions are regulated.
Before proceeding, we give a few words on hybrid electric
vehicle fundamentals.

Hybrid vehicles come in several power-train configura-
tions. In theparallel power-train configuration, a combustion
engine works in conjunction with a small electric motor to
provide extra torque, or, particularly in the case of plug-
in hybrids, to extend the driving range. The two methods
of propulsion can either run exclusively or in conjunction
(“blended mode”). In other words, it is possible to “mix”
the power sources and vary between emission-free, all-
electric mode (short driving range) or emission-producing
combustion-based mode (large range).

In the following, we propose a scheme to manage this
trade-off in order to cooperatively regulate CO2 emissions2

in a fleet of n vehicles, while maximising their overall
driving range. For that, we make a number of assumptions:
(1) The participating PHEVs have a parallel power-train
configuration that allows arbitrary blending between the
power output of the combustion engine and the electric
motor. (2) This power mixing can described by a convex
combination, for which we define the blending-parameter
r(i) ∈ [ 0 , 1 ] for each cari. By convention, letr(i) = 0
if the car is in all-electric mode, andr(i) = 1 if the car is
only propelled by the combustion engine. (3) The vehicles
are equipped with some broadcast-based vehicle-to-vehicle
communication system (such as the proposed 802.11p pro-
tocol forCo-operative Awareness Messages, [31]) that allows
each car to broadcast its current emission level to other cars
in the area. The emissions need not be measured in real-time
but could be derived from offline measurements, taking into
consideration the currently used power blend. (4) Information
about the aggregate CO2 emissions are available to each
car. They could either be measured externally and broadcast
to the fleet (through theTraffic Management Channelfor
instance, [32]), or the cars could collectively estimate them
through some distributed averaging scheme, [23]. (5) The
emissions control scheme should be fair in the sense that no
car should be allowed to have higher emissions than others.

C. Simulations

Given these assumptions, this set-up can easily be cast
into the framework presented earlier and the algorithms
proposed in Section III can be applied: The utility functions
here are linear functions mapping the interval[ 0 , 1 ] of
the blending-parameterr(i) (the “physical state”) into the
corresponding range of emissionst(i) that vary between
0 (when in emissions-free all-electric mode) andt̄(i), the
nominal CO2 emissions of the combustion engine. In order
to satisfy the fairness requirement, emissions between the
different agents must be equalised. The global function is
simply the sum of all the CO2 emissions. Given the linear
/ multi-linear nature of these functions, it is then trivialto
derive the required growth-rates in order to calculate suitable
gainsη(ij)k andµ(i)

k .
We now present three simulation runs of this set-up. For

that, we generated fleets ofn = 4 as well asn = 50
cars whose emissions are realistically distributed between the
different emissions classes. In each time step, the topology
of the communication graph was changed randomly (but
so as to always guarantee strong connectedness). For each
simulation run, the agents were initialised to use a 50/50
power mix, that isr(i)k=0 = 0.5 for eachi = 1, . . . , n. From
then on, the blending-parameter was modified iteratively
based on the update law presented earlier. In each case, the
desired aggregate emissions levelg∗ was set to be 25% lower
than that at timek = 0, thus requiring all the cars in the

2 Note that we use CO2 emissions here only as an example — our scheme
can easily be applied to any other type of emissions.
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network to adjust their energy mix in order to reduce overall
emissions by 25%.

The gainsµ(i)
k required in the update law were set both

according to the (only sufficient) stability conditions above,
as well as manually: As commented on earlier and discussed
in [3], the bounds onµ(i)

k required by Theorem 1 are
very conservative and may result in slow convergence to
the desired global value. However, they may be increased
significantly without compromising stability, which allowed
us to achieve significantly faster convergence rates. (The
gainsη(ij)k were always set according to the theorem).

In all the following figures, the first sub-plot shows the
evolution over time of the overall emissionsg(rk) (with the
desired levelg∗ indicated by the dashed line), the next sub-
plot displays the corresponding evolution of the blending-
parametersr(i), and the last sub-plot gives the evolution of
the emissionst(i). In Figure 2, we used a small network of
n = 4 cars and set the gainsη(ij)k strictly as per Theorem 1. It
can be seen that the global emissions converge to the desired
level and that all cars indeed equalise their local emissions,
which is achieved by using different energy blends depending
on the emissions characteristics of the car.

However, convergence is somewhat slow compared to
Figure 3 where we manually set theµ(i)

k about 20 times
higher than in the previous case — resulting in about 10
times faster convergence. Figure 4 shows the results for
a fleet of n = 50 cars (again with adjusted gains). The
“jumps” in all the sub-plots at timesk that are multiples
of n− 1 = 49 is of course due to the inclusion of the global
term in the update rule. Note that in all simulations some
agents use a larger blending-parameter than others (these
would be cars with overall less polluting engines), which
means they rely more on their combustion engines. This in
turn means that these cars would typically be able to drive
farther than others, so that their eco-friendliness is rewarded
with extended range.

Comments In the simulations here only the update law
in its basic form was used here, but in a real-life setting,
the application may also require the two extensions of the
algorithms to be used.

Also, the algorithm presented earlier requires the states
(and utility values) to be defined for the entire field of
real numbers. In the application presented here, however,
both variables are only defined on compact intervals. We
thus assume that, with the blending-parameters all initialised
properly, the solution is feasible and does not drive the
parameters beyond their domain of definition. If, however,
this was the case, the blending-parameters would simply
saturate at either fully electric or combustion mode.

Lastly, the CO2 emissions of cars are typically strongly
dependent on the driving speed as well as the individual
driver’s behaviour — both of which is not taken into account
here. We rather focus on theaverageemissions that would be
produced in typical city traffic. Furthermore, the frequency at
which new aggregate emissions measurements are provided
determines the rate at which the discrete updates occur.

Time stepk

t(i)

r(i)

g(r)

0 500 1000 1500

45

75

0

1

190

265

Fig. 2. Plots of the evolution over time of the aggregate CO2 emissions,
the blending parameters used and the resulting local emissions, respectively.
Fleet ofn = 4 cars, gainsµ(i)

k
set according to Theorem 1.
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Fig. 3. Same set-up as in Figure 2, but the gainsµ
(i)
k

were set 20 times
larger than required by Theorem 1.
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Fig. 4. Fleet ofn = 50 cars, gainsµ(i)
k

set manually.
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V. CONCLUSION

In this paper, we have briefly reviewed previous work in
the area of distributed consensus finding, and presented an
algorithm that allows a multi-agent network to solve a very
general implicit and constrained consensus problem. We then
suggested an application for this algorithm that aimed at
cooperatively regulating CO2 emissions in a fleet of plug-
in hybrid electric vehicles, and provided some simulation
results that demonstrated its effectiveness. We would like
to stress again, that we used CO2 emissions purely for
illustration purposes, any kind of emission (such as the
directly harmful respirable dust produced by combustion
engines) or combinations of different emissions may indeed
be considered.

Future work in this area should consider the effect of
nodes joining and leaving the network, how effects like
saturation of the states could be incorporated directly into the
mathematical framework, and ideally derive tighter bounds
on the maximum permissible gain for the global term (as the
bounds presented here are only sufficient for stability, and
we have shown in the simulations that they can be increased
significantly without compromising stability). Also, it would
be interesting to attempt a real-life implementation of our
suggested application.
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