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Abstract—In this paper, we investigate the problem of
assignment ofK identical servers to a set ofN parallel queues
in a time slotted queueing system. The connectivity of each
queue to each server is randomly changing with time; each
server can serve at most one queue and each queue can be
served by at most one server per time slot. Such queueing
systems were widely applied in modeling the scheduling (or
resource allocation) problem in wireless networks. It has
been previously proven that Maximum Weighted Matching
(MWM) is a throughput optimal server assignment policy for
such queueing systems [1], [2]. In this paper, we prove that
for a symmetric system with i.i.d. Bernoulli packet arrivals
and connectivities, MWM minimizes, in stochastic ordering
sense, a broad range of cost functions of the queue lengths
including total queue occupancy (or equivalently average
queueing delay).

I. I NTRODUCTION

Optimal stochastic control of emerging wireless net-
works is one of the primary objectives in the design of such
networks. In general, the main goal in the stochastic control
of wireless networks is to distribute the shared resources in
physical (e.g. power) and MAC layers (e.g. radio interfaces,
relay stations and orthogonal channels) to multiple users
such that a certain stochastic performance attribute is
optimized. While various performance attributes including
the stable throughput region, power consumption and utility
functions of the admitted rates have been studied in many
papers, average queueing delay has been considered far
less in literature. This is due to the inherent difficulty of
delay optimal scheduling problems in queueing systems
with time varying channel conditions. In this paper, we
consider a discrete time queueing system which is suitable
in modeling of orthogonal resource assignment (e.g. radio
interfaces/channel allocation) in multi-user wireless access
networks. In our system, we model the available shared
resources by a set of identical servers. The model also con-
sists of a set of queues whose connectivities to each server
is changing by time randomly. Therefore, the resource
assignment problem is equivalent to finding amatching
between the queues and the servers at each time slot such
that some performance objectives are optimized. It has been
already shown that Maximum Weighed Matching (MWM)
is throughput optimal for such a system, i.e., it maximizes

the stable throughput region of the system [1], [2]. MWM
has also been extensively used in literature for treating
the scheduling problem in crossbar packet switches [3]–
[6]. In this paper, we prove that for a symmetric system
with i.i.d. Bernoulli arrivals and connectivities (i.e. with
the same arrival and connectivity parameters for all the
queues), MWM is also optimal in minimizing, instochastic
ordering sense, a broad range of cost functions of queue
lengths including total queue occupancy (or equivalently
average queueing delay)1. In other words, we show that
MWM policy minimizes stochastically a broad range of
cost functions of queue length processes including the
expected total queue occupancy across all possible server
assignment policies.

The problem of optimal server allocation in queueing
systems with random connectivities was mainly addressed
in [1], [2], [7]–[13]. In [1], the authors introduced the
notion of stability region of a general queueing network
with time varying connectivities and they proposed back-
pressure algorithm as a throughput optimal resource alloca-
tion policy for queueing networks. In [7], they considered
a multi-queue single-server queueing system with random
connectivities. They characterized the stability region by
a set of linear inequalities and also proved that for a
symmetric system with the same arrival and connectivity
parameters for all the queues, LCQ (Longest Connected
Queue) provides the optimal performance in terms of
average queue occupancy.

In [11], Maximum Weight (MW) policy was proposed
as a throughput optimal server allocation policy for multi-
queue multi-server queueing systems with stationary chan-
nel processes. In [13], the authors characterized the net-
work capacity region of multi-queue multi-server queue-
ing systems with time varying connectivities. They also
obtained an upper bound for the average queueing delay
of AS/LCQ policy which is a throughput optimal server
allocation policy for these systems. The results were fur-

1We order two discrete time random processesA = {A(t)}∞
t=1

and
B = {B(t)}∞

t=1
stochastically as follows: We sayA is stochastically

less thanB and we writeA ≤st B if Pr(A(t) > r) ≤ Pr(B(t) > r)
for all t = 1, 2, ... and allr ∈ R. The notion and relevant properties will
be discussed in more detail in Section III-B.
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ther extended in [14] for more general stationary channel
distributions (and not just i.i.d. Bernoulli channels).

The authors in [8] considered a queueing model with
a set of symmetrical parallel queues competing forK

identical servers. The connectivity of each queue to all
the servers is assumed to be the same at each time slot
and during each time slot, each queue can attract at most
one server. The authors proposed LCQ policy in which the
servers are allocated to theK longest connected queues at
each time slot. They proved the optimality of LCQ policy
by using dynamic coupling and stochastic ordering method.

The work in [9], [10], [12], [15] focuses on the opti-
mal server allocation problem in multi-queue multi-server
queueing systems in terms of average queueing delay. In
[9], [10], [15], the authors introduced MTLB (Maximum-
Throughput Load-Balancing) policy and showed that this
policy minimizes a class of cost functions including total
average delay for the case of two symmetric queues. The
work in [12] considers this problem for general number
of symmetric queues and servers. In [12], a class ofMost
Balancing(MB) policies was characterized among all work
conserving policies which are minimizing, in stochastic
ordering sense, a class of cost functions including total
average delay. Note that in the model used in [9], [10],
[12], [13], [15], there is no restriction on the number of
servers that are serving a queue at each time slot. In [2],
it was shown that for a multi-queue multi-server system in
which queues are restricted to attract at most one server
at each time slot, Maximum Weighted Matching (MWM)
policy is throughput optimal. The authors also considered
the effect of infrequent channel state measurements on the
stability region.

The rest of the paper is organized as follows. Section II
describes the model and the notation required throughout
the paper. In section III, we introduce Maximum Weighted
Matching (MWM) policy as the optimal policy for the
described model. We will also review the concepts of
stochastic ordering and dynamic coupling method which
are the main mathematical tools used in proving the op-
timality of MWM policy. In section IV, we present the
main result of this paper, that is proving the optimality of
MWM server assignment policy. Section V summarizes the
conclusions of the paper.

II. M ODEL DESCRIPTION

We consider a time slotted parallel queueing system with
a set of parallel symmetrical queuesN = {1, 2, ..., N}
and infinite buffer space for each queue. Packets in this
system are assumed to have constant length and require
one time slot to complete service. The service to this set of
queues is provided through a set of identical servers namely
K = {1, 2, ...,K}. The connectivity of each queuen ∈ N
to each serverk ∈ K at each time slott is random and
follows a Bernoulli distribution. We denote the connectivity
of queuen to serverk at time slott by Cn,k(t). Note that
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Fig. 1: Discrete time queueing system withN parallel
queues andK servers

Cn,k(t) ∈ {0, 1} andE[Cn,k(t)] = p for all n ∈ N and
k ∈ K and t = 1, 2, ....

At each time slot, each server can serve at most one
packet from a connected non-empty queue. Note that in
the system we do not have server sharing i.e., a server can
serve at most one queue at each time slot. We also assume
that a queue which is being serviced by a server at a given
time slot, cannot get service from other servers during the
same time slot.

Let An(t) be the packet arrival process (number of
packet arrivals) to queuen at time slott. We assume that
new arrivals at each time slot are added to the queues at
the end of the time slot. Assume that the arrival processes
An(t) at each time slott are independent Bernoulli random
variables with the same parameter for alln and t. We
denote the length of queuen at the end of time slott (i.e.,
after adding the new arrivals) byXn(t). In other words,
Xn(t) represents the number of packets in thenth queue
at the end of time slott (or beginning of time slott+ 1).

A server assignment policy at each time slot determines
an assignment of servers of setK to the queues of setN . In
other words, at each time slot the scheduler has to decide
about abipartite matching(matching in bipartite graphs)
between setsN and K. This should be accomplished
based on the available information about the connectivities
Cn,k(t) and also the queue length process at the beginning
of time slot t (which is X(t − 1) = (X1(t − 1), X2(t −
1), ..., XN (t − 1))). For a given policyπ, suppose that
indicator variableI(π)n,k(t) is defined to be“1” if server
k is assigned to queuen at time slott and“0” otherwise.
We defineM (π)(t) = {I

(π)
n,k(t), ∀n ∈ N , k ∈ K} as the

employedmatchingby policyπ at time slott. Therefore, a
server scheduling policyπ is defined asπ = {M (π)(t)}∞t=1.

According to the above discussion, we can see that the
queue length random variableXn(t), ∀n ∈ N evolves with
time according to the following rule:

Xn(t) =

(

Xn(t− 1)−
K
∑

k=1

Cn,k(t)I
(π)
n,k(t)

)+

+An(t)



where (·)+ returns the term inside the brackets if it is
non-negative and zero otherwise. Note that a server can
be assigned to an empty queue however it cannot serve it
since there is no packet to be served. That is why we have
used operator(·)+ in (1).

As we discussed earlier, the queueing model introduced
in this section is useful in modeling the resource assign-
ment problem in various systems with shared resources. In
wireless communication systems, communication resources
such as communication sub-channels, relay stations, etc.
are shared among users and therefore can be studied
using our model (e.g. [2], [16]). Bipartite Matching also
has been extensively used in literature (e.g. [3]–[6]) to
model the scheduling problem in crossbar packet switching
systems. In this paper, random variables are represented
by CAPITAL letters and lower case letters are used to
represent sample values of the random variables.

III. B ACKGROUND

A. Maximum Weighted Matching

In [1], [2], [17]–[19], it was shown that Back-pressure
algorithm maximizes the stable throughput region of a
general data network. For the model introduced in section
II, Back-pressure algorithm is equivalent to solving the
following optimization problem at each time slott [2].

Maximize

N
∑

n=1

xn(t− 1)

K
∑

k=1

In,k(t)cn,k(t)

s.t.

K
∑

k=1

In,k(t) ≤ 1 (n = 1, 2.., N)

N
∑

n=1

In,k(t) ≤ 1 (k = 1, 2..,K) (1)

where xn(t − 1) and cn,k(t) are the values of random
variablesXn(t − 1) andCn,k(t) at time slotst − 1 and
t, respectively. Note that finding the solutions of problem
(1) is equivalent to finding a maximum weighted matching
in the bipartite graphGt = (N ,K, E) (see Figure 2).
In Gt, N and K are the two sets of vertices in each
part of the graph andE = {en,k, ∀n ∈ N , ∀k ∈ K} is
the set of edges between these two parts. Note that the
associated weight to each edgeen,k is xn(t − 1)cn,k(t).
A matching in graphGt is basically a sub-graph ofGt

in which no two edges share a common vertex. Note that
any matchingM (π)(t) at any time slott is corresponding
to a sub-graph ofGt namely G

(π)
t = (N ,K, E(π)) in

which en,k ∈ E(π) if and only if I(π)n,k(t) = 1. Suppose

that M (MWM)(t) = {I
(MWM)
n,k (t), ∀n ∈ N , k ∈ K} be

the matching whose indicator variables are the solution of
the optimization problem (1). Thus, we define Maximum
Weighted Matching (MWM) server assignment policy as
MWM = {M (MWM)(t)}∞t=1. There are several algorithms
to find the maximum weighted matching in bipartite graphs.
The most well known algorithm is Hungarian algorithm
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Fig. 2: Bipartite graph corresponding to problem (1)

whose complexity is ofO((min{N,K})(max{N,K})2)
[20].

As explained before, MWM is known to be throughput
optimal for the queueing system described in section II [2].
Our contribution in this paper is to prove that MWM is also
optimal in minimizing, in stochastic ordering sense, a class
of cost functions of the queue length processes including
the total system occupancy (or equivalently total average
queueing delay) for the symmetric queueing system of
Figure 1 (which can be used to model a homogeneous
wireless access network). We will introduce a detailed
description of those class of cost functions in the following
section.

B. Stochastic Ordering and Dynamic Coupling

In this section, we briefly review the concepts of stochas-
tic ordering (stochastic dominance) and dynamic coupling
techniques. Consider two discrete time stochastic processes
A = {A(t)}∞t=1 and B = {B(t)}∞t=1 in R. We sayA
is stochastically less thanB and we writeA ≤st B if
Pr(A(t) > r) ≤ Pr(B(t) > r) for all t = 1, 2, ... and all
r ∈ R [21], [22]. Some properties of stochastic ordering
are the following. If A ≤st B then f(A) ≤st f(B)
for all non-decreasing functionsf . If A ≤st B then
E[A(t)] ≤ E[B(t)]. A is stochastically smaller thanB
(A ≤st B), if there exists process̃A = {Ã(t)}∞t=1

defined on the same probability space asB with the same
probability distribution asA and satisfy Ã(t) ≤ B(t)
almost surely for everyt = 1, 2, ... [8]. The last statement
is known as coupling ofA and Ã. In fact, when applying
coupling technique, we are given the processA and we try
to construct a coupled process̃A with the same distribution
as A and Ã(t) ≤ B(t) a.s. for all t. This gives us
a tool for comparing processesA and B stochastically.
This is specially useful when it is infeasible to derive the
distributions ofA andB (e.g. in our queueing model when
comparing the total occupancy process for different server
assignment policies).

IV. OPTIMALITY OF MWM

In this section, we present the main result of this paper,
that is proving the optimality of MWM with respect to
minimization of a class of cost functions of queue lengths



including the average queueing delay. Suppose thatZ+

be the set of non-negative integers andZN
+ be the N

dimensional Cartesian space of non-negative integers. We
define relation” � “ overZN

+ as follows.
Definition 1: For two vectorsx , x̃ ∈ Z

N
+ , we write

x̃ � x if one of the following relations holds:
D1: x̃n ≤ xn for all n = 1, 2, ..., N
D2: x̃ is obtained by permutation of two distinct elements
of x, i.e., x̃ andx are different in only two elementsn
andm such thatx̃n = xm and x̃m = xn.
D3: x̃ and x are different in only two elementsn and
m such thatxn < x̃n ≤ x̃m < xm and the following
constraints are satisfied:̃xn = xn + 1 and x̃m = xm − 1.

In D3, we say that̃x is more balanced thanx and can be
obtained by decreasing a larger element ofx (betweenm
andn) by “1” and increasing a smaller element (between
m andn) by “1”. We call such an interchange abalancing
interchangeon vectorx. Thus, the result of a balancing
interchange on a vectorx would be a vector̃x such that̃x �
x. Suppose that vectorx ∈ Z

N
+ represents the queue length

vector at a given time slot. Then, a balancing interchange
is equivalent to taking a packet from a larger queue and
adding it to a smaller queue.

We define the partial order” �p “ on Z
N
+ as the

transitive closure of relation” � “ [23]. In other words,
x̃ �p x if and only if x̃ is obtained fromx by performing
a sequence of reductions, permutations of two elements
and/or balancing interchanges. Whenx and x̃ are two
queue length vectors, we writẽx �p x if and only if queue
length vector̃x is obtained fromx by applying a series of
packet removal, two queues permutations and balancing
interchanges.

We defineF as the class of real-valued functions onZ
N
+

that are monotone and non-decreasing with respect to the
partial order” �p “, i.e.,

f ∈ F ⇐⇒ x̃ �p x ⇒ f(x̃) ≤ f(x). (2)

We can easily check that functionf(x) =
∑N

n=1 xn

belongs toF . This function captures the total queue
occupancy of the system.

Let X ′(t) = (X ′

1(t), X
′

2(t), ..., X
′

N (t)) denote the queue
length vector at time slott exactly after serving the queues
according to a server assignment policyπ and before
adding the new arrivals of time slott, i.e.,

X ′

n(t) =

(

Xn(t− 1)−
K
∑

k=1

Cn,k(t)I
(π)
n,k(t)

)+

. (3)

Given x′(t) as a sample value of random variableX ′(t),
we define abalancing server reallocationat time slott as
follows:

Definition 2: A balancing server reallocation on vector
x′(t) is a matching that results in vector̃x′(t) such that
one of the following conditions is satisfied.
(C1): x̃′

n(t) ≤ x′

n(t) for all n = 1, 2, ..., N and there
existsm ∈ {1, 2, ..., N} such that̃x′

m(t) < x′

m(t).
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Fig. 3: Examples of balancing server reallocations

(C2): x̃′(t) andx′(t) are different in only two elements
n andm such thatx′

n(t) < x̃′

n(t) ≤ x̃′

m(t) < x′

m(t) and
the following constraints are satisfied:x̃′

n(t) = x′

n(t) + 1
and x̃′

m(t) = x′

m(t)− 1.

Figures 3a and 3b show two examples of balancing server
reallocations in two sample graphs. In these figures, the
original allocations are specified by solid lines while the
balancing reallocations are specified by dashed lines.

Consider an arbitrary server assignment policyπ with the
allocation variables{I(π)n,k(t)}

∞

t=1 for all k ∈ K andn ∈ N .
We introduce Matching Weight (MW) index associated to
a server allocation policyπ at time slott by

MWπ(t) =

N
∑

n=1

xn(t− 1)

K
∑

k=1

cn,k(t)I
(π)
n,k(t) (4)

Note thatMW index is exactly the objective of the op-
timization problem (1). According to Definition 2 and
definition of MW index, we can prove the following
Lemma.

Lemma 1:For a given policyπ employing matching
M (π)(t) at time slot t, by applying a balancing server
reallocation at time slott (if there exists any) we will have
a new policyπ̃ differing from π only at time slott such
thatMWπ(t) < MWπ̃(t).
The proof is omitted here due to space limitations. The
detailed proof of the lemma is given in [24]. Based on
Lemma 1, we can state the following corollary.

Corollary 1: For a given policyπ at time slot t, if
MWπ(t) is maximized, i.e., policyπ employs a maximum
weighted matching at time slott, then there exists no
balancing server reallocation at that time slot.

Note that Lemma 1 just states that any balancing real-
location increases the matching weight index. However, it
does not imply the existence of a balancing server reallo-
cation whenMWπ(t) is not maximized. In the following,
we will prove the reverse of Lemma 1.

Lemma 2:For a given policyπ at time slott, if MWπ(t)
is not maximized, i.e.,MWπ(t) < MWMWM (t), then there
exists a balancing server reallocation at that time slot.

The proof is lengthy and is omitted here due to space
limitations. For the detailed proof, please refer to [24].

By ΠMWM , we denote the set of all policies who employ
maximum weighted matching at all time slots. We also



defineΠt as the set of all policies that employ maximum
weighted matching exactly until time slott (including t).
We can easily observe thatΠt ⊆ Πt−1 and ΠMWM =
⋂

∞

t=1 Πt. From Lemmas 1 and 2 we conclude that given a
policy π ∈ Πt−1 which is using an arbitrary matching at
time slot t, we can reach to a policyπ⋆ ∈ Πt by applying
a sequence of balancing server reallocations. Suppose that
hπ
t represents the number of balancing server reallocations

required to convert the employed matching in policyπ at
time slott to a maximum weighted matching. In this case,
we say that the distance ofπ from Πt is hπ

t balancing
server reallocations. Note that if the distance ofπ from Πt

is hπ
t , after applying the first balancing server reallocation,

we get to a policyπ̃ whose distance fromΠt is hπ
t − 1

balancing server reallocations. By repeating this procedure
we finally get to a policy whose distance toΠt is zero, i.e.,
it belongs toΠt. By Πh

t (0 ≤ h ≤ hπ
t ) we denote the set

of all server assignment policies inΠt−1 whose distance
from Πt is at mosth balancing sever reallocations. Note
thatΠ0

t = Πt.
Consider any two policiesπ and π̃ such thatf(X̃) ≤st

f(X), f ∈ F whereX = {X(t)}∞t=1 andX̃ = {X̃(t)}∞t=1

are the queue length processes when policiesπ and π̃ are
applied respectively. For such a system, we say policy
π̃ dominatesπ. Therefore, if π̃ dominatesπ we have
E[f(X̃)] ≤ E[f(X)]. Given f(x) =

∑N

n=1 xn, we
conclude that the average queue occupancy (or equivalently
average queueing delay) of policỹπ is smaller than that of
policy π. According to the above discussion, we can prove
the following Lemma.

Lemma 3:For any policyπ ∈ Πh
t and0 < h ≤ hπ

t we
can construct a policỹπ ∈ Πh−1

t such that̃π dominatesπ.
Here, we just give the outline of the proof. For the

detailed proof please refer to [24]. The proof follows
by applying dynamic coupling method over random
variables C(t) = (Cn,k(t)), ∀n ∈ N , ∀k ∈ K and
A(t) = (A1(t), A2(t), ..., AN (t)). In other words, we
will show that given an arbitrary sample pathω =
(x(0), c(1), a(1), x(1), c(2), a(2), x(2), c(3), a(3), x(3)...)
we can construct policỹπ and a new sample path̃ω =
(x̃(0), c̃(1), ã(1), x̃(1), c̃(2), ã(2), x̃(2), c̃(3), ã(3), x̃(3), ...)
resulting in a new sequence of random variables
(X̃(0), C̃(1), Ã(1), X̃(1), C̃(2), Ã(2), X̃(2), C̃(3),...) with
X(0) = X̃(0) such that̃x(t) �p x(t) for all t. In fact, we
constructω̃ and π̃ ∈ Πh−1

t in such a fashion thatfor all
the sample paths and all time slots we havex̃(t) �p x(t).
The construction of̃π is consisting of two main steps:
construction for time slots before and includingt and
construction for time slots aftert. The construction before
and includingt follows by using the matchings of policy
π for time slots beforet. For time slott, we apply the
balancing server reallocation. The construction aftert

follows by using mathematical induction. The detailed
proof is lengthy and is omitted at this point. We refer the
interested readers to [24] for more detail.

Based on Lemma 3, we can prove the main result of this

paper in the following Theorem.
Theorem 1:Maximum Weighted Matching policy dom-

inates any server assignment policy.
Proof: Let π0 be any arbitrary policy. Thenπ0 ∈ Π0 =

ΠH1

1 whereH1 = hπ0

1 . By applying Lemma 3 repeatedly,
we can construct a sequence of policies such that each
policy dominates the previous one. Thus, we obtain policies
that belong toΠ0 = ΠH1

1 ,ΠH1−1
1 ,ΠH1−2

1 , ...,Π0
1 = Π1.

The last policy is calledπ1. Note thatπ1 ∈ ΠH2

2 where
H2 = hπ1

2 . By recursively continuing such argument we
obtain a sequence of policiesπt ∈ Πt, t = 1, 2, ... such
that πj dominatesπi for j > i. Note that this sequence
of policies defines a limiting policyπ∗ that agrees with
MWM at all time slots. Thus,π∗ is an MWM policy who
dominates all the previous policies, including the starting
policy π0.

V. CONCLUSIONS

In this paper, we considered the problem of assignment
of K identical servers to a set ofN parallel queues in
a symmetrical time slotted queueing system with random
connectivities from the queues to the servers. For such a
queueing system, it has been previously shown that MWM
is throughput optimal, i.e. has the maximum stability re-
gion. Our contribution in this work is the development of a
method to prove the optimality of MWM in minimizing, in
stochastic ordering sense, a class of cost functions of queue
lengths (including total queue occupancy or equivalently
average queueing delay). Our method to achieve this goal
used stochastic ordering and dynamic coupling techniques.
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