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Abstract—In this paper, we investigate the problem of the stable throughput region of the system [1], [2]. MWM
assignment of K" identical servers to a set ofV parallel queues has also been extensively used in literature for treating
in a time slotted queueing system. The connectivity of each the scheduling problem in crossbar packet switchés [3]—

gqueue to each server is randomly changing with time; each 61 In thi that f tri t
server can serve at most one queue and each queue can bé ] In this paper, we prove that for a symmetric system

served by at most one server per time slot. Such queueing With i.i.d. Bernoulli arrivals and connectivities (i.e. thi
systems were widely applied in modeling the scheduling (or the same arrival and connectivity parameters for all the
resource allocation) problem in wireless networks. It has queues), MWM is also optimal in minimizing, stochastic
been previously proven that Maximum Weighted Matching o qering sense, a broad range of cost functions of queue
(MWM) is a.throughput optimal server assignment policy for | ths including total valentl
such queueing systems [1]/2]. In this paper, we prove that '€N9INS Inciuding fotal queue occupancy (or equivalently
for a symmetric system with i.i.d. Bernoulli packet arrivals average queueing deldy)in other words, we show that
and connectivities, MWM minimizes, in stochastic ordering MWM policy minimizes stochastically a broad range of
sense, a broad range of cost functions of the queue lengthscost functions of queue length processes including the
including total queue occupancy (or equivalently average eynected total queue occupancy across all possible server
queueing delay). . -
assignment policies.
The problem of optimal server allocation in queueing
. INTRODUCTION systems with random connectivities was mainly addressed
Optimal stochastic control of emerging wireless nein [1], [2], [7]-[13]. In [1], the authors introduced the
works is one of the primary objectives in the design of suafiotion of stability region of a general queueing network
networks. In general, the main goal in the stochastic cobntiwith time varying connectivities and they proposed back-
of wireless networks is to distribute the shared resoumtespressure algorithm as a throughput optimal resource alloca
physical (e.g. power) and MAC layers (e.qg. radio interfaceion policy for queueing networks. In][7], they considered
relay stations and orthogonal channels) to multiple usesismulti-queue single-server queueing system with random
such that a certain stochastic performance attribute dennectivities. They characterized the stability regign b
optimized. While various performance attributes inclgdina set of linear inequalities and also proved that for a
the stable throughput region, power consumption andytilisymmetric system with the same arrival and connectivity
functions of the admitted rates have been studied in mapgrameters for all the queues, LCQ (Longest Connected
papers, average queueing delay has been consideredQaeue) provides the optimal performance in terms of
less in literature. This is due to the inherent difficulty ohverage queue occupancy.
delay optimal scheduling problems in queueing systemsin [11], Maximum Weight (MW) policy was proposed
with time varying channel conditions. In this paper, was a throughput optimal server allocation policy for multi-
consider a discrete time queueing system which is suitalgjeeue multi-server queueing systems with stationary chan-
in modeling of orthogonal resource assignment (e.g. radiel processes. I [13], the authors characterized the net-
interfaces/channel allocation) in multi-user wirelessess work capacity region of multi-queue multi-server queue-
networks. In our system, we model the available shar@gy systems with time varying connectivities. They also
resources by a set of identical servers. The model also cebtained an upper bound for the average queueing delay
sists of a set of queues whose connectivities to each sergAS/LCQ policy which is a throughput optimal server
is changing by time randomly. Therefore, the resourcglocation policy for these systems. The results were fur-
assignment problem is equivalent to findingnaatching
between the queues and the servers at each time slot suétwe order two discrete time random processes= {A(t)}52, and
that some performance objectives are optimized. It has be@rr {B(1)}72, stochastically as follows: We say is stochastically
. . . ess thanB and we writeA <g; B if Pr(A(t) > r) < Pr(B(t) > )
already shown that Maximum Weighed Matching (MWMior allt =1,2,... and allr € R. The notion and relevant properties will
is throughput optimal for such a system, i.e., it maximizeg discussed in more detail in Sectlon 1II-B.
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ther extended in[14] for more general stationary channel Xy(t)

distributions (and not just i.i.d. Bernoulli channels). A®)
The authors in[[B] considered a queueing model with
a set of symmetrical parallel queues competing for A(t)

identical servers. The connectivity of each queue to all
the servers is assumed to be the same at each time slot
and during each time slot, each queue can attract at most
one server. The authors proposed LCQ policy in which the
servers are allocated to thé longest connected queues at
each time slot. They proved the optimality of LCQ policy
by using dynamic coupling and stochastic ordering method. Adt) 7
The work in [9], [10], [12], [15] focuses on the opti-
mal server allocation problem in multi-queue multi-servefig. 1: Discrete time queueing system wifki parallel
gueueing systems in terms of average queueing delay.gumeues and{ servers
[@], [20], [15], the authors introduced MTLB (Maximum-
Throughput Load-Balancing) policy and showed that this
policy minimizes a class of cost functions including tota@nyk(t) € {0,1} and E[C,, x(t)] = p for all n € A and
average delay for the case of two symmetric queues. The: K andt = 1,2, ....
work in [12.] considers this problem for general number At each time slot, each server can serve at most one
of symmetric queues and servers. [Inl[12], a clasobt packet from a connected non-empty queue. Note that in
Balancing(MB) policies was characterized among all workne system we do not have server sharing i.e., a server can
conserving policies which are minimizing, in stochastigerye at most one queue at each time slot. We also assume
ordering sense, a class of cost functions including tigfat a4 queue which is being serviced by a server at a given
average delay. Note that in the model usedlin [9lI [10fime slot, cannot get service from other servers during the
[12], [13], [15], there is no restriction on the number oz me time slot.
servers that are serving a queue at each time slof.lIn [2],Let A,(t) be the packet arrival process (number of

it was shown that for a multi-queue multi-server system iﬁ'acket arrivals) to queu at time slott. We assume that
which queues are restricted to attract at most one Seryefy arivals at each time slot are added to the queues at

at each time slot, Maximum Weighted Matching (MWM)y,o eng of the time slot. Assume that the arrival processes

policy is throughput optimal. The authors also consideregn(w at each time slot are independent Bernoulli random

the effect of infrequent channel state measurements on figiaples with the same parameter for alland . We
stability region. i ) denote the length of queueat the end of time slot (i.e.,

The rest of the paper is organized as follows. Sedfibn Jkier adding the new arrivals) b¥,,(t). In other words,
describes the model and the notation required throughg@}l(t) represents the number of packets in tta queue
the paper. In sectidn 1ll, we introduce Maximum Weighted; the end of time slot (or beginning of time slot -+ 1).
Matching (MWM) policy as the optimal policy for the A server assignment policy at each time slot determines

described model. We will also review the concepts of,, assignment of servers of geto the queues of set’. In
stochastic qrderlng and.dynamlc couplllng met.hod Whiler words, at each time slot the scheduler has to decide
are t_he main mathemauoal tool_s used in proving the op abipartite matching(matching in bipartite graphs)
t'm‘fi“ty of MWM_ policy. In se_ctlon[ﬂ, we present _the between sets\ and K. This should be accomplished
main result of th|_s paper, tha_‘t IS proving the opt|m_allty oEJased on the available information about the connectivitie
MWM server assignment policy. Sectibh V summarizes th@n,k(t) and also the queue length process at the beginning

conclusions of the paper. of time slot¢ (which is X (f — 1) = (X1 (t — 1), Xa(t —
1),..,Xn(t — 1))). For a given policyw, suppose that
II. MODEL DESCRIPTION indicator variable]éf,i(t) is defined to be“1” if server

. . ) k is assigned to queue at time slott and “0” otherwise.
We consider a time slotted parallel queueing system W'We define M ™) (t) — {I(ﬂ)(t) Vn € N,k € K} as the
- n,k 9 9

a se’_[ O.f _parallel symmetrical queugs = {1,2, ""N_} employedmatchingby policy 7 at time slott. Therefore, a
and infinite buffer space for each queue. Packets in ﬂgérver scheduling policy is defined asr = {M (™) (£)}22 .

system are assumed to have constant length and requ'rs\ccording to the above discussion, we can see that the
one time slot to complete service. The service to this set of '

. ) . . I h i I ith
queues is provided through a set of identical servers nam%&eeuzciggémra?od?hrz \f/glrlfv?ﬁ”(%lz_n € N evolves wit
K ={1,2,..., K}. The connectivity of each queuee N/ g g '

to each servek € K at each time slot is random and ( %

+
follows a Bernoulli distribution. We denote the conneayivi x (t) Xo(t—1)— Z c, k(t)I(”,Z )] + A
of queuen to serverk at time slott by C,, »(¢). Note that — "



where (-)* returns the term inside the brackets if it is
non-negative and zero otherwise. Note that a server can
be assigned to an empty queue however it cannot serve it
since there is no packet to be served. That is why we have
used operatof-)* in ().

As we discussed earlier, the queueing model introduced
in this section is useful in modeling the resource assign-
ment problem in various systems with shared resources. In
wireless communication systems, communication resources
such as communication sub-channels, relay stations, etc_. . Bt ;
are shared among users and therefore can be studieglzlg' 2: Bipartite graph corresponding to problelm (1)
using our model (e.gl[2]) [16]). Bipartite Matching also
has been extensively used in literature (eld. [3]-[6]) ©Ohose complexity is oO((min{N, K})(max{N, K})?)
model the scheduling problem in crossbar packet switchir'é*JO ’ ’
systems. In this paper, random variables are represen’lesﬁ'S explained before, MWM is known to be throughput
by CAPITAL letters and lower case Ietter; are used t(S’ptimal for the queueing system described in sediibn/ 1l [2].
represent sample values of the random variables. Our contribution in this paper is to prove that MWM is also

optimal in minimizing, in stochastic ordering sense, a%las
1. BACKGROUND of cost functions of the queue length processes including
A. Maximum Weighted Matching the total system occupancy (or equivalently total average

In [1], [2], [L71-[19], it was shown that Back-pressuredueueing delay) for the symmetric queueing system of
algorithm maximizes the stable throughput region of &igure[l (which can be used to model a homogeneous
general data network. For the model introduced in sectigfireless access network). We will introduce a detailed
MM Back-pressure algorithm is equivalent to solving théescription of those class of cost functions in the follayin

following optimization problem at each time slo{2]. section.
N K . . . .
Maximize Z Tn(t—1) Z Lk (t)en i (t) B. Stochastic Ordering and Dynamic Coupling
n=1 k=1 In this section, we briefly review the concepts of stochas-
K tic ordering (stochastic dominance) and dynamic coupling
s.t. Y Lukt) <1 (n=1,2.,N) techniques. Consider two discrete time stochastic presess
k=1 A = {A@t)}2, and B = {B(t)}2;, in R. We say A

is stochastically less tham and we writeA <, B if
Lip) <1 (k=1,2.K) (1) Pr(A(t) > r) < Pr(B(t) >r) forall t =1,2,... and all

r € R [21], [22]. Some properties of stochastic ordering
where z,,(t — 1) and ¢, (t) are the values of randomare the following. If A <,; B then f(A) < f(B)
variables X, (t — 1) and C,, x(t) at time slotst — 1 and for all non-decreasing functiong. If A <,, B then
t, respectively. Note that finding the solutions of problenw[A(t)] < FE[B(t)]. A is stochastically smaller tha®
(@) is equivalent to finding a maximum weighted matchingd <., B), if there exists processl = {A(t)}2,
in the bipartite graphG; = (N,K,E) (see Figurd12). defined on the same probability spacefasvith the same
In G;, N and K are the two sets of vertices in eactprobability distribution asA and satisfy A(t) < B(t)
part of the graph and = {e,x,Vn € N,Vk € K} is almost surely for every = 1,2, ... [8]. The last statement
the set of edges between these two parts. Note that tseknown as coupling ofA and A. In fact, when applying
associated weight to each edge;. is x,(t — 1)c, 1(t). coupling technique, we are given the procdsand we try
A matching in graphG; is basically a sub-graph af’; to construct a coupled procedswith the same distribution
in which no two edges share a common vertex. Note thas A and A(t) < B(t) a.s. for allt. This gives us
any matchingM (™) (¢) at any time slot is corresponding a tool for comparing processe$ and B stochastically.
to a sub-graph ofG; namely Gﬁ“) = (N,K,£M) in  This is specially useful when it is infeasible to derive the
which e, x € £ if and only if [T(f]g (t) = 1. Suppose distributions of4 and B (e.g. in our queueing model when
that MMWM) (1) = {ITSMkWM)(t),Vn ’G N,k € K} be comparing the total occupancy process for different server

NE

n=1

the matching whose indicator variables are the solution 8FSignment policies).

the optimization problem{1). Thus, we define Maximum

Weighted Matching (MWM) server assignment policy as IV. OPTIMALITY OF MWM

MWM = {MMWM)()1ec  There are several algorithms In this section, we present the main result of this paper,
to find the maximum weighted matching in bipartite graph#hat is proving the optimality of MWM with respect to
The most well known algorithm is Hungarian algorithmminimization of a class of cost functions of queue lengths



including the average queueing delay. Suppose #hat

-N=3 1\ —
be the set of non-negative integers aid be the N \/\)%)IID#O’@ %;’@
dimensional Cartesian space of non-negative integers. We N ;/ \0

7
7
define relation” < “ overZ¥ as follows. X0D=2 x X, t-)=2 /\x;
. . \
Definition 1: For two vectorsz , & € ZY, we write w w
+ > >/

Z =< z if one of the following relations holds: X,t-1)=5 /g AN X, -1=5 /6 N
D1z, <z, foraln=1,2,..,N :I]]]]]LT—@ |:|I|IDL—O—‘@
D2: & is obtained by permutation of two distinct elements . o . o
of z, i.e., & andx are different in only two elements (8) Satisfying conditiorC1 (b) Satisfying conditionC2
andm such thatz,, = z,,, andz,, = z.,. Fig. 3: Examples of balancing server reallocations
D3: Z and z are different in only two elementas and
m such thatz, < %, < %, < z, and the following
constraints are satisfied;, = =, + 1 andz,, = z,, — 1.  (C2): Z’(t) and 2/(¢) are different in only two elements

In D3, we say thatz is more balanced than and can be 7 andm such thatr;, () < &7, (t) < @7, (¢) < z7,(t) and

obtained by decreasing a larger element:abetween,  the following constraints are satisfied, (1) = z7,(¢) + 1

andn) by “1” and increasing a smaller element (betweenand 7, (t) = 7, (¢) — 1.

m andn) by “1”. We call such an interchangelalancing Figured3h anf 3b show two examples of balancing server

interchangeon vectorz. Thus, the result of a balancingreallocations in two sample graphs. In these figures, the

interchange on a vectarwould be a vectog such thatt < original allocations are specified by solid lines while the

x. Suppose that vectar € Zf represents the queue lengttbalancing reallocations are specified by dashed lines.

vector at a given time slot. Then, a balancing interchangeConsider an arbitrary server assignment pofiayith the

is equivalent to taking a packet from a larger queue ar@location variables{]fl’r,z (t)}22, forall k € K andn € .

adding it to a smaller queue. We introduce Matching WeightMW) index associated to

We define the partial ordet =, “ on ZY as the a server allocation policy at time slott by

transitive closure of relatioi < “ [23]. In other words, N K

Z <, x if and only if Z is obtained fromz by performin =

a sgcwence of r}e/:ductions, permutations yo? two eler?]ents MW= (t) = an(t -D Zc”’k(ﬁ)lfl-r’z(t) )

and/or balancing interchanges. Whenand & are two e k=t

queue length vectors, we wrife<,, z if and only if queue Note thatMW index is exactly the objective of the op-

length vectori is obtained fromz by applying a series of timization problem [(1l). According to Definitio] 2 and

packet removal, two queues permutations and balanciégfinition of MW index, we can prove the following

interchanges. Lemma.

We defineF as the class of real-valued functions Bii Lemma 1:For a given policyr employing matching
that are monotone and non-decreasing with respect to the™ (t) at time slot¢, by applying a balancing server
partial order” <, “, i.e., reallocation at time slot (if there exists any) we will have

a new policy7 differing from 7 only at time slot¢ such
feF = iZue= [f@)<fl). ) that MW, (t) < MW; (t).
We can easily check that functiofi(z) = Z;V:yrn The_proof is omitted here du_e to_ space limitations. The
belongs to F. This function captures the total queuéjet""'Ied proof of the lemma is given in [24]. Based on
occupancy of the system. Lemmall, we can state the following corollary.

Let X'(t) = (X! (t), X4(t), ..., X’ (t)) denote the queue Corollary 1 I_:or a g_iven po_Iicy7r at time slotﬁ, if
length vector at time slat exactly after serving the queuesVW=(t) is maximized, i.e., policyr employs a maximum

according to a server assignment poliey and before weighted matching at time slat, then there exists no
adding the new arrivals of time slot i.e., balancing server reallocation at that time slot.

N Note that Lemmall just states that any balancing real-
, K (m) location increases the matching weight index. However, it
Xa(t) = | Xalt = 1) = Z C"=k(t>1n,k(t> : () does not imply the existence of a balancing server reallo-
k=1 cation whenMW,.(¢) is not maximized. In the following,
Given2'(t) as a sample value of random variab¥€é(t), we will prove the reverse of Lemnia 1.
we define aalancing server reallocatioat time slott as Lemma 2:For a given policyr at time slott, if MW ()
follows: is not maximized, i.e. MW, (t) < MWwwwm (t), then there
Definition 2: A balancing server reallocation on vectoexists a balancing server reallocation at that time slot.
#'(t) is a matching that results in vectaf(t) such that  The proof is lengthy and is omitted here due to space
one of the following conditions is satisfied. limitations. For the detailed proof, please refer|tal [24].
(CL): . (t) < 2/,(t) for all n = 1,2,...,N and there By IIM"YM we denote the set of all policies who employ
existsm € {1,2,..., N} such that¥], (¢t) < z}, (). maximum weighted matching at all time slots. We also



definell; as the set of all policies that employ maximunpaper in the following Theorem.

weighted matching exactly until time slot(including ¢). Theorem 1:Maximum Weighted Matching policy dom-
We can easily observe thal; C II,_; and IIMYM = inates any server assignment policy.

N2, II;. From Lemmasg]l arld 2 we conclude that given a  Proof: Let 7o be any arbitrary policy. Them, € I, =
policy 7 € II;_; which is using an arbitrary matching atll{"* where H; = h7°. By applying Lemmd[3 repeatedly,
time slot¢, we can reach to a policy* € II; by applying we can construct a sequence of policies such that each
a sequence of balancing server reallocations. Suppose thalicy dominates the previous one. Thus, we obtain policies
kT represents the number of balancing server reallocatiahat belong toll, = T =1 =2 19 = 11,.
required to convert the employed matching in policyat The last policy is calledr;. Note thatr; € Héﬁ where
time slott to a maximum weighted matching. In this casel{, = h3'. By recursively continuing such argument we
we say that the distance of from II, is h] balancing obtain a sequence of policies € II;, t = 1,2, ... such
server reallocations. Note that if the distancerdfom II;  that 7; dominatesr; for j > i. Note that this sequence

is hT, after applying the first balancing server reallocatiorf policies defines a limiting policyr* that agrees with

we get to a policyr whose distance fronil; is k7 —1 MWM at all time slots. Thusg* is an MWM policy who
balancing server reallocations. By repeating this procedwlominates all the previous policies, including the startin
we finally get to a policy whose distancely is zero, i.e., policy m. ]

it belongs toll;. By IT? (0 < h < hT) we denote the set
of all server assignment policies ii;_; whose distance
from II, is at mosth balancing sever reallocations. Note
that 1Y = TI,.

V. CONCLUSIONS

In this paper, we considered the problem of assignment
Consider any two policies and# such thatf(X) <,, 0f K identical servers to a set oV parallel queues in
f(X), f € FwhereX = {X(t)}2, andX = {X(¢)};2, @ symmetrical time slotted queueing system with random
are the queue length processes when poligiemid 7 are connectivities from the queues to the servers. For such a
applied respectively. For such a system, we say poli€j€ueing system, it has been previously shown that MWM
7 dominatesw. Therefore, if # dominatesw we have is throughput optimal, i.e. has the maximum stability re-
E[f(X)] < E[f(X)]. Given f(x) = >"_ x,, we gion.Our contribution in this work is the development of a

conclude that the average queue occupancy (or equivalerigthod to prove the optimality of MWM in minimizing, in
average queueing delay) of poliéyis smaller than that of Stochastic ordering sense, a class of cost functions ofequeu

policy 7. According to the above discussion, we can provéngths (including total queue occupancy or equivalently
the following Lemma. average queueing delay). Our method to achieve this goal

Lemma 3:For any policyr € 11" and0 < h < hT we used stochastic ordering and dynamic coupling techniques.
can construct a policy € TI"~! such thatr dominatesr.

Here, we just give the outline of the proof. For the
detailed proof please refer td _[24]. The proof follows
by applying dynamic coupling method over random
variables C(t) = (Cnx(t)),Yn € N,Vk € K and
A(t) (A1(t), Aa(t), ..., An(t)). In other words, we
will show that given an arbitrary sample path
(2(0),¢(1),a(1),z(1),¢(2),a(2), 2(2), c(3), a(3), z(3)...
we can construct policyr and a new sample path
(2(0),¢(1),a(1),z(1),¢(2),a(2),z(2),é(3),a(3),z(3),...)
resulting in a new sequence of random variable§’]
(X(0),C(1), A1), X(1),C(2), A(2), X(2), C(3),...) with
X (0) = X(0) such thati(t) <, =(t) for all t. In fact, we
constructe and 7 € II7~! in such a fashion thafor all
the sample paths and all time slots we haye) <, x(t).
The construction ofr is consisting of two main steps:
construction for time slots before and includirtgand
construction for time slots aftér The construction before
and includingt follows by using the matchings of policy
7 for time slots beforet. For time slott, we apply the
balancing server reallocation. The construction after
follows by using mathematical induction. The detailed
proof is lengthy and is omitted at this point. We refer thel€l
interested readers tb [24] for more detail.

Based on Lemmia 3, we can prove the main result of this
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