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Abstract— In this paper we propose an alternative solution
to the Monocular Simultaneous Localization and Mapping
(SLAM) problem. This approach uses a Minimum-Energy
Observer for Systems with Perspective Outputs and provides
an optimal solution. Contrarily to the most famous EKF-
SLAM algorithm, this method yields a global solution and no
linearization procedures are required. Furthermore, we show
that the estimation error converges exponentially fast toward
a neighborhood of zero, where this region increases gracefully
with the magnitude of the input disturbance, output noise and
initial camera position uncertainty.

For practical purposes, we present also the filter in both
continuous and discrete time form. Moreover, to show how to
integrate a new landmark in the state estimation, a simple
initialization procedure is presented. The filter performances
are illustrated via simulations.

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM)

problem asks whether it is possible for a robot placed at

an unknown location in an unknown environment to build a

map of the environment while simultaneously determine its

location within the map using only relative observation of

the environment. The ability for a robot to localize itself and

map the environment is a fundamental step toward the fully

autonomous operation of a robotic system.

The SLAM problem has been widely analyzed and differ-

ent solutions have been presented, see for example the work

[10] that provide a comprehensive introduction to the topic.

The main solutions are based on either nonlinear filtering

or optimization techniques and an interesting comparison

of the two can be found in [8]. The EKF-SLAM [11] and

the FastSLAM [5], [4] are the two most famous filtering

solutions based on the Extended Kalman Filter and Particle

Filter, respectively.

A key difficulty with the classical EKF-SLAM approach

stems from the nonlinearity of the motion and observation

models. The consistency of the EKF-SLAM is analyzed in

[1] and [2], and eventual inconsistency of the algorithm

has been proved especially for large maps. In spite of that,
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many successful applications have been carried out thanks

to a variety of methods used to reduce the approximation

errors. One of the methods that contributed to the SLAM

efficiency and effectiveness are sub-mapping techniques, see

for instance [6].

When only a single camera sensor is used we are dealing

with Monocular SLAM where the effects of the nonlinearity

in the observation model is particularly significant. In fact,

if the landmarks estimates are far from the real value, the

linearization error can be great. A wide literature addresses

the problem of feature initialization, see for instance [3] and

[9]. An inverse depth landmark parameterization is presented

in [13] which, along with other advantages, reduces the

observation model nonlinearity.

The main results of this work is the introduction of a

new approach based on Minimum-Energy estimation theory

for systems with perspective outputs [7] that solves the

Monocular SLAM problem. The result is an optimal filtering

solution where, in absence of input disturbances, output

noise and with no uncertainty on the initial robot pose, the

estimation error converges exponentially to zero. In case of

initial camera pose uncertainty or when input disturbance

or output noise are present, the estimation error converges

exponentially to a bounded region around zero, where the

width of this region is proportional to the magnitude of

these disturbances. We highlight that, under the assumption

of the model presented and given that no linearization error is

introduced, we provide a global and optimal solution against

the local solution of the EKF-SLAM. This implies, for

instance, that no special landmarks initialization procedure

is required, and the landmark position estimate will converge

toward the real value independently from how it is initialized.

The remainder of this paper is organized as follows.

Section II states the SLAM problem. In Section III we show

how to write the SLAM problem as an estimation problem of

system with perspective outputs and we present the observer

equations in both continuous and discrete time. We close the

Section with the filter convergence propriety. The Section IV

is dedicated to features initialization. Using simulation, in

Section V we show the filter behavior in different scenarios.

In Section VI we provide some final conclusions.

II. PROBLEM STATEMENT

Consider a coordinate frame {C} attached to a camera,

which moves with respect to an inertial frame {W}. Let

(pWC , RWC) ∈ SE(3) be the configuration of the camera

frame {C}, where SE(3) is the Cartesian product of R
3 with

the group SO(3) of 3×3 rotation matrices. Given a set of N
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landmarks, let lWi ∈ R
3 and lCi ∈ R

3 with i ∈ {1, . . . , N}
denote the coordinates of the ith landmark in world frame

and camera frame, respectively. Then we have

lWi = pWC + RWC lCi (1)

Now, let (vC , ΩC) ∈ se(3) be the twist that defines the

velocity of the frame {C} with respect to {W}, expressed

in the frame {C}. The symbol se(3) represents the Cartesian

product of R
3 with the space so(3) of 3×3 skew-symmetric

matrix. The following holds

vC = RT
WC ˙pWC , ΩC = RT

WCṘWC , (2)

where vC ∈ R
3 is the linear velocity of the camera expressed

in {C} and ΩC is defined by the angular velocity vector

ωC = [ω1, ω2, ω3]
T as follows

ΩC =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 .

Using a bearing only sensor we observe the projection of

the generic point lCi = [lCi,1, l
C
i,2, l

C
i,3] in the camera sensor. A

normalized version of the observation is the homogeneous

image coordinate that follows,

yi =
(

lCi,1

lC
i,3

lCi,2

lC
i,3

1
)T

.

Our goal is to estimate iteratively, as measurements are

arriving, the camera and landmarks final positions.

III. MINIMUM ENERGY SLAM

In this section the ME-SLAM approach is presented. We

start by defining a generic system with perspective outputs,

then we show that it is possible to write the Monocular

SLAM problem as state estimation problem of such system.

We conclude with the filter expressions in both continuous

and discrete form.

A. System with perspective outputs

A state affine system with multiple perspective outputs is

of the form

ẋ = A(u)x + b(u) + G(u)d (3)

αjyj = Cj(u)x + dj(u) + nj (4)

j ∈ J := {1, 2, . . . , N}

where x ∈ R
n is the state vector, u ∈ R

nu is the control

input, yj ∈ R
mj is the jth perspective output, d ∈ R

nd

an input disturbance that cannot be measured, nj ∈ R
mj

measurement noise affecting the jth output, A : R
nu →

R
n×n, b : R

nu → R
n, G : R

nu → R
n×nd , Cj : R

nu →
R

mj×n, dj : R
nu → R

mj . The right-hand-side of (4) is

assumed to be always non zero, and the initial condition x(0),
the signal d and nj are all assumed to be deterministic but

unknown. Each αj ∈ R, j ∈ J denotes a scalar determined

by a normalization constraint
∥∥yj

∥∥ = 1 or vT
j yj = 1. (5)

The scalar αj is unknown and contains the information

about the landmark depth. The constraint (5) shows that

the observations yi, perspective observations, do not carry

any information in their module but only in their direction.

This is exactly what happen when a landmark position is

projected in the camera sensor. Moreover, we assume that

measurements are available at the sampling times ti, i ∈
Io ⊆ I := {0, . . . , k} with t0 := 0 ≤ t1 ≤ · · · ≤ tk and that

only a subset Ji of the N measurements is available at time

ti.

B. From SLAM to a system with perspective outputs

To model the observation from a bearing-only sensor as

perspective outputs, consider the generic ith landmark. The

image coordinates of this landmark (which are the only

observation measure for the estimation problem) are given

by yi that satisfies

αiyi = lCi , (6)

where αi is an unknown scalar containing the information

about the landmark depth. From (1) it follows that

lCi = RT
WC lWi −RT

WCpWC

= li − p

where we defined li := RT
WC lWi and p := RT

WCpWC .

In order to obtain a linear output function, we consider

the following state vector

x = (p, l1, . . . , lN )
T ∈ R

3N+3.

This step is important because it motivates our features and

camera pose representation in the state vector. In fact, using

inertial coordinates we would have a nonlinear perspective

output equation, while using this representation we have

αiyi = li − p,

which is linear in the state. We remark that we are not using

a linear output in the classical sense, but we are using a

linear perspective output.

Now we proceed with the analysis of the kinematic equa-

tions. Using (2) and assuming static landmarks (i.e. ˙lW1 = 0)

we have

ṗ = ṘT
WCpWC + RT

WC ṗWC

= −ΩC
WCRT

WCpWC + vC

= −ΩC
WCp + vC

and

l̇i = ṘT
WC lWi + RT

WC l̇Wi
= −ΩC

WCRT
WC lWi

= −ΩC
WC li.

Defining the control u := {vC , ωC} and using the Kronecker

4567



product ⊗, we can write our system in the form (3)-(4)

A(u) = I(N+1)×(N+1) ⊗−ΩC(ωC) ∈ R
(3N+3)×(3N+3)

b(u) =

(
vC

03N×1

)
∈ R

3N+3




C1

...

CN



 =
(
−I3×3 ⊗ 1N×1 I3N×3N

)
∈ R

3N×3N+3

where I and 1 are identity and ones matrixes, respectively,

with dimension specified by the subscript.

For practical purposes we also present a discretized ver-

sion of the state equation. Consider to receive input control

at time ti, i ∈ I. We remark that the observation arrival

identified by Io ⊆ I can be a subset of the control arrival

time. Assuming that the control inputs are constant for all

the interval of time ∆t = ti+1 − ti we have

p(ti + ∆t) = e−ΩC
WC∆tp(ti)

+vC
∫ ti+∆t

ti
e−Ω(t+∆t−τ)dτ

≈ e−ΩC
WC∆tp(ti) + vCe−ΩC

W C∆t∆t

= R(−ωC , ∆t)p(ti) + R(−ωC , ∆t)vC∆t

where R(−ωC , ∆t) = e−ΩC
WC∆t ∈ SO(3) is the rotation

matrix associated to the rotation for a time ∆t about the

axes ωC with angular velocity −|ωC |. In the same way, for

the generic ith landmark we obtain

li(ti + ∆t) = e−ΩC
WC∆tli(ti)

= R(−ωC , ∆t)li(ti).

The discrete time model is then given by

x(ti+1) = Aix(tk) + bi + Gidi

where

Ai = I(N+1)×(N+1) ⊗R(−ωC , ∆t) ∈ R
(3N+3)×(3N+3)

bi =

(
R(−ωC , ∆t)vC∆t

0(3N)×1

)
∈ R

3N+3

G : R
nu → R

n×nd and di ∈ R
nd is the discrete disturbance

that cannot be measured.

C. Observer equations

In the previous section we showed how to convert the

Monocular SLAM problem to a estimation problem of a

system with perspective outputs. To estimate the state of

this class of systems we use the filter presented in [7].

For practical purposes, within this work we also present the

discrete time version.

We let the reader note that we could redefine the output

equation as yi = (li−p)/|(li−p)|, and then apply EKF. How-

ever, due to linearization, this would lead to a local solution,

meaning that the filter convergence would be guaranteed only

for an initial landmark position guess sufficiently close to the

true value.

With our approach, given an input u defined on an interval

[0, t), and a measured output yj(ti), j ∈ Ji with i ∈ Io, we

obtain the state estimate x̂(t) at time t defined by

x̂(t) := arg min
z∈Rn

J(z, t) (7)

where

J(z; t) := min
d:[0,t),n̄j(ti),αji

i=0,1,...,k

{(x(0)− x̂0)
T P−1

0 (x(0)− x̂0)

+
∫ t

0
‖d(ρ)‖2 dρ +

∑k

i=0

∑
j∈J ‖nj(ti)‖

2
:

x(t) = z, ẋ = A(u)x + b(u) + G(u)d,
αji

yj(ti) = Cjxti
+ dj(u) + nj(ti)}

(8)

and P0 > 0, x̂0 encode a priori information about the state.

Note that if we pose no restrictions on the state distur-

bance and output noise of (3)-(4), a measured sequence of

observations could correspond to any state solution. The

solution (7) corresponds to the state solution that needs less

amount of disturbance and noise to be explained. Notice

also that in general the solution of this minimum energy

formulation for a general nonlinear system leads to an infinite

dimensional observer, whose state evolves according to a first

order nonlinear PDE of Hamilton-Jacobi type, driven by the

observation. However, for the case of a linear system we

obtain the Kalman filter, and for perspective systems we can

also obtain an exact close form solution that is filtering-like

and iterative.

The filter equation that solves (7)-(8) are the following

- for ti 6 t < ti+1, i ∈ Io

Ṗ = A(u)P (t) + P (t)A(u)T + G(u)GT (u), P (ti) = Pi

˙̂x = A(u)x̂(t) + b(u), x̂(ti) = x̂i

(9)

- at t = ti, ∈ Io

P (ti) = (P (t−i )−1 + W (ti))
−1

x̂(ti) = x̂(t−i )− P (t−i )
(
W (ti)x̂(t−i ) + w(ti

) (10)

where

W (ti) :=
∑

j∈Jk⊆J CT
j (u)

(
I − yj(ti)yj(ti)

T

∥∥yj(ti)
∥∥2

)
Cj(u)

w(ti) :=
∑

j∈Jk⊆J CT
j (u)

(
I − yj(ti)yj(ti)

T

∥∥yj(ti)
∥∥2

)
d̄j(u).

If we are interested on working with the discrete time model,

we can replace the continuous time Riccati equation (9) with

the discrete time version, obtaining

- at t = ti+1, i ∈ I

P (ti+1) = AiP (ti)A
T
i + GiG

T
i

x̂(ti+1) = Aix̂(ti) + bi
(11)

- at t = ti+1, i ∈ Io

P (ti+1) = (P (t−i+1)
−1 + W (ti+1))

−1

x̂(ti+1) = x̂(t−i+1)− P (t−i+1)W (ti+1)x̂(t−i+1)
(12)
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where equations (11) and (12) can be considered as the

counterpart of the prediction step and update step of the

Kalman filter, respectively.

As can be seen from (8), the initial value P0 of P (t)

reflects our confidence on the initial estimate x̂0 of x(0), e.g.

a large value of P0 strongly penalizes any deviation of the

state from our “a-priori” guess x̂0. Because of this, in fact,

we can interpret the initial value of P (t) as the covariance

matrix that reflects our certainty on our initial guess for the

state.

D. Convergence

Similarly to the minimum energy estimator for systems

with perspective outputs, under suitable observability as-

sumptions (see Theorem 3 of [7]), the state estimation error

converges exponentially fast to a neighborhood. Furthermore,

the estimation error degrades gracefully with the increasing

of the magnitude of the output noise and state disturbance.

For the specific case of the SLAM problem the estimation

error also depends on the uncertainty of the initial camera

pose. In Appendix we provide a lower bound on the covari-

ance matrix associated with any single landmark estimate as

a function of the initial covariance in the camera position.

IV. FEATURES INITIALIZATION

The theory behind the convergence of the ME-SLAM

outlined above guarantees global convergence for any initial-

ization of the filter. However, in practice, the performance of

the filter can be significantly improved by suitably feature

initialization, which corresponds to choosing appropriate

initial conditions to (9).

In the literature we find several accurate initialization

techniques for bearing-only sensor. Since our system does

not require special accuracy we propose an intuitive method

and show how to update the state vector and covariance

matrices.

Let yn = [y1, y2, 1]T be the homogeneous image co-

ordinate associated to the landmark that we would like

to initialize, which has camera frame coordinate lCn . The

vector [y1, y2]
T is corrupted by additive sensor noise, with

known covariance matrix R ∈ R
2×2. Assume to have a

priori information about the distribution of the depth of the

observed landmarks, namely its first and second statistical

moment, ρ̂ and σ2
ρ. For instance, during indoor exploration

we can exclude the possibility to observe landmarks 50

meters far from the camera, and it is reasonable to assume

some distribution over closer distances.

A simple approach to feature initialization consists in

defining an initilization function g : R
3 → R

3 as

lCn = g(y1, y2, ρ) =
(
ρy1 ρy2 ρ

)T

Since g(.) is a function of random variables, than lCn is also

a random variable and a linear estimate of it is given by the

following first and second statistical moments

l̂Cn = g(y1, y2, ρ̂) =
(
ρ̂y1 ρ̂y2 ρ̂

)T
, (13)

Pln = ∇g

(
R 0
0 σ2

ρ

)
∇T

g , (14)

where ∇g is the Jacobian of g(.) evaluated at ŷ and ρ̂

∇g =




ρ̂ 0 y1

0 ρ̂ y2

0 0 1



 .

Using this initialization function we set the initial estimate of

the new landmark on a position coherent with the observation

yn on a plane in front of the camera, parallel to the camera

sensor and distant ρ̂ from the optical camera center. Thus,

the initialization of a new landmark is

x =

(
x

l̂Cn + p

)
, P =

(
P 0
0 Pln + Pp

)
(15)

where Pp is the covariance matrix relative to the vector p
and 0 is a zero matrix with appropriate dimensions. After

(15) an update using the current observations is desirable to

correlate the new landmark with the other state components.

If we wish to remove some landmarks form the state, it

is enough to delete the component of the state vector and

covariance matrix relative to those landmarks.

A. Pseudocode

In this section we present a pseudocode that summarizes

the overall system procedures.

Algorithm 1 ME-SLAM

Ln ← ∅
Lm ← ∅
L ← ∅
Ls ← ∅
(x, P )← system initialization

for all i ∈ I do

if i ∈ Io then

img ← get image

L ← feature extraction(img)
(Ln,Lm)← feature mathing(L,Ls)
Ls ← initialize landmarks(Ls,Ln)
(x, P )← update(x, P,L)
(x, P,Ls)← feature selection(x, P,Ls)
(x, P )← prediction(x, P )

else

(x, P )← prediction(x, P )
end if

end for

In the pseudocode, L is the set of features extracted

from an image, each of its elements carries the homoge-

neous image coordinate yi of the observed landmark and

a descriptor di used to identify the landmark in different

images. With Lm and Ln we identify the subset of matched

features and new features respectively, Ln ∪ Lm = L.

These sets are obtained by the function feature mathing
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using the set Ls of descriptors associated to the landmarks

in the current state vector and comparing them with the

descriptors of the landmark just observed. The function

initialize landmarks initialize the new landmarks

and refers to the set of equation (13) (14) and (15). The

estimation is updated with the function update using the

observation. This step refers to the equations (12). The

function feature selection is used to perform a se-

lection of robust landmarks. For instance, it is reasonable to

discard a landmark if only one observation has been collected

along a sequence of consecutive camera images. These extra-

information needed for the selection are considered part of

Ls. Also information from x, P can be used to support this

operation. Finally the function prediction predicts the

future state using (11).

V. SIMULATION RESULTS

In this section we show the filter performance via sim-

ulation where the camera moves inside a room along the

walls and takes observations of the landmarks placed over

the walls. The simulation setting is as follows. The initial

camera position is
(
0 0 0

)T
and faces the wall defined

by the landmarks displaced between
(
−6 2 0

)T
and(

6 2 0
)T

in the frame of Fig. 1. Then, the camera turns

right and starts moving along the corridor at velocity of

1 m/s. It takes observations of landmarks in front of the

camera that are closer than 10 m. Whenever a landmarks is

observed for the first time, a state component is initialized

assuming an initial landmark depth of 0 m and a σρ = 20m.

We use an unreasonable initial guess of the depth to show

the filter behavior in case of significant initial estimation

error. Moreover, we simulated additive zero mean noise on

the camera state equation and output equation, both with

correlation matrix of 0.001I3×3, where I3×3 it a 3×3 identity

matrix.

In Fig. 1 it is worth to notice that two of the landmarks

close to the origin have a wide covariance. This is because

the camera started its exploration turning right and the

filter did not experience enough parallax to reduce the two

landmarks covariances. Similarly happens for the landmark

in front of the camera at time t=35s.

This phenomena is observable also from the bottom plot of

Fig. 3 where the trace of the covariance matrices relative to

the position of landmarks and camera are displayed. We see

that the covariances of these two landmarks only converge

to a value around zero when they are observed again at the

end of the loop, around time t = 42s and t = 46s. The effect

of this on the estimation error is visible from the top plot,

where the estimation error is shown. The spikes correspond

to the initialization times of the landmarks, after which the

covariance matrices and the estimation errors converge to

small values.

VI. CONCLUSIONS

We presented an alternative solution to the Monocular

SLAM, by rewriting the problem as a state affine system with

−15 −10 −5 0 5 10 15

−5

0

5

10

15

20

Fig. 1. Top view of the 3D scenario at time t = 35 s. The blue crosses
represent the true landmarks position, the means and the covariances of their
estimates are represented by the red crosses and the red ellipses, respectively.
The red asterisk and the red ellipse stand for the estimate of the camera
position. A draw of the camera shows the heading and the green line identify
the observed landmarks. The scale is in meters.

−15 −10 −5 0 5 10 15

−5

0

5

10

15

20

Fig. 2. Top view of the 3D scenario at time t = 70.4 s. The blue crosses
represent the true landmarks position, the means and the covariances of their
estimates are represented by the red crosses and the red ellipses, respectively.
The red asterisk and the red ellipse stand for the estimate of the camera
position. A draw of the camera shows the heading and the green line identify
the observed landmarks. The scale is in meters.

multiple perspective outputs (3)-(4). Using this formulation

we avoid linearization, main cause of EKF-SLAM diver-

gence, and we provide a global solution to the Monocular

SLAM problem against the local solution of the EKF-SLAM.

Using a Minimum-Energy observer we can guarantee

the estimation error to converge exponential to zero in
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Fig. 3. The plot on the top shows the state estimation error. The plot on
the bottom shows the trace of the covariance matrices of each landmark
separately.

absence of input disturbance, output noise and initial camera

pose uncertainty. When input disturbance, output noise and

initial robot pose uncertainty are present, the estimation

error degrades gracefully with the magnitude of the input

disturbance, output noise and initial camera pose uncertainty.

We presented the system and the observer equation in

both continuous form, (9)-(10), and discrete form, (11)-(12).

This last manifests the two steps Prediction-Update that is

particularly useful for practical implementation.

Given the dynamic nature of the SLAM problem, where

the number of landmark that we estimate grows with time, in

Section IV we presented a recursive initialization procedure,

(13), (14) and (15), suitable for our state vector.

Finally, the filter behavior has been shown via simulation.

Here the traces of the landmarks position uncertainty con-

verge toward a value around zero as expected.

APPENDIX

Using a similar approach of the one used in [15] for the

EKF SLAM, in this section we show that the lower bound of

the covariance matrix is determined by the initial uncertainty

on the camera pose.

For sake of simplicity we consider a single landmark. In

order to analyze the lower bound, we assume to use observa-

tion from a stationary camera (i.e. P (t−i ) = P (ti−1)). Then,

from (12) we have
(

P−1
p (ti) P−1

pm(ti)
P−1

mp(ti) P−1
m (ti)

)

=

(
P−1

p (ti−1) P−1
pm(ti−1)

P−1
mp(ti−1) P−1

m (ti−1)

)
+

(
M(ti) −M(ti)
−M(ti) M(ti)

)

(16)

where M(ti) = I − y(ti)y(ti)
T /
∥∥y(ti)

∥∥2
is a positive

semidefinite matrix, Pp the covariance matrix of the camera

position, Pm the covariance matrix of the landmark and Pmp

and Ppm cross covariance matrices. If there is no information

on the landmark position at time t = 0 we have

P−1(0) =

(
P−1

p (0) 0
0 0

)
. (17)

Then, from (16) and (17) we obtain
(

P−1
p (ti) P−1

pm(ti)
P−1

mp(ti) P−1
m (ti)

)
=

(
P−1

p (0) + M̄(ti) −M̄(ti)
−M̄(ti) M̄(ti)

)

with M̄(ti) =
∑

k≤i,k∈Io
M(tk). Invoking the matrix inver-

sion lemma for partitioned matrices, we can conclude that

lim
i→∞

(
Pp(ti) Ppm(ti)

Pmp(ti) Pm(ti)

)
≥

(
Pp(0) Pp(0)
Pp(0) Pp(0)

)
.
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