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Abstract

We propose a novel and natural architecture for decentralized control that is applicable whenever

the underlying system has the structure of a partially ordered set (poset). This controller architecture

is based on the concept of Möbius inversion for posets, and enjoys simple and appealing separation

properties, since the closed-loop dynamics can be analyzed in terms of decoupled subsystems. The

controller structure provides rich and interesting connections between concepts from order theory such

as Möbius inversion and control-theoretic concepts such as state prediction, correction, and separability.

In addition, using our earlier results on H2-optimal decentralized control for arbitrary posets, we prove

that theH2-optimal controller in fact possesses the proposed structure, thereby establishing the optimality

of the new controller architecture.

I. Introduction

The prevalence of large-scale complex systems in many areas of engineering has emphasized

the need for a systematic study of decentralized control. While the problem of decentralized

control in full generality remains a challenging task, certain classes of problems have been

shown to be more tractable than others [11], [8], [12], [13].

Motivated by the intuition that acyclic structures within the context of decentralized control

should be tractable, the authors began a systematic study of a class of systems known as poset-

causal systems in [11]. In follow-up work [9], [14] we showed that the problem of computing

H2-optimal controllers using state-space techniques over this class of systems was tractable, with

efficient solutions in terms of uncoupled Riccati equations. We also provided several intuitive

explanations of the controller structure, though a detailed analysis of the same was not presented.

In this paper we are concerned with the following questions: “What is a sensible architecture

of controllers for poset-causal systems? What should be the role of controller states, and what
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computations should be involved in the controller?” This paper focuses on answering this

architectural question. Our main contributions in this paper are:

• We propose a controller architecture that involves natural concepts from order theory and

control theory as building blocks.

• We show that a natural coordinate transformation of the state variables yields a novel

separation principle.

• We show that the optimal H2 controller (with state-feedback) studied in [14] has precisely

the proposed controller structure.

• We establish novel connections that tie together three well-known concepts: (a) Youla pa-

rameterization in control, (b) the concept of purified output feedback in robust optimization

and (c) Möbius inversion on posets.
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Fig. 1. A block-diagram representation of the control architecture. The simulator predicts the unknown states at each subsystem
using available information (the prediction at subsystem k is denoted by Xk). The controller then computes the differential
improvement in the prediction using µ, acts on it with a local gain F(k) and then “integrates” the signal along the poset using
ζ to produce the input signal.

The controller structure that we propose in this paper is as follows. At each subsystem of

the overall system, the partial ordering of the information structure allows one to decompose

the global state into “upstream” states (i.e. states that are available), “downstream” (these are

unavailable) and “off-stream” states (corresponding to uncomparable elements of the poset). The
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downstream and off-stream states are (partially) predicted using available upstream information

using a “simulator” (see Fig. 1), this prediction is the role of the controller states. The best

available information of the global state at each subsystem is then described using a matrix

X; each column of X corresponds to the best local guess or estimate of the overall state at a

particular subsystem.

Having computed these local partial estimates, the controller then performs certain natural

local operations on X that preserve the structure of the poset. These local operations are the

well-known ζ and µ operations in Möbius inversion. These operations, which are intimately

related to the inclusion-exclusion formula and its generalizations, have a rich and interesting

theory, and appear in a variety of mathematical contexts [7]. The control inputs are of the form

U = ζ(F ◦ µ(X)). As we will see later, the operators µ and ζ can be interpreted as generalized

notions of differentiation and integration on the poset so that µ(X) may be interpreted as the

differential improvement in the prediction of the local state. Here F = {F(1), . . . , F(s)} are

feedback gain matrices corresponding to the different subsystems. The quantity F ◦ µ(X) may

therefore be interpreted as a local “differential contribution” to the overall control signal. The

overall control law then aggregates all these local contributions by “integration” along the poset

using ζ. This architecture has been shown diagrammatically in Fig. 1.

Computational and architectural issues in decentralized control have been important areas of

study; we mention some related works below. From a computational standpoint, the problem of

computing H2-optimal controllers for quadratically invariant systems was studied in [8], however

that approach does not provide much insight into the structure of the optimal controller. In the

context of decentralized control, the computational and architectural issues for the “Two-Player

Case” were studied in [16]. This work was extended to arbitrary posets in [14] (similar results

were obtained in [15]), and some hints regarding the structure of the optimal controller were

provided in our previous work. Another important related work is the simpler but related team-

theory problem over posets studied in [6] which provides us with an interesting starting point

in this paper. We mention the work of Witsenhausen [17], [18] who provided important insight

regarding different types of information constraints in control problems. Finally, team theory and

decentralized control have also been studied in [4].

The rest of this paper is organized as follows: In Section II we introduce the necessary

order-theoretic and control-theoretic preliminaries. In Section III we present the basic building
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blocks involved in the controller architecture. In Section IV we describe in detail the proposed

architecture, establish the separability principle and explain its optimality property with respect

to the H2 norm. In Section V, we discuss a block diagram perspective to interpret our results. In

Section VI, we discuss connections to the Youla parameterization and the literature on purified

output feedback.

II. Preliminaries

In this section we introduce some concepts from order theory. Most of these concepts are

well-studied and fairly standard, we refer the reader to [1], [3] for details.

A. Posets

Definition 1: A partially ordered set (or poset) P = (P,�) consists of a set P along with a

binary relation � which is reflexive, anti-symmetric and transitive [1].

We will sometimes use the notation a ≺ b to denote the strict order relation a � b but a , b.

An important related concept is that of a product of two posets.

Definition 2: Let P = (P,�P) and Q = (Q,�Q) be two posets. We define their product poset

P × Q = (P × Q,�P×Q) to be the set P × Q equipped with the order relation �P×Q satisfying

(p1, q1) �P×Q (p2, q2) if p1 �P p2 and q1 �Q q2.

It may be easily verified that �P×Q as defined above constitutes a partial order relation.

Most of this paper we will deal with finite posets (i.e. |P| is finite). It is possible to represent

a poset graphically via a Hasse diagram by representing the transitive reduction of the poset as

a graph [1].

Example 1: An example of a poset with three elements (i.e., P = {1, 2, 3}) with order relations

1 � 2 and 1 � 3 is shown in Figure 2(b).

1 1

1 1

2 2

2 2

3 3

3

4

(a) (b) (c) (d)

Fig. 2. Hasse diagrams of some posets.
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Let P = (P,�) be a poset and let p ∈ P. We define ↓ p = {q ∈ P | p � q} (we call this the

downstream set). Let ↓↓p = {q ∈ P | p � q, q , p}. Similarly, let ↑ p = {q ∈ P | q � p} (called a

upstream set), and ↑↑p = {q ∈ P | q � p, q , p}. We define ↓↑p = {q ∈ P | q � p, q � p} (called

the off-stream set); this is the set of uncomparable elements that have no order relation with

respect to p. Define an interval [i, j] = {p ∈ P | i � p � j}. A minimal element of the poset is an

element p ∈ P such that if q � p for some q ∈ P then q = p. (A maximal element is defined

analogously).

In the poset shown in Figure 2(d), ↓1 = {1, 2, 3, 4}, whereas ↓↓1 = {2, 3, 4}. Similarly ↑↑1 = ∅,

↑4 = {1, 2, 3, 4}, and ↑↑4 = {1, 2, 3}. The set ↓↑2 = {3}.

Definition 3: Let P = (P,�) be a poset. Let Q be a ring. The set of all functions f : P×P→

Q with the property that f (x, y) = 0 if y � x is called the incidence algebra of P over Q. It is

denoted by I(P). ∗

When the poset P is finite, the elements in the incidence algebra may be thought of as matrices

with a specific sparsity pattern given by the order relations of the poset in the following way.

An example of an element of I(P) for the poset from Example 1 (Fig. 2(b)) is:

ζP =


1 0 0

1 1 0

1 0 1

 .
Given two functions f , g ∈ I(P), their sum f +g and scalar multiplication c f are defined as usual.

The product h = f · g is defined by h(x, y) =
∑

z∈P f (x, z)g(z, y). Note that the above definition of

function multiplication is made so that it is consistent with standard matrix multiplication. It is

well-known that the incidence algebra is an associative algebra [1], [11].

B. Control Theoretic Preliminaries

1) Poset-causal systems: We consider the following state-space system in continuous time:

∗Standard definitions of the incidence algebra use the opposite convention, namely f (x, y) = 0 if x � y so their matrix
representation typically has upper triangular structure. We reverse the convention so that they are lower-triangular, and thus
in a control-theoretic setting one may interpret them as representing poset-causal maps. This reversal of convention entails
transposing other standard objects like the zeta and the Möbius operators. For the same reason, we also reverse the convention
of drawing Hasse diagrams so that minimal elements appear at the top of the poset.
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ẋ(t) = Ax(t) + w(t) + Bu(t)

z(t) = Cx(t) + Du(t)

y(t) = x(t).

(1)

In this paper we present the continuous time case only, however, we wish to emphasize that

analogous results hold in discrete time in a straightforward manner. In this paper we consider what

we will call poset-causal systems. We think of the system matrices (A, B,C,D) to be partitioned

into blocks in the following natural way. Let P = (P,�) be a poset with P = {1, . . . , s}. We

think of this system as being divided into s subsystems, with subsystem i having some states

xi(t) ∈ Rni , and we let N =
∑

i∈P ni be the total degree of the system. The control inputs at

the subsystems are ui(t) ∈ Rmi for i ∈ {1, . . . , s}. The external output is z(t) ∈ Rp. The signal

w(t) is a disturbance signal. The states and inputs are partitioned in the natural way such that

the subsystems correspond to elements of the poset P with x(t) = [x1(t) |x2(t) |. . . |xs(t) ]T , and

u(t) = [u1(t) |u2(t) |. . . |us(t) ]T . This naturally partitions the matrices A, B,C,D into appropriate

blocks so that A =
[
Ai j

]
i, j∈P

, B =
[
Bi j

]
i, j∈P

, C =
[
C j

]
j∈P

(partitioned into columns), D =
[
D j

]
j∈P

.

(We will throughout deal with matrices at this block-matrix level, so that Ai j will unambiguously

mean the (i, j) block of the matrix A.) Using these block partitions, one can define the incidence

algebra at the block matrix level in the natural way. The block sizes will be obvious from the

context and we denote by I(P) the block incidence algebra.

Remark In this paper, for notational simplicity we will assume ni = 1, and mi = 1. We emphasize

that this is only done to simplify the presentation; the results hold for arbitrary block sizes ni

and mi by interpreting the formulas “block-wise” in the obvious way.

We call such systems poset-causal due to the following causality-like property among the

subsystems. If an input is applied to subsystem i via ui at some time t, the effect of the input

is seen by the downstream states x j for all subsystems j ∈↓ i (at or after time t). Thus ↓ i

may be seen as the cone of influence of input i. We refer to this causality-like property as

poset-causality. This notion of causality enforces (in addition to causality with respect to time),

a causality relation between the subsystems with respect to a poset.
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2) Information Constraints on Controller: In this paper, we will be interested in the design

of poset-causal controllers of the form:

K =

 AK BK

CK DK

 . (2)

We will require that the controller also be poset-causal, i.e. that K ∈ I(P). In later sections we

will present a general architecture for controllers with this structure with some elegant properties.

A control law (2) with K ∈ I(P) is said to be poset-causal since ui depends only on x j

for j ∈↑ i (i.e. upstream information) thereby enforcing poset-causality constraints also on the

controller.

C. Notation

Since we are dealing with poset-causal systems (with respect to the poset P = (P,�)), most

vectors and matrices will be naturally indexed with respect to the set P (at the block level).

Recall that every poset P has a linear extension (i.e. a total order on P which is consistent with

the partial order �). For convenience, we fix such a linear extension of P, and all indexing of

our matrices throughout the paper will be consistent with this linear extension (so that elements

of the incidence algebra are lower triangular).

Given a matrix M, Mi j will as usual denote the (i, j)th entry. The ith column will be denoted

by Mi. If M is a block |P|× |P| matrix, we will denote M(↓i, ↓i) to be the sub-matrix of M whose

rows and columns are in ↓i. We will also need to deal with the inverse operation: we will be

given an |S | × |S | matrix K (indexed by some subset S ⊆ P) and we will wish to embed it into

a |P| × |P| matrix by zero-padding the locations corresponding to row and column locations in

P \ S . We will denote this embedded matrix by K̂.

III. Ingredients of the Architecture

The controller architecture that we propose is composed of three main ingredients:

• The notion of local variables,

• A notion of a local product, denoted by “◦”,

• A pair of operators ζ, µ that operate on the local variables in a way that is consistent with

the order-theoretic structure of the poset. These operators, called the zeta operator and the
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Möbius operator respectively, are classical objects and play a central role in much of order

theory, number theory and combinatorics [7].

A. Local Variables and Local Products

We begin with the notion of global variables.

Definition 4: A function Z : P× P→ R is called a local variable. A function z : P→ R is

called a global variable. The local variable Z is said to be consistent with the global variable z

if Z(i, i) = z(i) for all i ∈ P.

Remark When the set P is finite it is convenient to think of local variables Z as matrices in

Rs×s and global variables z as vectors in Rs. The local variable Z is consistent with the global

variable z if Zii = zi.

Typical global variables that we encounter will be the overall state x and the input u. Note that

the overall system is composed of s = |P| subsystems. Subsystem i has access to components of

the global variable corresponding to ↑i, and components corresponding to ↓↓i are unavailable.

One can imagine each subsystem maintaining a local prediction of the global variable. This

notion is captured by the following. The ith column of Z, denoted by Zi is to be thought of

as a local prediction of z at subsystem i. The components corresponding to ↓↓i correspond to

the predictions of the unknown (downstream) components of z. Note that Zii = zi so that at

subsystem i the component zi of the global variable is available.

We will use the indexing Zi = [Zi
j] j∈P, so that Zi

j denotes the local prediction of z j at subsystem

i. We will sometimes also denote Zi
j by z j(i). While local variables in general are full matrices,

an important class of local variables that we will encounter will have the property that they are

in I(P). The two important local variables we will encounter are X (local state variables) and

U (local input variables).
Example 2: We illustrate the concepts of global variables and local variables with an exam-

ple. Consider the poset shown in Fig. 2(d). Then we can define the global variable x and a
corresponding local variable X as follows:

x =



x1

x2

x3

x4


X =



x1 x1 x1 x1

x2(1) x2 x2(1) x2

x3(1) x3(1) x3 x3

x4(1) x4(2) x4(3) x4


.
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We define the following important product:

Definition 5: Let F = {F(1), . . . , F(s)} be a collection of maps F(i) : ↓i × ↓i → R (viewed

as matrices). Let X be a local variable. We define the local product F ◦ X columnwise via

(F ◦ X)i , F̂(i)Xi for all i ∈ P. (3)

Remark Note that if X ∈ I(P) and Y = F ◦ X, then it is easy to verify that Y ∈ I(P). We call

the matrices F(i) the local gains. Local products give rise to decoupled local relationships in

the following natural way. Let X,Y be local variables. If they are related via Y = F ◦ X then the

relationship between X and Y is said to be decoupled. This is because, by definition,

Yk = F̂(k)Xk for all k ∈ P.

Thus the maps relating the pairs (Xk,Yk) are decoupled across all k ∈ P (i.e. Yk depends only

on Xk and not on X j for any other j , k).

Example 3: Continuing with Example 2, let us define the local gains by F = {F(1), F(2), F(3), F(4)} ,

where,

F(1) =



F11(1) F12(1) F13(1) F14(1)

F21(1) F22(1) F23(1) F24(1)

F31(1) F32(1) F33(1) F34(1)

F41(1) F42(1) F43(1) F44(1)


F(2) =



0 0 0 0

0 F22(2) 0 F24(2)

0 0 0 0

0 F42(2) 0 F44(2)



F(3) =



0 0 0 0

0 0 0 0

0 0 F33(3) F34(3)

0 0 F43(3) F44(3)


F(4) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 F44(4)


.

Then

F ◦ X =


F(1)



X11

X21

X31

X41


F(2)



0

X22

0

X42


F(3)



0

0

X33

X43


F(4)



0

0

0

X44




.
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Definition 6: Let M ∈ Rs×s be a matrix. Define

Πd(M) =

 Mi j for i � j

0 otherwise.
Πuo(M) =

 Mi j for i � j

0 otherwise.

Thus the matrix M can be decomposed as

M = Md + Muo.

The component Md = Πd(M) simply corresponds to the “downstream component”, and is the

projection of the matrix M onto the incidence algebra I(P) viewed as a subspace of matrices.

The component Muo = Πuo(M) corresponds to the “upstream and offstream elements” and is the

projection onto the orthogonal complement.

B. The Möbius and zeta operators

We first remind the reader of two important order-theoretic notions, namely the zeta and

Möbius operators. These are well-known concepts in order theory that generalize discrete inte-

gration and finite differences (i.e. discrete differentiation) to posets.

Definition 7: Let P = (P,�). The zeta matrix ζ is defined to be the matrix ζ : P × P → R

such that ζ(i, j) = 1 whenever j � i and zeroes elsewhere. The Möbius matrix is its inverse,

µ := ζ−1.

These matrices may be viewed as operators acting on functions on the poset f : P → R (the

functions being expressed as row vectors). The matrices ζ, µ, which are members of the incidence

algebra, act as linear transformations on f in the following way:

ζ :R|P| → R|P| µ : R|P| → R|P|

f 7→ f ζT f 7→ fµT .

Note that ζ( f ) is also a function on the poset given by

(ζ( f ))i =
∑
j�i

f j. (4)

This may be naturally interpreted as a discrete integral of the function f over the poset.

10



The role of the Möbius operator is the opposite: it is a generalized finite difference (i.e. a

discrete form of differentiation over the poset). If f : P→ R is a local variable then the function

µ( f ) : P→ R may be computed recursively by:

(µ( f ))i =

 fi for i a minimal element,

fi −
∑

j≺i (µ( f )) j otherwise.
(5)

Example 4: Consider the poset in Figure 2(c). The zeta and the Möbius matrices are given

by:

ζ =


1 0 0

1 1 0

1 1 1

 µ =


1 0 0

−1 1 0

0 −1 1

 .
If f =

[
f1 f2 f3

]
, then

ζ( f ) =

[
f1 f1 + f2 f1 + f2 + f3

]
µ( f ) =

[
f1 f2 − f1 f3 − f2

]
.

11

2 2

3

3

4

f1
f1

f2 − f1

f2 − f1

f3 − f2

f3 − f1

f4 − f3 − f2 + f1

f =




f1

f2

f3




f =




f1

f2

f3

f4




Fig. 3. Two posets with their Möbius operators. The functions f are functions on the the posets, and the values of µ( f ) at
element i are indicated next the the relevant elements.

We now define modified versions of the zeta and Möbius operators that extend the actions

of µ and ζ from global variables x to local variables X. Let ζ and µ be matrices as defined in

Definition 7.

Definition 8: Let X be a local variable. Define the operators µ : Rs×s → I(P) and ζ :

11



Rs×s → I(P) acting via

ζ(X) = Πd(XζT ) µ(X) = Πd(XµT ). (6)

Lemma 1: The operators ζ and µ may be written more explicitly as

ζ(X)i
j ,

∑
k�i

Xk
j µ(X)i

j , Xi
j −

∑
k≺i

µ(X)k
j (7)

for i � j and 0 otherwise.

Proof: The proofs follow in a straightforward fashion from (4) and (5).

Note that if Y = µ(X) then Y is a local variable in I(P). The operator ζ has the natural

interpretation of aggregating or integrating the local variables Xk for k ∈ P, whereas µ performs

the inverse operation of differentiation of the local variables.

Example 5: We illustrate the action of µ acting on a local variable. Consider the local variable

X from Example 2. It is easy to verify that

µ(X) =


x1 0 0 0

x2(1) x2 − x2(1) 0 0

x3(1) 0 x3 − x3(1) 0

x4(1) x4(2) − x4(1) x4(3) − x4(1) x4 − x4(3) − x4(2) + x4(1)

 .
Lemma 2: The operators (µ, ζ) satisfy the following properties:

1) (µ, ζ) are invertible restricted to I(P) and are inverses of each other so that for all local

variables X ∈ I(P),

ζ(µ(X)) = µ(ζ(X)) = X.

2) µ(X) = µ(Πd(X)) and ζ(X) = ζ(Πd(X)).

3) Let A, X ∈ I(P). Then µ(AX) = Aµ(X), and ζ(AX) = Aζ(X).

Proof:

1) The proof is by induction. For a minimal element i, it is clear from Lemma 1 that µ(ζ(X))i
j =

ζ(X)i
j = Xi

j. Now suppose i is non-minimal. As the induction hypothesis, suppose the

statement µ(ζ(X))k
j = Xk

j is true for all k ≺ i. We prove the assertion is true for i. By

12



Lemma 1, we have

µ(ζ(X))i
j = ζ(X)i

j −
∑
k≺i

µ(ζ(X))k
j

= ζ(X)i
j −

∑
k≺i

Xk
j (by induction hypothesis)

= Xi
j.

The proof that ζ(µ(X)) = X is similar.

2) For j � i, µ(X)i
j = µ(Πd(X))i

j = 0. Using Lemma 1, for j � i, it is routine to check

inductively that µ(X)i
j depends only on the values of Xk

j for k � i. Hence µ(X) = µ(Πd(X)).

The proof that ζ(Πd(X)) = ζ(X) is similar.

3) Note that µ(X) ∈ I(P), hence Aµ(X) ∈∈, and hence (Aµ(X))i
j = µ(A(X))i

j = 0 for j � i.

Now note that µ(AX) = Πd(AXµT ), so that for j � i,

µ(AX)i
j =

∑
j�k�i

Aik(XµT )k
j =

∑
j�k�i

Aik(µ(X))k
j = Aµ(X)k

j.

The proof that ζ(AX) = Aζ(X) is similar.

Note that if X < I(P) then ζ(µ(X)) = Πd(X). The second part of the preceding lemma says that

µ(X) and ζ(X) depend only on the components of X that lie in I(P), i.e. on Πd(X).

Since ζ and µ may be interpreted as integration and differentiation operators, the first part of

the above lemma may be viewed as a “poset” version of the fundamental theorem of calculus.

IV. Proposed Architecture

A. Local States and Local Inputs

Having defined local and global variables, we now specialize these concepts to our state-

space system (1). We will denote x j to be the true state at subsystem j. We denote x j(i) to

be a prediction of state x j at subsystem i. The information constraints at subsystem i can be

decoupled into three distinct cases:

• Information about ↓i: At subsystem i the state information for ↓↓i unavailable, so a (possibly

partial) prediction of x j for j ∈ ↓↓i is formed. We denote this prediction by x j(i). Computing

these partial predictions is the role of the controller states. The state xi is known at
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subsystem i. In the following discussion we will call the downstream predictions (as well

as the true state xi) at subystem i the “free variables in the architecture”.

• Information about ↑↑i: Complete state information about x j for j ∈ ↑i is available, so that

x j(i) = x j. Moreover, the predictions from upstream xk( j) for all k ∈ P and j � i are also

available.

• Information about ↓↑i: At subsystem i, state information about x j for j not comparable to

i is unavailable. The prediction of x j is computed using x j(k) for k ≺ i.

Analogous information constraints hold also for the inputs. At a particular subsystem, information

about downstream inputs is not available. Consequently, we introduce the notion of prediction

of unknown inputs, with similar notation as that for the states. These ideas can be formalized

by defining local variables that capture the best available information at the subsystems. We

introduce two local variables:

1) The local state X associated with the system state x,

2) The local input U associated with the controller input u.

Definition 9: The local state X is a local variable that is consistent with the global state x

(i.e. Xi
i = xi for all i ∈ P) and satisfies the following additional properties.

1) Xd := Πd(X) are free variables

2) The local variable X and its component Xuo := Πuo(X) are determined from Xd via

Xuo = Πuo(µ(Xd)ζT )

X = Xd + Xuo = µ(Xd)ζT .
(8)

Note that the second equation in (8) follows from the first and the fact that X = Xd + Xuo. This

can be seen by noting that

Xd + Πuo(µ(Xd)ζT ) = µ(ζ(Xd)) + Πuo(µ(Xd)ζT ) = Πd(µ(Xd)ζT )Πuo(µ(Xd)ζT ) = µ(Xd)ζT .

We have an analogous definition for the local input:

Definition 10: The local input U is a local variable that is consistent with the global input

u (i.e. U i
i = ui for all i ∈ P) and satisfies the following additional properties.

1) Ud := Πd(U) are free variables
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2) The local variable U and its component Uuo = Πuo(U) are determined from Ud via

Uuo = Πuo(µ(Ud)ζT )

U = Ud + Uuo = µ(Ud)ζT .
(9)

Remark Definition 9 has been carefully made so that the local variable X enjoys some desirable

properties. At any subsystem, the local state Xi can be decomposed into the downstream and

the upstream/offstream components. We mention the properties below:

• The collection of downstream components of X are the free variables Xd.

• The upstream and offstream components of X are determined from the free variables Xd.

Indeed, the reader may verify that as a consequence of (8), if j ≺ i then Xi
j = x j = (Xd) j

j

(this is intuitive since at subsystem i, x j is known if j ≺ i). The predictions of offstream

states are also computed using Xd. Equation (8) implies that for offstream states (i.e. i and

j uncomparable) Xi
j =

∑
k≺i,k≺ j µ(X)k

j.

• Our setup also ensures that µ(X)i
j = 0 if j ≺ i or if i and j are incomparable. (This is

because from Lemma 2, µ(X) = µ(Xd) ∈ I(P)). We will later see that this has a natural

interpretation.

Example 6: Consider the poset shown in Fig. 2(d). The matrix X shown in Example 2 is

a local state variable. The predicted partial states are x2(1), x3(1), x4(1), x4(2), x4(3). The plant

states are x1, x2, x3, x4. These collectively are the free variables Xd. The components Xd and Xuo

are given by

Xd =



x1 0 0 0

x2(1) x2 0 0

x3(1) 0 x3 0

x4(1) x4(2) x4(3) x4


Xuo =



0 x1 x1 x1

0 0 x2(1) x2

0 x3(1) 0 x3

0 0 0 0


.

The reader may verify that Xuo satisfies (8). Note that since subsystems 1 and 2 have the same

information about subsystem 3 (2 and 3 are unrelated in the poset), the best estimate of x3 at

subsystem 2 is x3(1).
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B. Role of µ

We now give a natural interpretation of the operator µ(X) in terms of the differential improve-

ment in predicted states with the help of an example.

Example 7: Consider the poset shown in Fig. 4, and let us inspect the predictions of the state

x5 at the various subsystems. The prediction of x5 at subsystem 1 is x5(1) and the prediction of

1

2 3

4 5

6

µ(Xd)
1
5 = x5(1)

µ(Xd)
2
5

= x5(2) − x5(1)

µ(Xd)
3
5 = x5(3) − x5(1)

µ(Xd)
4
5 = 0

µ(Xd)
5
5 = x5 − (x5(3) + x5(2))

+x5(1)

µ(Xd)
6
5 = 0

Fig. 4. Poset showing the differential improvement of the prediction of state x5 at various subsystems.

x5 at subsystem 2 is x5(2). The differential improvement in the prediction of x5 at subsystem 2

regarding the state x5 is x5(2)−x5(1). At subsystems 3 the formula for the differential improvement

is similar. The differential improvement in x5 at subsystem 4 is zero (since 4 is offstream with

respect to 5). The differential improvement for x5 at subsystem 6 is zero (since 6 is downstream

with respect to 5). These differential improvements are depicted in Fig. 4. Capturing these

differential improvements is precisely the role of the Möbius operator.

We can now understand the role of (8) better. Let X be a local state and let Xi denote the ith

row of X. The jth entry of Xi (i.e. X j
i ) corresponds to the prediction of xi at subsystem j, so that

the row vector Xi summarizes the predictions of the state xi at the different subsystems.

Recalling (8), we have

X = µ(Xd)ζT .

Restricting to the ith row and rewriting we have that

Xi = µ(Xd)iζ
T =

∑
k�i

µ(Xd)k
i .
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The natural interpretation here is that in our architecture the “atoms” for state prediction are the

differential improvements (or increments) µ(Xd). To compute the state prediction at subsystem

i one simply “integrates” (via ζ) the increments corresponding to upstream subsystems ↑i. This

is depicted in Fig. 5.

1

2 3

4 5

6

µ(Xd)
2
5

µ(Xd)
1
5

µ(Xd)
3
5

µ(Xd)
4
5

X4
5 = µ(Xd)

1
5 + µ(Xd)

2
5

+µ(Xd)
3
5 + µ(Xd)

4
5

ζ

ζ

ζ

(Xd)5 =
[

x5(1) x5(2) x5(3) 0 x5 0
]

µ(Xd)5 =
[

x5(1) x5(2) − x5(1) x5(3) − x5(1) 0 x5 − x5(3) − x5(2) + x5(1) 0
]

Fig. 5. This figure shows how the partial prediction of the state x5 is computed at subystem 4 using (8). States that are upstream
of 4 make predictions using free variables as reflected in the free variables (Xd)5. The increments or differential improvements
µ(Xd)5 will then form the “atoms” for prediction. To compute the prediction at subsystem 4, one simply adds increments that
are upstream with respect to 4. This computation yields X4

5 = µ(X)1
5 + µ(X)2

5 + µ(X)3
5 + µ(X)4

5 = x5(3) + x5(2) − x5(1).

Remark As remarked earlier, our setup ensures that the increment µ(Xd)i
j = 0 for j ≺ i or if

j and i are not comparable. We briefly explain the intuition behind this. If i is upstream of

j, both subsystem i and j have access to the full state x j and hence there is no differential

improvement in the state prediction. Furthermore, if i and j are unrelated, then i carries no

additional information about x j and again it is natural to have the differential improvement be

zero.

Before we proceed we clarify that the entries of X correspond to partial predictions. We

clarify the notion of a partial prediction with an example.

Example 8: Consider the system composed of three subsystems with P = {1, 2, 3} with 1 � 3
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and 2 � 3 (see Fig. 6):
ẋ1

ẋ2

ẋ3

 =


A11 0 0

0 A22 0

A31 A32 A33




x1

x2

x3

 +


B11 0 0

0 B22 0

B31 B32 B33




u1

u2

u3

 .

1 2

3




0
x2

x3(2)







x1

0
x3(1)







x1

x2

x3




Fig. 6. Local state information at the different subsystems. The quantities x3(1) and x3(2) are partial state predictions.

Note that subsystem 1 has no information about the state of subsystem 2. Moreover, the state

x1 or input u1 does not affect the dynamics of 2 (their respective dynamics are uncoupled).

Hence the only sensible prediction of x2 at subsystem 1 is x2(1) = 0 (the situation for u2(1) is

identical). However, both the states x1, x2 and inputs u1, u2 affect x3 and u3. Since x2 and u2 are

unknown, the state x3(1) can at best be a partial prediction of x3 (i.e. x3(1) is the prediction of

the component of x3 that is affected by subsystem 1). Similarly x3(2) is only a partial prediction

of x3. Indeed, one can show that x3(1) + x3(2) is a more accurate prediction of the state x3, and

when suitably designed, their sum converges to the true state x3.

C. Control Law

We now formally propose the following control law:

Ud = ζ(F ◦ µ(X)). (10)

We make the following remarks about this control law.

Remarks 1) We note that (10) specifies Ud which amounts to specifying the input (Ud)i
i = ui

for all i ∈ P. It also specifies (Ud)i
j = u j(i) for i ≺ j which is the prediction of the input u j

at an downstream subsystem i.
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2) Since F̂(i) is non-zero only on rows and columns in ↓i, the controller respects the in-

formation constraints. Thus for any choice of gains F(i), the resulting controller respects

the information constraints. In this sense (10) may be viewed as a parameterization of

controllers.

3) The control law (10) may be alternatively written as U i
d =

∑
k�i F(k)µ(X)k. The control law

has the following interpretation. If i is a minimal element of the poset P, then µ(X)i = Xi
d,

the vector of partial predictions of the state at i. The local control law uses these partial

predictions with the gain F(i). If i is a non-minimal element it aggregates all the control

laws from ↑↑i and adds a correction term based on the differential improvement in the

global state-prediction µ(X)i. This correction term is precisely F(i)µ(X)i.

Example 9: Consider a poset causal system where the underlying poset is shown in Fig 2(d).

The controller architecture described above is of the form U i
d =

∑
k≺i F(k)µ(X)k (where U i is a

vector containing the predictions of the global input at subsystem i). Noting that (Ud)i
i = ui, we

write out the control law explicitly to obtain:
u1

u2

u3

u4

 = F(1)


x1

x2(1)

x3(1)

x4(1)

 + F(2)


0

x2 − x2(1)

0

x4(2) − x4(1)

 + F(3)


0

0

x3 − x3(1)

x4(3) − x4(1)

 + F(4)


0

0

0

x4 − x4(2) − x4(3) + x4(1)

 .
D. State Prediction

Recall that at subsystem i the states x j for j ∈ ↓↓i are unavailable and must be predicted.

Typically, one would predict those states via an observer. However, those states are unobservable;

only the state xk for k ∈ ↑i are observable, and are in fact directly available. In this situation,

rather than using an observer one constructs a predictor to predict the unobservable states. These

predictions are computed by the controller via prediction dynamics, which we now specify.

Since the dynamics of the true state evolve according to ẋ(t) = Ax(t) + Bu(t) + w(t), each

subsystem can simulate these dynamics using the local states and inputs. Locally each subsystem

implements the dynamics Ẋi(t) = AXi(t) + BU i(t). This can be compactly written as

Ẋ(t) = AX(t) + BU(t). (11)

We remind the reader that X = Xd + Xuo, and that Xuo (consisting of upstream and offstream
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components) is determined from Xd via (8). Consequently, the components in Xuo are not free

variables and one needs to check that (11) constitutes a consistent set of differential equations.

Projecting (11) onto orthogonal components using Πd and Πuo we obtain

Ẋd(t) = Πd(AX(t) + BU(t)) Ẋuo(t) = Πuo(AX(t) + BU(t)).

Before checking consistency, we simplify the differential equation for Xd (the “free variables”).

The off-diagonal terms in Xd correspond to the predictions of the downstream states, so that this

is precisely the equation that governs the prediction or simulation component prescribed in Fig.

1. Simplifying using X = Xd + Xuo we get

Ẋd = AXd(t) + BUd(t) + R(t)

R(t) = Πd(AXuo(t) + BUuo(t)).
(12)

We think of R(t) as the influence of the upstream components (and also the unrelated components)

in predicting Xd. The dynamics (12) correspond to the closed-loop dynamics.

Remark Equation (12) along with (10) formally specifies the controller. The controller states

correspond to the off-diagonal entries of Xd (i.e. the free variables of X). The number of states

is equal to the number of intervals in the poset.

To check the consistency of (11) we note that from (8) we have that Ẋuo = Πuo( ˙µ(Xd)ζT ),

whereas on the other hand from (11) Ẋuo = Πuo(AX + BU). It is sufficient to check that these

two expressions are the same. To do so note the following chain of equalities:

Ẋuo = Πuo( ˙µ(Xd)ζT )

= Πuo(µ (AXd + BUd + R) ζT ) (from (12))

= Πuo((Aµ(Xd) + Bµ(Ud))ζT ) (since µ(R) = 0)

= Πuo(AX + BU) (using (8), (9)).

E. Separation Principle

As a consequence of Lemma 2, we see that µ(X) = µ(Xd) and also µ(R) = Aµ(Xuo)+Bµ(Uuo) =

0. Applying µ to (12) we obtain the following modified closed-loop dynamics in the new variables
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µ(X):

˙µ(X)(t) = Aµ(X)(t) + Bµ(U)(t). (13)

Let us define A+BF =
{
A + BF̂(1), . . . , A + BF̂(s)

}
. From (10), and the fact that µ(ζ(F◦µ(X))) =

F ◦ µ(X) we will momentarily see that the modified closed-loop dynamics are:

˙µ(X)(t) = (A + BF) ◦ µ(X)(t). (14)

These dynamics describe how the differential improvements in the state evolve. If one picks

U such that µ(U) stabilizes µ(X), the differential improvements are all stabilized. Thus µ(X)

converges to zero, the state predictions become accurate asymptotically and the closed-loop is

also stabilized. We show that (10) achieves this with an appropriate choice of local gains.

Theorem 1: Let F(i) be chosen such that A(↓i, ↓i) + B(↓i, ↓i)F(i) is stable for all i ∈ P. Then

the control law (10) with local gains F(i) renders (13) stable.

Proof: Since Ud = ζ(F ◦ µ(X)) it follows that

µ(Ud) = µ(U) = µ (ζ(F ◦ µ(X))) = F ◦ µ(X).

The last equality follows from Lemma 2 and the fact that F ◦ µ(X) ∈ I(P). As a consequence,

µ(U)i = F̂(i)µ(X)i for all i ∈ P. Hence the closed-loop dynamics (13) become:

˙µ(X)i(t) =
(
A + BF̂(i)

)
µ(X)i(t).

Recalling that µ(X) is a local variable so that µ(X)i (viewed as a vector) is non-zero only on

↓i it is easy to see that these dynamics are stabilized exactly when F(i) are picked such that

A(↓i, ↓i) + B(↓i, ↓i)F(i) are stable.

The dynamics of the different subsystems µ(X)i are decoupled, so that the gains G(i) may be

picked independent of each other. This may be viewed as a separation principle. Henceforth, we

will assume that the gains F(i) have been picked in this manner. Since the closed loop dynamics

of the states xi( j) are related by an invertible transformation (i.e. Xd = ζ(µ(Xd))), if the modified

closed-loop dynamics (14) are stable, so are the closed-loop dynamics (12).
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F. Controller Realization

We now describe two explicit controller realizations. The natural controller realization arises

from the closed-loop dynamics (12) along with the control law (10) to give:

˙µ(X)(t) = AXd(t) + BUd(t) + R(t)

Ud(t) = ζ(F ◦ µ(Xd))(t).

While the above corresponds to a natural description of the controller, it is possible to specify

an alternate realization. This is motivated from the following observation. The control input U

depends only on µ(X). Hence, rather than implementing controller states that track the state

predictions X, it is natural to implement controller states that compute µ(X) directly. Hence an

equivalent realization of the controller is:

˙µ(X)(t) = Aµ(X)(t) + Bµ(U)(t)

Ud(t) = ζ(F ◦ µ(X))(t).
(15)

G. Structure of the Optimal Controller

Consider again the poset-causal system considered in (16). Recall that the system (1) may be

viewed as a map from the inputs w, u to outputs z, x via

z = P11w + P12u

x = P21w + P22u

where  P11 P12

P21 P22

 =


A I B

C 0 D

I 0 0

 . (16)

(We refer the reader to [19] as a reminder of standard LFT notation used above). In this paper

we will assume that A ∈ I(P) and B ∈ I(P). Indeed, this assumption ensures that the plant

P22(z) = (zI − A)−1B ∈ I(P).
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Consider the optimal control problem:

minimize
K

‖P11 + P12K(I − P22K)−1P21‖
2

subject to K stabilizes P, K ∈ I(P).
(17)

The solution K∗ is the H2-optimal controller that obeys the poset-causality information con-

straints described in Section II. The solution to this optimization problem was presented in

[10, Theorem 3]. The main idea behind the solution procedure is as follows. Using the fact

that P21, P22 ∈ I(P) are square and invertible (due to the availability of state feedback) it is

possible to reparametrize the above problem via Q = K(I −P22K)−1P21. Indeed, this relationship

is invertible and the incidence algebra structure ensures that Q ∈ I(P) if and only if K ∈ I(P).

Using this the above optimization problem may be rewritten as:

minimize
Q

‖P11 + P12Q‖2

subject to Q ∈ I(P).
(18)

Using the fact that the H2 norm is column-separable, it is possible to decouple this optimization

problem into a set of s optimization problems. Each optimization problem involves the solution

to a standard Riccati equation. The solution to each yields the columns of Q∗ ∈ I(P), from

which the optimal controller K∗ ∈ I(P) may be recovered. An explicit formula for the optimal

controller and other details may be found in [9], [14].

In [10], we obtain matrices K(↓ j, ↓ j) by solving a system of decoupled Riccati equations via

(K(↓ j, ↓ j),Q( j), P( j)) = Ric(A(↓ j, ↓ j), B(↓ j, ↓ j),C(↓ j),D(↓ j)) (we use slightly different notation

and reversed conventions in that paper, see [10] for details). The optimal solution K∗ to (17) is

related to the proposed architecture as described below in Theorem 2. Its proof is provided in

the appendix.

Theorem 2: The controller (15) with gains F(i) = K(↓i, ↓i) for all i ∈ P is the optimal solution

to the control problem (17).

Theorem 2 establishes that the controller architecture proposed in this paper is also optimal in

the sense of the H2 norm.
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V. A Block-Diagram Interpretation

We now interpret the separation principle described in Theorem 1 from a block-diagram

perspective. We introduce some additional notation to be used in this section. If Y is a matrix,

we denote by vec(Y) to be its standard vectorization via column concatenation. Given matrices

M and N, M ⊗ N denotes their Kronecker product, and we recall the standard identity:

vec(NXMT ) = (M ⊗ N)vec(X).

Recall the definition of Πd in Definition 6 as being the projection of a matrix X onto the

incidence algebra. We will abuse notation and also define Πd to be the linear operator that acts

on the vectorization vec(X) and zeroes components whose indices do not belong to the incidence

algebra (the usage will be clear from the context).

The elementary blocks that appear in our block-diagram representation are the following:

• The plant G, which maps the inputs u to the states x,

• The transfer functions which play the role of predicting the local state variables Xi from the

states x j and inputs u j for j ∈ ↓i via (12). We call all these transfer functions collectively

the “simulator”, because their role may be interpreted as that of simulating upstream states,

• The map µ̄ which takes as input vec(X) and computes vec(µ(X)),

• The local gains F(1), . . . F(s),

• The map ζ̄ which takes as input vec(µ(U)) and computes vec(Ud).

In the closed-loop system all these transfer functions are interconnected as shown in Fig. 1.

We define the opertators ζ̄ and µ̄ as follows:

ζ̄ := Πd(ζ ⊗ I) µ̄ := Πd(µ ⊗ I). (19)

Since Xd = ζ(µ(U)), note that vec(Ud) = ζ̄vec(µ(U)) (this clarifies the role of ζ̄ inFig. 1).

Similarly, vec(µ(X)) = µ̄vec(X). As one might expect, ζ̄ and µ̄ are invertible restricted to I(P).

Lemma 3: For ζ̄ and µ̄ as defined in (19)

ζ̄µ̄ = µ̄ζ̄ = Πd.

Proof: This follows simply by vectorizing the first and second parts of Lemma 2.

Figure 1 explains the closed-loop at block diagram level. The role of the simulator is to form
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predictions of downstream states from the available states and inputs. These predictions vec(X)

are then processed by µ̄, to produce vec(µ(X)). These are then composed with the local gains

to produce vec(µ(U)). Finally, ζ̄ acts on vec(µ(U)) to produce vec(Ud). Internally within the

simulator one can map the downstream components Ud to the local input U (using (9)) via

Θ = (ζ ⊗ I)Πd(µ ⊗ I).

It may be easily verified using (9) that Θvec(Ud) = vec(U). The overall composition of the plant

G and the simulator can be combined to give a transfer function which we denote by Gvec as

shown in Fig 7. It has an explicit formula given by:

Gvec = (I ⊗G)(ζ ⊗ I)Πd(µ ⊗ I). (20)

Thus Gvec is the overall tranfer function that maps vec(Ud) (the true and predicted downstream

inputs) to vec(X) (the local states). We illustrate this with an example.
Example 10: For the poset in Fig. 2(a), we have

vec(Xd) =



x1

x2(1)

0

x2


vec(Ud) =



u1

u2(1)

0

u2


.

Furthermore, the map G is given by G =

 G11 0

G21 G22

 , and the map Gvec as defined in (20) is

given by:

Gvec =



G11 0 0 0

G21 G22 0

0 0 0 0

G21 0 0 G22


.

For this poset the matrices ζ̄ and µ̄ are given by:

ζ̄ =



I 0 0 0

0 I 0 0

0 0 0 0

0 I 0 I


µ̄ =



I 0 0 0

0 I 0 0

0 0 0 0

0 −I 0 I


.

It is straightforward to verify that vec(X) = Gvecvec(U). The following important identity may
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be verified for this example:

µ̄Gvecζ̄ =



G11 0 0 0

G21 G22 0 0

0 0 0 0

0 0 0 G22


,

which is a block diagonal matrix.

As indicated in Fig. 1, the collective map from vec(Ud) to vec(X) (which collects the plant G,

Θ, and the simulation block into a single transfer function) is simply given by Gvec. Thus the

block-diagram in Fig. 1 can be simplified to Fig. 7. The matrix Gvec satisfies the following:

...

......

µ̄
ζ̄

F (1)

F (s)

X1

Xs

µ(X)1

µ(X)s
µ(U)s

µ(U)1

Gvec...

Fig. 7. A simplified block-diagram representation of the control architecture.

Theorem 3: The matrix µ̄Gvecζ̄ is block diagonal.

Proof: Using (20), we have
µ̄Gvecζ̄ = µ̄(I ⊗G)(ζ ⊗ I)Πd(µ ⊗ I)ζ̄

= Πd(µ ⊗ I)(I ⊗G)(ζ ⊗ I)Πd(µ ⊗ I)Πd(ζ ⊗ I)

= Πd(µ ⊗ I)(ζ ⊗ I)(I ⊗G)Πd(µ ⊗ I)Πd(ζ ⊗ I) (using (A ⊗ B)(C ⊗ D) = AC ⊗ BD)

= Πd(I ⊗G)Πd(µ ⊗ I)Πd(ζ ⊗ I) (using (µ ⊗ I)(ζ ⊗ I) = I)

= Πd(I ⊗G)Πd (using Lemma 3).
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The last expression is clearly block-diagonal.

In terms of this block-diagram approach, the role of µ̄ and ζ̄ become very transparent: it is simply

to diagonalize the map Gvec. Once this diagonalization occurs, the controller simply applies a

set of diagonal gains to stabilize the closed-loop. This also illustrates the separation principle at

the block-diagram level. As mentioned in the preceding discussion, the architecture illustrated

in block-diagram Fig 7 is also optimal, in that appropriate choice of the gains F(i) yield optimal

controllers.

VI. Connections to the Youla parameterization

The Youla parameterization (and the related work on purified output feedback [2], [5]) is

intimately related to Möbius inversion. We examine their relationship in this section. We begin

with a brief review of the Youla parameterization. We will examine the relationship in a discrete-

time setting as this will make the presentation much simpler. Consider the system:

x[t] = Ax[t − 1] + Bu[t − 1] + w[t − 1]

y[t] = x[t].
(21)

For simplicity, we will assume that A is stable (this can be easily achieved by choosing a

static K which is diagonal by picking Kii such that Aii + BiiKii is stable, without affecting the

set of achievable closed-loop maps). The Youla parametrization [19, pp. 221-231] exploits the

observation that while the set of achievable closed-loop maps is linear-fractional with respect

to the controller variable, it is affine in terms of the parameter Q := K(I − P22K)−1.

In the case of state-feedback with a stable plant, the Youla parameterization reduces to a

particularly simple form, which we now describe. At time t, using the information of the state

x[t − 1], the controller implements a simulation P̂ of the plant to compute a prediction of the

state at time t via:

x̂[t] = Ax[t − 1] + Bu[t − 1]. (22)

Note that the simulation does not have access to the disturbances w and hence simply sets it to

zero. It then uses the output of the plant x[t] (state-feedback) and then computes the difference

x[t] − x̂[t] = w[t − 1]. It then processes w[t − 1] using an arbitrary causal filter Q and sets the

input u = Qw. This can be summarized using a block diagram as shown in Fig. 8(a).

27



P̂

P

Q

w

0

+

�

x

x̂

w u ...

...

0

1

t-1

t

x̂[t]

x[t]

µ(x)[t] = x[t] � x̂[t]

(a) (b)

Fig. 8. (a) A block diagram interpretation of the Youla parameterization. Here it is assumed that the plant P is stable and
state-feedback is available. The simulator P̂ predicts the state one time step in the future, using which the disturbance w is
reconstructed. The filter Q then implements a disturbance feed-forward policy. (b) The time axis viewed as a poset T . At time
t − 1 the simulator predicts the state x downstream at time t. Möbius inversion reconstructs the disturbance w[t − 1].

We point out that the policy u = Qw is a disturbance feed-forward policy. It has been

observed in various papers in the literature that while state-feedback policies may yield a

complicated dependence between the closed-loop map and the controller variable, an equiva-

lent reparametrization using disturbance feed-forward policies yields an affine dependence. For

example, this observation was made in the context of robust optimization for linear systems in

the framework of “purified output-feedback” [2] and also in [4, Chapter 6].

The key step in reformulating a feedback problem into a disturbance feed-forward problem is

the explicit reconstruction of the disturbance w using the output of the plant and the simulator.

This computation may be naturally viewed as a Möbius inversion operation. To the dynamic

evolution of the discrete-time system (21) one can naturally associate the poset T = (N,�), i.e.

the time-axis indexed by the natural numbers (equipped with the standard ordering). This poset

is simply the linear poset indexed by the integers (see Fig. 8(b)), and the system-theoretic notion

of causality is simply the specialization of our notion of poset-causality specialized to this poset.

Consider the variable x[t] (i.e. the state of the system (21)) as a function on this poset. For

elements k such that t � k, x[t] is available and for elements k such that k ≺ t, it is unavailable.

Indeed at the element t− 1 a prediction of x[t] may be computed via x̂[t] = Ax[t− 1] + Bu[t− 1]

(this is precisely the role of the simulator P̂ described above). Using the Möbius inversion

formula for the linear poset T we have µ(x[t]) = x[t] − x̂[t] = w[t − 1]. Hence the disturbance

computation may be viewed simply as a Möbius inversion on T .

It is possible to extend this interpretation to poset-causal systems with multiple subsystems.
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In this case, the system of interest is of the form (21), where A, B ∈ I(P). The poset associated

to the dynamic evolution of this system is then the product poset T ×P. An example of product

of this is shown in Fig. 9(a). As explained in earlier sections, subsystems maintain local states

...

a

b

0

1

t � 1

t

. . .

a

a

a

a
b

b

b

b

0

1

2

t

. . .

P T P � T

P1

Ps

...

...

...

P̂1

P̂s

µT �P Q

x1

xs

x̂1

x̂s

w1

ws

u

u�1

u�1

u�s

u�s

w1

ws

0

0

(b)(a)

Fig. 9. (a) The poset P captures causality between the subsystems and the poset T captures causality with respect to time.
Their product poset is shown on the right. (b) The Youla parameterization implements simulation, followed by Möbius inversion
to compute the disturbances. It then implements a disturbance feedforward policy via a causal (with respect to P×T ) filter Q.

which are summarized by the local variable X. Using information available at time t − 1, the

prediction of X[t] may be computed as:

X̂[t] = AX[t − 1] + BU[t − 1]. (23)

However, due to the disturbance, the value of X[t] is given by

X[t] = AX[t − 1] + BU[t − 1] + W[t − 1]ζT , (24)

where W = diag(w). The local state variable X[t] may be viewed as a function on the poset T ×P,

and hence one may define its Möbius inverse with respect to this poset. As a consequence of

the product structure of the underlying poset, we have the following important lemma.

Lemma 4: Suppose X[t] satisfies (24). Let µT×P denote the Möbius operator of the poset

T × P. Then

µT×P(X[t]) = W[t − 1].
Proof: We will use µ(X) to denote the Möbius inversion of the local variable X with respect

to the poset P as defined in Definition 8. It is well-known [7, Proposition 5] that the Möbius
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operator factorizes for product posets as:

µT×PX[t] = µTµPX[t] = µ(X)[t] − µ(X̂)[t] = µ(W[t − 1]ζT ) = W[t − 1].

Thus the role of the Möbius operator is to compute the local disturbance wi. Once these

disturbances are computed, one may process it using a filter Q that is causal with respect to

T × P to obtain the input u. This is depicted in Fig. 9(b).

VII. Conclusions

In this paper we considered the problem of designing decentralized poset-causal controllers

for poset-causal systems. We studied the architectural aspects of controller design, addressing

issues such as the role of the controller states, and how the structure of the poset should affect

the architecture. We proposed a novel architecture in which the role of the controller states

was to locally predict the unknown “downstream” states. Within this architecture the controller

itself performs certain natural local operations on the known and predicted states. These natural

operations are the well-known zeta and Möbius operations on posets.

Having proposed an architecture, we proved two of its important structural properties. The

first was a separation principle that enabled a decoupled choice of gains for each of the

local subsystems. The second was establishing the optimality properties of this architecture

with respect to the H2-optimal decentralized control problem. The proposed Möbius-based

architecture is quite natural, has very appealing interpretations, and can be easily extended to

more complicated. These extensions will be the subject of future work.
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Appendix

The required optimal solution was derived in [10][Theorem 3] and we first develop some
notation and concepts that have been used therein. Let us define q(i) = µ(X)i

↓↓i (so that the
vector q(i) has only those components of µ(X)i

j such that i ≺ j), and q j(i) = µ(X)i
j. Note also that

µ(X) j
j = x j−

∑
k≺ j q j(k) from (7). Let us define Acl( j) = A(↓ j, ↓ j)+ B(↓ j, ↓ j)F( j). The closed-loop

dynamics (14) at subsystem j reduce to: ẋ j −
∑

k≺ j q̇ j(k)

q̇( j)

 =

 Acl
11( j) Acl

12( j)

Acl
21( j) Acl

22( j)


 x j −

∑
k≺ j q j(k)

q( j)

 (t). (25)

Note that from (10) (keeping in mind that µ(X)i
j = 0 if j � i, and that u j = U j

j), the control law
assumes the form:

u j =
∑
k� j

F̂( j)(k)µ(X)k =
∑
k� j

F( j)(k)

 xk −
∑

l≺k qk(l)

q(k)

 (t).
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(Recall that F( j)(k) is the jth row of the matrix F(k)). Thus the subsystems need to compute q( j) =

µ(X)↓↓ j, (the differential improvements in the state predictions at subsystem j) to implement the

control law. This is an important feature of the control law: the controller states correspond to

the differential improvements µ(X) rather than the state X itself.
It may be verified from (25) and (10) that the explicit controller for subsystem j ∈ P assumes

the following form:

q̇( j) = Acl
22( j)q( j) + Acl

21( j)

x j −
∑
k≺ j

q j(k)


u j(t) =

∑
k� j

F( j)(k)

 xk −
∑

l≺k qk(l)

q(k)

 (t).

(26)

Furthermore, note that at subsystem j, µ(X)i j = 0 for j � i. Hence, only the states µ(X)i j for

i ∈ ↓↓ j need to be computed. Let µ(X)↓↓ j =
[
µ(X)i j

]
i∈↓↓ j

.

Proof of Theorem 2: As mentioned, the optimal controller is given by [10, Theorem 3].

We will show that when we pick F(i) = K(↓i, ↓i) in (15), we recover this controller. In [10], the

matrices A, Aφ, Bφ, Cφ, Π1, and Π2 were defined. It is straightforward to verify that:

diag(Acl( j)) = A diag(Acl
22( j)) = AΦ

diag(Acl
21( j)) = BΦ

∑
k≺ j

q j(k)


j∈P

= CΦq.

Letting q be the vectorization of q( j) for j ∈ P via q = [q( j)] j∈P, we may rewrite the dynamics

in (26) as

q̇ = AΦq(t) + BΦ(x(t) −CΦq(t)). (27)

Further, note that the vectorization of the control law equation in (26) yields

u =

∑
k� j

K( j)(↑k, ↑k)

 xk −
∑

l≺k qk(l)

q(k)




j∈P

= CQΠ2q + CQΠ1(x −CΦq).

Combining the above with (27), we obtain that u =

 AΦ − BΦCΦ BΦ

CQ(Π2 − Π1CΦ) CQΠ1

 q, which is pre-

cisely the same expression as the controller described in [10][Theorem 3]. Since this corresponds

to the optimal H2 controller, we have the required result.
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