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Abstract— This paper presents a new algebraic framework
for robust stability analysis of linear time invariant systems with
an emphasis on symmetry. The main motivation for this work
is to provide a unified theory to answer when the the KYP
lemma provides an exact LMI test for robust stability. The
notions of weak and strong mutual losslessness are introduced
to characterize for lossless S-procedures and the KYP lemma.
The new framework has sufficient flexibility to unify some
recent extensions of the KYP lemma, including the Generalized
KYP lemma for finite frequency analysis, the KYP lemma
for nD systems, and the diagonal KYP lemma for positive
systems. Finally, we show that the new theory also suggests
that the structured singular value of internally positive systems
with arbitrary number of scalar uncertainties can be exactly
computed.

I. INTRODUCTION

The symmetry we emphasize throughout this paper can be
seen in the following illustrative example. Consider a discrete
time linear model

G : x(k+1) = Ax(k)+Bu(k)
y(k) =Cx(k)+Du(k) .

For the sake of simplicity, we assume both A and D are real
square matrices throughout this paper. From the Kalman-
Yakubovich-Popov (KYP) lemma, we know that the above
system is dissipative with respect to the supply rate s(u,y)
with a positive definite storage function V (x), where

s(u,y) = yT Qy−uT Qu ; V (x) = xT Px

if and only if the LMI[
A B
I 0

]∗
Θ

[
A B
I 0

]
+

[
C D
0 I

]∗
Π

[
C D
0 I

]
< 0 (1)

Θ =

[
P 0
0 −P

]
, Π =

[
Q 0
0 −Q

]
is feasible. Now, notice an apparent symmetry holding be-
tween Θ and Π in (1). Namely, if we define a new system

G̃ : x(k+1) = Dx(k)+Cu(k)
y(k) = Bx(k)+Au(k)

then the above condition is equivalent to saying that G̃ is
dissipative with respect to the supply rate s̃(u,y) with a
storage function Ṽ (x) given by

s̃(u,y) = yT Py−uT Pu ; Ṽ (x) = xT Qx.

The KYP Lemma plays a central role in dissipativity
theory [1] and IQC theory [2]. Among the voluminous
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literature related to the KYP lemma, the aforementioned
symmetry seems to be implied by not many, but some papers.
The most explicit reference is given by [3], which points
out the “duality” between the H∞ norm conditions and the
parameter dependent Lyapunov conditions in the context of
well-posedness analysis of uncertain LTI systems. Another
indicator of this symmetry in the literature is the fact that
the notion of S-procedure is used for both purposes of
frequency domain specification and uncertainty specification.
For example, the Generalized KYP lemma [4] utilizes a
sophisticated lossless S-procedure to derive a tractable al-
gorithm for nontrivial frequency domain test, while the role
of the S-procedure in the IQC framework is well known [5].
However, to the best of our knowledge, there is no literature
discussing the KYP lemma with an explicit emphasis on this
symmetry.

Our own interest in formally studying this symmetry
was sprung by recent results on the “diagonal” Bounded
Real lemma for Metzler systems [6]. Indeed, while an
algebraic property known as rank-one separability (defined
in [4]) plays a fundamental role in many modern proofs
of losslessness of various types of KYP like lemmas, it
appears that the diagonal Bounded Real Lemma can be
proved without resorting to a rank-one separability argument.
(By losslessness, we mean that the S-procedure or the KYP
lemma converts a system theoretic condition into computable
condition such as LMIs without introducing conservatisms).
This suggests a need for a more general and essential notion
to indicate the losslessness of the KYP lemma.

One benefit of highlighting the symmetry is that it clarifies
the point that the losslessness of the S-procedure and the
KYP lemma should be naturally discussed as a matter of
the relationship between two Hermitian sets (the primal set
and the dual set in the sequel). In this way, we propose a
new notion, which we call mutual losslessness to characterize
the exact condition for losslessness. We first propose a
symmetric formulation of the S-procedure. Then we show
that an algebraic condition called weak mutual losslessness
between the primal and the dual set is the exact condition for
the S-procedure to be lossless. Based on this consideration,
it is also shown that strong mutual losslessness between
the primal and the dual set is the exact condition for the
KYP lemma to be lossless. Although these new algebraic
conditions remain difficult to check, we believe that this
approach opens new perspectives for understanding and
proving the lossless S-procedure and the KYP lemma.

Our symmetric formulation of the KYP lemma naturally
suggests to use a matrix valued frequency variable, just
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as the uncertainty block is naturally modeled as a matrix
in traditional robust control. This matrix valued frequency
turns out to have sufficient flexibility to describe various
types of frequency regions including continuous time models,
discrete time models, finite frequency regions, and nD (multi
dimensional) systems. As a result, the notion of mutual
losslessness can explain the lossy and lossless properties of
various types of KYP lemmas in a single framework. Finally,
within the proposed framework, we point out a new lossless
KYP lemma that was heretofore absent from the literature,
suggesting that the structured singular value µ for internally
positive systems with an arbitrary number of scalar blocks
can be efficiently computed.

In short, the contributions of this paper lie in: (1) Intro-
duction of the symmetric S-procedure, which has its own
beauty and novelty, (2) The notion of mutual losslessness,
which is a new way of characterizing the losslessness of
KYP lemma, (3) A framework for matrix valued frequency
variables, which enables a unified description of various
types of the KYP lemma, (4) A proof of losslessness of
µ-analysis for internally positive systems.

Notations: C̄+: closed right half plane, D̄: closed unit disc,
Sn: unit sphere in Cn, Hn: n×n Hermitian matrices.

II. PRELIMINARIES

A. Well-posedness of an algebraic loop

In this paper, multi-input multi-output, linear time invari-
ant, rational transfer functions are expressed in the following
form:

G(Λ) =C(I−ΛA)−1
ΛB+D, (2)

where the matrix valued parameter Λ∈Cn×n is considered as
the “frequency variable.” Notice the relationship between the
expression (2) and the standard expression using the Laplace
variable s ∈ C

Ĝ(s) =C(sI−A)−1B+D. (3)

If Λ = λ I, λ ∈ C, and the relation λ = s−1 holds, the two
complex functions (2) and (3) are identical everywhere on
the Riemann sphere except at {0} and {∞}.

The transfer function (2) can be viewed as a linear
fractional transform (LFT) of the system matrix

M =

[
A B
C D

]
∈ R(n+m)×(n+m)

by the frequency variable Λ provided that the interconnection
is well-posed in the following sense (Fig.1).

Definition 1: (Well-posedness)
Let a matrix A ∈ Cn×n and a subset ΛΛΛ ⊆ Cn×n be given.

The interconnection [A,ΛΛΛ] defined by
z = Aw+ v; w = Λz+u, Λ ∈ ΛΛΛ (4)

is said to be well-posed if the following conditions hold.
(1). For each Λ∈ΛΛΛ and (u,v)∈Cn×Cn, there exist a unique

pair of vectors (z,w) ∈ Cn×Cn such that (4) holds.
(2). There exists γ > 0 such that∥∥∥∥[ z

w

]∥∥∥∥≤ γ

∥∥∥∥[ u
v

]∥∥∥∥ , ∀[ u
v

]
∈ C2n,∀Λ ∈ ΛΛΛ.

Fig. 1. LFT representation of a transfer function

Fig. 2. Generalized main loop theorem

Lemma 1: The following statements hold.
(a) The interconnection [A,ΛΛΛ] is well-posed if and only if

∃β > 0 s.t.
∥∥(I−ΛA)−1 [ Λ I ]

∥∥≤ β , ∀Λ ∈ ΛΛΛ. (5)

(b) The interconnection [A,ΛΛΛ] is ill-posed if and only if

∃
[

z
w

]
∈ S2n s.t inf

Λ∈ΛΛΛ

∥∥∥∥[ I −A
−Λ I

][
z
w

]∥∥∥∥= 0. (6)

(c) If [A,ΛΛΛ] is well-posed then
det(I−ΛA) 6= 0, ∀Λ ∈ ΛΛΛ (7)

The proof is straightforward and omitted for reason of
space. Consider the interconnected system of Fig.2 (left) in
which the nominal transfer function G(Λ) is interconnected
to an unknown matrix ∆ ∈Cm×m. Since the transfer function
G(Λ) can be represented as the LFT of Fig. 1, the original
system Fig.2 (left) can be converted to an algebraic intercon-
nection of the system matrix M and two external matrices
Λ and ∆ in Fig.2 (right). Hence the well-posedness of the
original system can be analyzed through the well-posedness
of Fig.2 (right) where (Λ,∆) ∈ (ΛΛΛ,∆∆∆)⊆ Cn×n×Cm×m. This
operation can be thought of as a generalization of the main
loop theorem [3]. As we will see in the sequel, the set ΛΛΛ is
typically a user specified frequency region and the set ∆∆∆ is
the user specified uncertainly region. In this formulation, the
algebraic roles of the two matrices Λ and ∆ are symmetric,
even though the physical meanings of these two objects are
originally different. This observation provides us with the
intuition that the techniques used today to characterize sys-
tem uncertainties can also be used to characterize frequency
regions, and vice versa.

Remark 1: Frequently we need to analyze the well-
posedness of the interconnection of a transfer function G(Λ)
and the uncertainly ∆, with Λ and ∆ varying in subsets
ΛΛΛ ∈ Cn×n and ∆∆∆ ∈ Cm×m, respectively. As Fig.2 shows, the
generalized main loop theorem converts the original question
into the well-posedness of [M,ΩΩΩ] where

M =

[
A B
C D

]
, ΩΩΩ =

[
ΛΛΛ 0
0 ∆∆∆

]
.

Hence in the sequel, the expression [G(ΛΛΛ),∆∆∆] is understood
to mean [M,ΩΩΩ] as long as G(Λ) is well-defined on ΛΛΛ.
Similarly, [G̃(∆∆∆),ΛΛΛ] is understood to mean [M,ΩΩΩ] as long
as G̃(∆) := B(I−∆D)−1∆C+A is well-defined on ∆∆∆.
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Table I. Examples of frequency regions R(ΘΘΘ)

ΘΘΘ Frequency region R(ΘΘΘ) Applications

(a)
[

0 P
P 0

]
: P > 0 Λ = λ I : λ ∈ C̄+

Frequency domain for continuous
time stable systems

(b)
[

0 P
P 0

]
: P > 0 is diagonal Λ = diag(λ1, · · · ,λn) :

λi ∈ C̄+ ∀i = 1, · · · ,n
Frequency domain for
stable Metzler systems

(c)
[

Q 0
0 −Q

]
: Q > 0 Λ = λ I,λ ∈ D̄ Frequency domain for discrete

time stable systems

(d)
[

Q 0
0 −Q

]
: Q = diag(Qh,Qv)

Qh ∈Hnh ,Qv ∈Hnv
Λ = diag(e jωh Inh ,e

jωh Inv)
Frequency domain for
2D Roesser Model

(e)
[

Q P
P −ω2

0 Q

]
: Q > 0,P ∈Hn Λ = ( j/ω)I : |ω| ≥ ω0

High frequency range for
continuous time systems

Table II. Examples of uncertainty regions R(ΠΠΠ)

ΠΠΠ Uncertainty region R(ΠΠΠ) Applications

(f)
[

τI 0
0 −τI

]
: τ > 0 ∆ ∈ Cn×n : ‖∆‖ ≤ 1 Small gain uncertainties

(g)
[

Πd 0
0 −Πd

]
: Πd = diag(τ1I, · · · ,τrI)

τi > 0 ∀i = 1, · · · ,r
∆ = diag(∆1, · · · ,∆r) :
‖∆i‖ ≤ 1 ∀i = 1, · · · ,r Structured uncertainties

(h)
[

0 τI
τI 0

]
: τ > 0 ∆ ∈ Cn×n,∆+∆∗ ≥ 0 Positive real uncertainties

B. Frequency regions in Cn×n

Using Lemma 1, it can be shown that a continuous time
transfer function (2) is stable if and only if (A,B,C,D) is the
minimal realization and the interconnection [A,ΛΛΛ] is well-
posed, where ΛΛΛ = {λ I : λ ∈ C̄+}. Likewise, a discrete time
transfer function (2) is stable if and only if (A,B,C,D) is the
minimal realization and the interconnection [A,ΛΛΛ] is well-
posed where ΛΛΛ = {λ I : λ ∈ D̄}. A matrix valued frequency
variable Λ can represent other types of frequency regions in
the same framework.

Example 1: (Finite frequency analysis) Let Ĝ(s)∈RH ∞

be given. Let γ be the largest gain of the frequency response
over a finite frequency range 0 < ω1 ≤ |ω| ≤ ω2, i.e.,

‖Ĝ( jω)‖< γ, ∀ω ∈ [ω1,ω2].

The value γ can be efficiently analyzed by considering the
well-posedness of the interconnection Fig.2 where

ΛΛΛ={ j
ω

I : ω1 ≤ |ω| ≤ ω2}; ∆∆∆={∆ ∈ Cm×m : ‖∆‖ ≤ 1/γ}.

The Generalized KYP lemma [4] provides a lossless LMI
test for this type of well-posedness analysis. For a complete
discussion, readers are referred to the original report [4].

Example 2: (2-D Discrete Roesser Model)[
xh(i+1, j)
xv(i, j+1)

]
= A

[
xh(i, j)
xv(i, j)

]
+Bu(i, j)

y(i, j) =C
[

xh(i, j)
xv(i, j)

]
+Du(i, j)

The positive realness of this system can be analyzed through
the well-posedness of the interconnection Fig.2 with

ΛΛΛ =

{[
e− jωhI 0

0 e− jωvI

]
: ωh,ωv ∈ R

}
∆∆∆ = {∆ ∈ Cm×m : ∆+∆

∗ ≥ 0}

A version of the KYP lemma is known for the analysis of
the 2-D Roesser model [7]. However, the KYP lemma for
2-D system is generally lossy – the LMI test provided by the
lemma is only a sufficient condition for the well-posedness.
Example 1 and 2 will be revisited in Section IV. It is
interesting to notice that the KYP lemma is lossless in
Example 1 whereas it is lossy in Example 2. In Section
III, we will see that the losslessness of the KYP lemma is
determined by the relative relationship between ΛΛΛ and ∆∆∆.

C. Quadratic characterization of ΛΛΛ and ∆∆∆

In many cases, robustness analysis problems can be stated
as well-posedness problems. In order to obtain computa-
tionally efficient algorithms for well-posedness analysis, we
consider the characterization of frequency regions ΛΛΛ and
uncertainty regions ∆∆∆ using quadratic forms. This makes
the S-procedure applicable and converts the original well-
posedness analysis into semidefinite programming (SDP)
problems. Namely, we specify a frequency region by ΛΛΛ =
R(ΘΘΘ) ⊆ Cn×n with the following expression using a set ΘΘΘ

of Hermitian matrices:

R(ΘΘΘ) :=
{

Λ ∈ Cn×n :
[

I
Λ

]∗
Θ

[
I
Λ

]
≥ 0 ∀Θ ∈ΘΘΘ

}
.

For example, it is straightforward to show that a Her-

mitian set ΘΘΘ =

{
Θ ∈H2n : Θ =

[
0 P
P 0

]
, P > 0

}
, yields

R(ΘΘΘ) =
{

Λ = λ I : λ ∈ C̄+

}
, which is the frequency region

for well-posedness analysis for continuous time systems.
Many practically useful frequency regions and uncertainty

regions can be generated with proper choices of ΘΘΘ and ΠΠΠ.
A few examples are summarized in Table I and II. Notice
that (a) through (e) show frequency regions that are used for
the analyses of various type of systems, while (f) (g) and (h)
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show regions that are frequently used to represent various
types of system uncertainties. In the former cases, variables
P and Q are conventionally interpreted as the Lyapunov
functions, while in the latter cases ΠΠΠ can be viewed as a set
of IQCs. Defining the frequency variables in Cn×n enables us
to express these different objects in a single framework, and
it allows for a symmetric formulation of the KYP lemma.

III. MAIN RESULT

A. Symmetric S-procedure and mutual losslessness property

A strong connection between the KYP lemma and the S-
procedure is well known. Let ΨΨΨ be a convex cone in Hn and
Φ ∈Hn. The S-procedure concerns the relationship between
the following conditions.
(I) ∃Ψ ∈ΨΨΨ such that Ψ+Φ < 0.

(II) For every nonzero complex vector ζ ,
(ζ ∗Ψζ ≥ 0 ∀Ψ ∈ΨΨΨ)⇒ ζ

∗
Φζ < 0.

It is easy to see the implication (I)⇒(II) holds in general.
If the other direction holds as well, the S-procedure is said
to be lossless. Conditions for the S-procedure to be lossless
have been studied in many literatures. A popular condition,
which has been a basis of modern proofs of the KYP lemma,
is called rank-one separability [8][4].

Definition 2: ΨΨΨ⊂Hn is said to be rank-one separable if
S(ΨΨΨ) is equal to the convex hull of S1(ΨΨΨ) where

S(ΨΨΨ) := {X ∈Hn : X ≥ 0,X 6= 0, trΨX ≥ 0 ∀Ψ ∈ΨΨΨ}
S1(ΨΨΨ) := {ζ ζ

∗ ∈Hn : ζ ∈ Cn,ζ 6= 0,ζ ∗Ψζ ≥ 0 ∀Ψ ∈ΨΨΨ}.
In [4], it is proven that the rank-one separability of the set
ΨΨΨ is the exact condition for the S-procedure to be lossless
when Φ is an arbitrary Hermitian matrix. However, it is
important to notice that the exact condition can be relaxed
if Φ is known to belong to a restricted class of matrices.
For example, the authors of [9] have introduced the notion
of one-vector-lossless sets, which is weaker than rank-one
separability, but sufficient to prove that the S-procedure is
lossless for matrices Φ≤ 0.

Therefore, the losslessness property of the S-procedure
should be discussed as a matter of the relationship between
the set ΨΨΨ and the set ΦΦΦ to which Φ belongs. To clarify this
point, it is natural to introduce the following generalization
of the S-procedure, which has a symmetric structure:
(I) ∃(Ψ,Φ) ∈ (ΨΨΨ,ΦΦΦ) such that Ψ+Φ < 0.

(II) For every nonzero complex vector ζ ,
(ζ ∗Ψζ ≥0 ∀Ψ ∈ΨΨΨ)⇒ (∃Φ ∈ΦΦΦ such that ζ

∗
Φζ <0).

(III) For every nonzero complex vector ζ ,
(ζ ∗Φζ ≥0 ∀Φ ∈ΦΦΦ)⇒ (∃Ψ ∈ΨΨΨ such that ζ

∗
Ψζ <0).

It is easy to check that (I)⇒(II), (I)⇒(III) in general. We re-
fer to the relaxation from (II) to (I) as the primal S-procedure,
and (III) to (I) as the dual S-procedure. Accordingly, we call
ΨΨΨ the primal set and ΦΦΦ the dual set. In the usual form of
S-procedures, the dual set is a singleton (up to its positive
multiples). In what follows, the primal set and the dual set
are assumed to be convex cones.

In order to define a relationship between ΨΨΨ and ΦΦΦ that
suffices to ensure a lossless S-procedure, it is crucial to
observe that conditions (II) and (III) are contrapositive to
each other. Thus, the primal S-procedure is lossless if and
only if the dual S-procedure is lossless. This suggests that
the condition characterizing lossless S-procedure should be
a symmetric relationship between ΨΨΨ and ΦΦΦ. Now consider
the following two conditions.
(A) There exists a nonzero X ≥ 0 such that

trΨX ≥ 0 ∀Ψ ∈ΨΨΨ and trΦX ≥ 0 ∀Φ ∈ΦΦΦ (8)

(B) There exists a nonzero vector ζ such that
ζ
∗
Ψζ ≥ 0 ∀Ψ ∈ΨΨΨ and ζ

∗
Φζ ≥ 0 ∀Φ ∈ΦΦΦ (9)

Notice that implication (A)⇐(B) holds in general.
Definition 3: ΨΨΨ and ΦΦΦ are said to be weakly mutually

lossless (denoted by ΨΨΨ CB ΦΦΦ) if (A)⇔(B).
Proposition 1: The primal and the dual S-procedure are

lossless if and only if ΨΨΨ CB ΦΦΦ.
Proof: It is easy to see that (B) is the negation of (II) and
(III). Also, it is possible to show that (A) is the negation
of (I) using the Hahn-Banach separation theorem as follows.
Consider the following convex cones in Hn.
N = {N ∈Hn : N < 0}; M = {Ψ+Φ : Ψ ∈ΨΨΨ,Φ ∈ΦΦΦ}.

Since N is open in the standard topology on Hn, and the
negation of (I) means that N and M are disjoint, there
exists a nonzero Hermitian matrix X and r ∈ R such that

trNX < r ≤ trMX ∀(N,M) ∈ (N ,M ).

Since N and M are cones, we can take r = 0 without loss of
generality. Then the above inequalities read that there exists
a nonzero X ≥ 0 such that

tr(Ψ+Φ)X ≥ 0 ∀(Ψ,Φ) ∈ (ΨΨΨ,ΦΦΦ).

This implies condition (A) since ΨΨΨ and ΦΦΦ are cones. The
other direction (A)⇒ ¬(I) is easy to see. Thus (A)⇔ ¬(I).
Hence (I)(II) and (III) are all equivalent if and only if ΨΨΨ CB
ΦΦΦ.

For example, if ΨΨΨ is rank-one separable [4],
ΨΨΨ CB {kΦ0 : k > 0} for any given Φ0 ∈Hn. (10)

If ΨΨΨ is one-vector-lossless [9],
ΨΨΨ CB {kΦ0 : k > 0} for any given Φ0 ≤ 0. (11)

B. KYP lemma and exact losslessness condition

In the context of system theoretic analysis, ΨΨΨ and ΦΦΦ in
(8) and (9) are often chosen of the form

ΨΨΨ =

{[
A B
I 0

]∗
Θ

[
A B
I 0

]
: Θ ∈ΘΘΘ

}
(12)

ΦΦΦ =

{[
C D
0 I

]∗
Π

[
C D
0 I

]
: Π ∈ΠΠΠ

}
(13)

where ΘΘΘ ∈ H2n,ΠΠΠ ∈ H2m are convex cones. For our for-
mulation of the KYP lemma to be lossless, weak mutual
losslessness between ΨΨΨ and ΦΦΦ (i.e, (A)⇔(B)) is necessary
but not sufficient. Consider the following stronger condition
in addition to (A) and (B).
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(C) The interconnection [M,ΩΩΩ] is ill-posed where

M =

[
A B
C D

]
, ΩΩΩ =

[
R(ΘΘΘ) 0

0 R(ΠΠΠ)

]
.

Proposition 2: (C)⇒(B).
Proof: By Lemma 1 (b), (C) implies

∃
[

ν

ζ

]
∈ S2n s.t inf

Ω∈ΩΩΩ

∥∥∥∥[ I −M
−Ω I

][
ν

ζ

]∥∥∥∥= 0.

This implies ∃ζ 6= 0 s.t infΩ∈ΩΩΩ ‖(I−ΩM)ζ‖= 0. Therefore,
there exist ζ = [ξ T ηT ]T 6= 0 and sequences {Λk}∈ΛΛΛ, {∆k}∈
∆∆∆ such that(

I−
[

Λk 0
0 ∆k

][
A B
C D

])[
ξ

η

]
=

[
uk
vk

]
and limk→∞ uk=0, limk→∞ vk=0. Since Λk∈R(ΘΘΘ) for each k,

lim
k→∞

w∗
[

I
Λk

]∗
Θ

[
I

Λk

]
w≥ 0, ∀Θ ∈ΘΘΘ,∀w.

Thus by taking w=Aξ+Bη , and noticing that Λk(Aξ+Bη)=
ξ−uk, we have

lim
k→∞

w∗
[

I
Λk

]∗
Θ

[
I

Λk

]
w = lim

k→∞

[
Aξ+Bη

ξ−uk

]∗
Θ

[
Aξ+Bη

ξ−uk

]
= ζ

∗
[

A B
I 0

]∗
Θ

[
A B
I 0

]
ζ ≥ 0 ∀Θ ∈ΘΘΘ.

Therefore we obtained the first condition of (B). Similarly,
noticing that ∆k ∈R(ΠΠΠ) for each k and using the equality
∆k(Cξ +Dη) = η − vk, we obtain the second condition of
(B).

Definition 4: ΨΨΨ and ΦΦΦ are said to be strongly mutually
lossless (denoted by ΨΨΨ JI ΦΦΦ) if (A)⇔(C).
To summarize, the implication (A)⇐(B)⇐(C) holds in
general, (A)⇔(B) holds if and only if ΨΨΨ CB ΦΦΦ, and
(A)⇔(B)⇔(C) holds if and only if ΨΨΨ JI ΦΦΦ. As a result
ΨΨΨ JI ΦΦΦ⇒ΨΨΨ CB ΦΦΦ holds.

Unfortunately, for a given combination of Hermitian sets,
there is no general method for checking the losslessness
conditions introduced so far. Hence in many cases, we have
to rely on individual techniques from the existing literature
to verify these conditions. We are now ready to state the
main theorem.

Theorem 1: (KYP lemma) Let the frequency region and
the uncertainty region be defined by ΛΛΛ = R(ΘΘΘ) and ∆∆∆ =
R(ΠΠΠ). Suppose [A,Λ] and [D,∆] are well-posed. Then
(I)⇒(II) and (I)⇒(III) hold in general, where
(I) There exists Θ ∈ΘΘΘ and Π ∈ΠΠΠ such that[

A B
I 0

]∗
Θ

[
A B
I 0

]
+

[
C D
0 I

]∗
Π

[
C D
0 I

]
<0. (14)

(II) The interconnection [G(ΛΛΛ),∆∆∆] is well-posed.
(III) The interconnection [G̃(∆∆∆),ΛΛΛ] is well-posed.
Moreover, (I)⇔(II)⇔(III) holds if and only if ΨΨΨ JI ΦΦΦ.
Proof: As we saw in Proposition 1, (I)⇔ ¬(A). Also,
¬(A)⇔ ¬(C) in general and ¬(A)⇔ ¬(C) if and only if
ΨΨΨJIΦΦΦ. Since G(Λ) and G̃(∆) are well-defined on ΛΛΛ and ∆∆∆

Fig. 3. Two different ways to interpret the LMI condition (14)

respectively by assumption, ¬(C) (well-posedness of [M,ΩΩΩ])
is equivalent to (II) and (III).

In many literatures (e.g., [8][4]), the KYP lemma is stated
as an equivalence between a matrix inequality condition
such as (14) and a frequency domain inequality (FDI). Here
we employ Theorem 1, which does not involve an FDI,
as the standard form of the KYP lemma since in many
robust stability and performance analyses, the desired system
theoretic property is really the well-posedness condition.

Theorem 1 provides two different ways to interpret the
LMI condition (14). Assuming that G(Λ) and G̃(∆) are
well-defined on R(ΘΘΘ) and R(ΠΠΠ) respectively, the LMI (14)
means that the interconnection of G(Λ) and ∆ is well-posed,
and at the same time, the interconnection of G̃(∆) and Λ is
well-posed. This implies that R(ΘΘΘ) and R(ΠΠΠ) play symmet-
ric roles, although conventionally the former is considered
as the frequency domain and the latter is considered as
the space of uncertainties. With this symmetry in mind,
consider the congruence transformation T ∗ΘcT =Θd applied

to the quadratic forms in ΘΘΘ where T = 1√
2

[
I −I
I I

]
. This

operations amounts to the Möbius transformation s = z−1
z+1

between frequency variables, and converts the continuous-
time frequency domain into the discrete-time one ((a) and
(c) in Table I). The same transformation T ∗ΠsT = Πp can
be viewed as a conversion of the small gain IQC into the
passivity IQC ((f) and (h) in Table II). The meaning of these
two operations are flipped when the LMI (14) is interpreted
through system G̃ instead of G (Fig.3).

C. Connection with Rank-One Separability

Rank-one separability is a useful notion for a lossless S-
procedure because of (10). However, rank-one separability
of the primal set ΨΨΨ is neither necessary nor sufficient for the
S-procedure and the KYP lemma to be lossless. An example
is already shown in (11). In the context of system analysis,
we usually have a good knowledge of the dual set ΦΦΦ. For
example, ΦΦΦ of the form (13) with ΠΠΠ = {τΠ0 : τ > 0} can be
used for the following analysis.

Π0 =

[
I 0
0 −I

]
: H∞ analysis

Π0 =

[
0 I
I 0

]
: Passivity analysis (15)

Π0 =

[
Πd 0
0 −Πd

]
: µ-analysis

where Πd is a block diagonal scaling matrix. Hence in
practice, requiring ΨΨΨ to be rank-one separable is asking for
too much since the weaker condition ΨΨΨ CB ΦΦΦ is sufficient
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for a lossless S-procedure where ΦΦΦ is a specific dual set
under the consideration. Also, the rank-one separability of
the primal set ΨΨΨ does not guarantee losslessness when the
dual set is not of the form ΦΦΦ = {kΦ0 : k > 0}. This is
the case when, for example, multiple IQCs are used to
characterize uncertainties. In the general µ-analysis (Section
IV-D), ΨΨΨCBΦΦΦ does not hold in general (let alone ΨΨΨJIΦΦΦ)
even if ΨΨΨ is rank-one separable.

The next example demonstrates the fact that mutual loss-
lessness can be established without relying on rank-one
separability.

Lemma 2: Let A be a Metzler matrix (all off-diagonal en-
tries are nonnegative) and B,C,D be entry-wise nonnegative.
Then ΨΨΨ CB ΦΦΦ holds between

ΨΨΨ=

{[
A B
I 0

]∗
Θ

[
A B
I 0

]
:Θ ∈ΘΘΘ

}
,ΘΘΘ=

{[
0 P
P 0

]
: P > 0 is

diagonal

}
ΦΦΦ=

{[
C D
0 I

]∗
Π

[
C D
0 I

]
:Π ∈ΠΠΠ

}
,ΠΠΠ=

{[
Q 0
0 −Q

]
: Q > 0 is

diagonal

}
.

(16)
In Section IV-D, it will be shown that the above combination
of ΨΨΨ and ΦΦΦ is even strongly mutually lossless.

Proof: (Outline only) It suffices to prove (A)⇔(B) holds
between (8) and (9). Suppose (A) holds and let X =WW ∗ ≥
0 be any factorization of X . Then we claim that a choice
ζ = [‖w,1‖ · · · ‖w,n‖]T 6= 0 satisfies (9) where w,i denotes
the i-th row of W . This can be shown using an algebraic
technique used in [10] (also used in [6]).

The mutual lossless property between these sets will be
used to develop the diagonal KYP lemma for internally
positive systems in Section IV-B. The proof of the diagonal
KYP lemma is not based on the rank-one separability of ΨΨΨ

in (16). In fact, to the authors’ knowledge, it is not known
whether ΨΨΨ in (16) is rank-one separable or not. This indicates
that rank-one separability is not a necessary condition to
develop a lossless KYP lemma.

IV. APPLICATIONS TO SPECIAL CASES

In this section, we show that the notion of mutual lossless-
ness can be used to capture, and sometimes extend, known
well-posedness analysis condition.

A. Finite frequency KYP lemma
The Generalized KYP lemma [4][11] proposed an exact

LMI test for well-posedness analysis over a new type of
frequency regions. The frequency region can be captured by
Λ = λ I where λ moves on finite curves on the complex
plane C that can be represented by a certain class of
quadratic forms. The breakthrough result of [4][11] is that
this class of quadratic forms allows lossless S-procedures.
Most notably, the framework provides a lossless LMI test
for the performance analysis over a finite frequency range.
For example, a low frequency range Λ = jτI, |τ| ≥ 1/ω0 for
continuous time systems can be specified by the following
Hermitian set (see also (e) in Table II):

ΨΨΨ=

{[
A B
I 0

]∗
Θ

[
A B
I 0

]
: Θ∈ΘΘΘ

}
,ΘΘΘ=

{[
−Q P
P ω2

0 Q

]
: P∈Hn

Q>0

}
(17)

Let Π0 specify performance criteria such as (15) and define

ΦΦΦ=

{[
C D
0 I

]∗
Π

[
C D
0 I

]
:Π ∈ΠΠΠ

}
,ΠΠΠ={κΠ0 : κ >0} . (18)

Then the Generalized KYP lemma can be essentially stated
withing the framework of Theorem 1. For technical reason,
we need an assumption that the uncertainty region can be
expressed exactly by a single IQC parametrized by Π0.
Define

C1=

{[
ξ

η

]
∈C2m :

[
ξ

η

]∗
Π0

[
ξ

η

]
≥0
}

C2=

{[
ξ

η

]
∈C2m :∃∆∈Cm×m s.t. η =∆ξ ,

[
I
∆

]∗
Π0

[
I
∆

]
≥0
}
.

Assumption 1: The Hermitian matrix Π0 satisfies C1 =
C2.
Note that for a general Hermitian matrix Π0, we have only
C1 ⊃ C2. However, many practical situations including (15)
satisfy Assumption 1.

Corollary 1: (Finite frequency KYP lemma) Let ΛΛΛ de-
note the low frequency region

ΛΛΛ = { jτI : |τ| ≥ 1/ω0}

and the uncertainty region be given by ∆∆∆ = R(ΠΠΠ) where ΠΠΠ

is as in (18). Suppose Assumption 1 holds, and I−ΛA is
non-singular on ΛΛΛ. Then the following are equivalent:
(I) There exist P,Q ∈Hn such that Q > 0 and[

A B
I 0

]∗ [−Q P
P ω2

0 Q

][
A B
I 0

]
+

[
C D
0 I

]∗
Π0

[
C D
0 I

]
<0

(II) The interconnection [G(ΛΛΛ),∆∆∆] is well-posed.
The proof is outlined as the following. Since the frequency
region ΛΛΛ can be expressed as ΛΛΛ = R(ΘΘΘ) where ΘΘΘ is given
by (17), the above statement is a special case of Theorem
1. Therefore (I)⇒(II) holds in general. By Theorem 1, the
other implication holds if and only if ΨΨΨJIΦΦΦ holds between
(17) and (18). This can be shown by proving the rank-one
separability of the primal set ΨΨΨ and Assumption 1. Namely,
using the technique introduced in [11] and applying Lemma
1, one can prove that (A) implies (C) (conditions considered
in Section III-B).

B. Diagonal KYP lemma for internally positive systems
A continuous time system G(Λ) =C(I−ΛA)−1ΛB+D is

said to be internally positive if A is a Metzler matrix and
B,C,D are entry-wise nonnegative matrices. For this class
of systems, a diagonal quadratic storage function can be
assumed without conservatism in the small gain test. We
already established this fact in [6], but here the result is
presented in a slightly different way by emphasizing the
strong mutual losslessness between ΨΨΨ and Φ̂ΦΦ defined below:

ΨΨΨ=

{[
A B
I 0

]∗
Θ

[
A B
I 0

]
:Θ∈ΘΘΘ

}
,ΘΘΘ=

{[
0 P
P 0

]
: P > 0 is

diagonal

}
(19)

Φ̂ΦΦ=

{[
C D
0 I

]∗
Π

[
C D
0 I

]
:Π∈ΠΠΠ

}
,ΠΠΠ=

{[
κI 0
0 −κI

]
:κ >0

}
.

(20)
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Corollary 2: (Diagonal KYP Lemma) Suppose G(Λ) is
internally positive and A is Hurwitz. Let the frequency region
and the uncertainty region be given by

ΛΛΛ = {diag(λ1, · · · ,λn) : λi ∈ C̄+ ∀i = 1, · · · ,n}
∆∆∆ = {∆ ∈ Cn×n : ‖∆‖ ≤ 1}.

Then the following are equivalent.
(I) There exists a diagonal matrix P > 0 such that[

A B
I 0

]∗[
0 P
P 0

][
A B
I 0

]
+

[
C D
0 I

]∗[
I 0
0 −I

][
C D
0 I

]
<0

(II) The interconnection [G(ΛΛΛ),∆∆∆] is well-posed.
Remark 2: Since the frequency variable Λ can contain n

independent complex numbers corresponding to each state,
the above result can be seen as the KYP lemma for internally
positive nD systems. In this sense the above result is a slight
extension of our previous result [6]. In [6], it is shown that
even if the frequency region is restricted to ΛΛΛ = {λ I : λ ∈
C̄+}, the above LMI test is exact for the small gain analysis.
In the language of [12], this observation is related to the fact
that a diagonally stable system is D-stable as well.
Proof: Since A is Metzler and Hurwitz, it is D-stable,
i.e., for any positive diagonal matrix E, EA is Hurwitz [12].
This implies that I−ΛA is non-singular for all Λ ∈ ΛΛΛ. Thus
a transfer function G(Λ) is well-defined on ΛΛΛ. Referring to
Table I (b) and Table II (f), frequency and uncertainty regions
are expressed as ΛΛΛ =R(ΘΘΘ), ∆∆∆ =R(ΠΠΠ) using ΘΘΘ in (19) and
ΠΠΠ in (20). Thus Theorem 1 is applicable and the implication
(I)⇒(II) holds in general. To prove (II)⇒(I), we need to
prove ΨΨΨ JI Φ̂ΦΦ holds between (19) and (20). Assume (A).
From Lemma 2 and Φ̂ΦΦ ⊂ ΦΦΦ, we have ΨΨΨ CB Φ̂ΦΦ. Thus there
exists a nonzero vector ζ = [ξ T ηT ]T such that

ζ
∗
Ψζ ≥ 0 ∀Ψ ∈ΨΨΨ and ζ

∗
Φζ ≥ 0 ∀Φ ∈ Φ̂ΦΦ. (21)

Assume that η = 0. Then the first condition of (21) implies
that all diagonal entries of Aξ ξ ∗ are nonnegative. Since A is
Metzler and Hurwitz, the Barker-Berman-Plemmons result
[10] implies ξ = 0. Since this contradicts ζ 6= 0, we have
that η 6= 0. Notice that it follows from the first condition of
(21) that all diagonal entries of ξ (Aξ +Bη)∗+(Aξ +Bη)ξ ∗

are nonnegative, i.e.,
ξi(Aξ +Bη)∗i +(Aξ +Bη)iξ

∗
i ≥ 0 ∀i = 1, · · · ,n.

By Lemma 3 of [8], this implies that there exist complex
numbers λi ∈ C̄+ such that ξi = λi(Aξ + Bη)i for all i =
1, · · · ,n. Define Λ = diag(λ1, · · · ,λn) then we have Λ ∈ ΛΛΛ

and
ξ = Λ(Aξ +Bη). (22)

Next notice that Cξ +Dη 6= 0 because otherwise the sec-
ond condition of (21) implies η = 0. Define ∆ = η(Cξ +
Dη)∗/‖Cξ +Dη‖2 then we have ∆ ∈ ∆∆∆ and

η = ∆(Cξ +Dη). (23)

From (22) and (23), the interconnection [G(ΛΛΛ),∆∆∆] is ill-
posed, and thus (A)⇒(C) was shown.

Corollary 2 can be viewed as the Bounded Real Lemma
for internally positive systems. The critical difference from

the usual Bounded Real Lemma is that one can assume a
diagonal solution P in the LMI condition (I). This result
means that if an internally positive systems is dissipative with
respect to the supply rate of the small gain type, then one can
always find a diagonal storage function. This is a counterpart
to the well-known fact that a linear stable autonomous
positive systems always admit a diagonal Lyapunov function.
From the viewpoint of decentralized controller and estimator
synthesis, the fact that P can be chosen to be diagonal has
significant merit. For details, the reader is referred to [6].

C. KYP lemma for nD-systems
In this subsection, we consider a case where Theorem 1

(KYP lemma) holds only in one direction, i.e., the LMI test
is only a sufficient condition for the well-posedness. Such
situations occur when ΨΨΨ JI ΦΦΦ does not hold.

In [7], the KYP lemma for discrete 2D Roesser model is
proposed. It is different from the classical KYP lemma in that
there are two frequency variables e jωh and e jωv corresponding
to the horizontal state and the vertical state. Notice that
Theorem 1 has a flexible form and it is possible to represent
this situation by properly specifying ΘΘΘ (item (d) in Table
I). However, if the primal set ΨΨΨ is defined by this ΘΘΘ and
the dual set ΦΦΦ is defined by ΠΠΠ = {τΠ0 : τ > 0} with a fixed
Hermitian matrix Π0, the relationship ΨΨΨJIΦΦΦ does not hold
in general. This is essentially the reason why the LMI test
proposed in [7] is only a sufficient condition.

Another type of 2D system is considered in [13], where
there are two frequency variables corresponding to the
temporal state and the spatial state. A sufficient LMI test
is proposed for the H∞ performance analysis of spatially
interconnected systems. The necessity of the LMI condition
does not hold since ΨΨΨ JI ΦΦΦ does not hold in general
between

ΨΨΨ=

{[
A B
I 0

]∗[
0 X
X 0

][
A B
I 0

]
: X = diag(XT ,XS)

XT > 0,XS ∈H

}
and

ΦΦΦ=

{[
C D
0 I

]∗[
κI 0
0 −κI

][
C D
0 I

]
:κ > 0

}
.

D. µ-analysis
It is well known that computing the structured singular

value µ of a complex matrix is intractable [14]. This can be
understood with a combination of Hermitian sets ΨΨΨ and ΦΦΦ

that fail to satisfy the strong mutual losslessness property.
The structured singular value of G ∈ Cm×m is defined by

µΠ(G) =
1

min{|τ| : det(I− τ∆G) = 0,∆ ∈R(ΠΠΠ)}
.

Now consider the problem of determining whether
sup

λ∈C̄+

µΠ(G(λ I))< 1. (24)

Condition (24) implies that the interconnection [G(ΛΛΛ),∆∆∆] is
well-posed for ΛΛΛ=R(ΘΘΘ) and ∆∆∆=R(ΠΠΠ) where ΘΘΘ and ΠΠΠ are
specified by item (a) in Table I and item (g) in Table II. Thus
it can be readily seen from Theorem 1 that the existence of
Θ ∈ΘΘΘ and Π ∈ΠΠΠ such that[

A B
I 0

]∗
Θ

[
A B
I 0

]
+

[
C D
0 I

]∗
Π

[
C D
0 I

]
<0 (25)
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is a sufficient condition. However, if ΨΨΨ and ΦΦΦ are defined
by (12) and (13) using the above ΘΘΘ and ΠΠΠ, the relationship
ΨΨΨ JI ΦΦΦ does not hold in general. Hence (25) is only
a sufficient condition for (24). This gives another way of
looking at the computational difficulty of µ . In fact, the
LMI test (25) only corresponds to computing a convex upper
bound of µ using a diagonal scaling technique.

Interestingly, however, it is possible to perform exact
µ-analysis of internally positive systems with an arbitrary
number of scalar uncertainty blocks using LMI. This result
is significant in that it breaks the well-known “2s+ f ≤ 3”
rule [14] where s is the number of scaler blocks and f is the
number of full blocks.

Corollary 3: (µ-analysis for internally positive systems)
Suppose G(Λ) is internally positive and A is Hurwitz. Let
the frequency region and the uncertainty region be defined
by

ΛΛΛ = {diag(λ1, · · · ,λn) : λi ∈ C̄+ ∀i = 1, · · · ,n}
∆∆∆ = {diag(δ1, · · · ,δn) : |δi| ≤ 1 ∀i = 1, · · · ,n}

Then the following are equivalent.
(I) There exist diagonal matrices P> 0 and Q> 0 such that[

A B
I 0

]∗[
0 P
P 0

][
A B
I 0

]
+

[
C D
0 I

]∗[
Q 0
0 −Q

][
C D
0 I

]
<0

(II) The interconnection [G(ΛΛΛ),∆∆∆] is well-posed.
Proof: For the same reasoning as in Corollary 2, the transfer
function G(Λ) is well-defined on ΛΛΛ. From Table I (b) and
Table II (g), we see that the frequency and the uncertainty
regions are expressed as ΛΛΛ = R(ΘΘΘ), ∆∆∆ = R(ΠΠΠ) where ΘΘΘ

and ΠΠΠ are defined in (16). Thus the result of Theorem 1
is applicable. To complete the proof, it suffices to show that
ΨΨΨJIΦΦΦ holds. Note that the relationship ΨΨΨCBΦΦΦ is already
established in Lemma 2. Assume the condition (B) holds, i.e.,
there exists a nonzero vector ζ = [ξ T ηT ]T satisfying (9).
Following the same logic as in Corollary 2, we have that
η 6= 0. Also, using the same construction of Λ, we obtain
Λ ∈ ΛΛΛ and

ξ = Λ(Aξ +Bη). (26)

On the other hand, define δi, i = 1, · · · ,n by

δi =

{
0 if (Cξ +Dη)i = 0
ηi/(Cξ +Dη)i if (Cξ +Dη)i 6= 0.

Then ∆ = diag(δ1, · · · ,δn) satisfies ∆ ∈ ∆∆∆. Notice from the
second condition of (9) that (Cξ +Dη)i = 0 implies ηi = 0.
Thus ∆ satisfies

η = ∆(Cξ +Dη). (27)

From (26) and (27), the interconnection [G(ΛΛΛ),∆∆∆] is ill-
posed. Hence we have shown (B)⇒(C).

V. CONCLUSION AND FUTURE WORKS

This paper proposed symmetric formulations of the S-
procedure and the KYP lemma. The notions of weak and
strong mutual losslessness were introduced to characterize
the lossless S-procedures and the lossless KYP lemma. The

proposed form of the KYP lemma was shown to have suf-
ficient generality to unify some recent extensions of system
analysis tools including the Generalized KYP lemma [4]
[11], the diagonal KYP lemma for internally positive systems
[6], and the KYP lemma for nD-systems [7][13].

However, there is so far no general method for proving
the weak and strong mutual lossless property. Hence in many
particular analyses, we need to rely on the existing individual
techniques to prove the losslessness. Therefore, finding a
practically useful combination of Hermitian sets that satisfies
the mutual lossless properties remains an important future
research direction. Nevertheless, the symmetry provides a
new perspective on the existing system analysis tools. It
is an interesting future work to consider how the new
framework can unify the existing analysis tools and provides
new intuitions for the future developments of system analysis
tools.
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