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Abstract— We consider the problem of sparse estimation in
a Bayesian framework. We outline the derivation of the Lasso
in terms of marginalization of a particular Bayesian model. A
different marginalization of the same probabilistic model leads
also to a different nonconvex estimator where hyperparameters
are optimized. The arguments are extended to problems where
groups of variables have to be estimated. An approach alter-
native to Group Lasso is derived, also providing its connection
with Multiple Kernel Learning approaches. Our estimator is
nonconvex but one of its versions requires optimization with
respect to only one scalar variable. Theoretical arguments and
numerical experiments show that the new technique obtains
sparse solutions which are more accurate than the other two
convex estimators.

Index Terms— Lasso, Group Lasso, marginal density

I. INTRODUCTION

We consider estimation of the parameters θ ∈ Rm in a
linear regression model. We also assume that the vector θ is
sparse, i.e. many of its components are equal to zero or have
a negligible influence on the output y, and that the number of
“unknowns” m is is very large and possibly larger than the
number of data available (say n, i.e. the number of “samples”
available for statistical inference). In this scenario a key point
is that the estimation procedure should be sparsity-favoring,
i.e. able to extract from the large number of variables entering
the model just that subset which influences the system output
significantly. Linear problems of this sort are very general
and have attracted the interest of many researchers in statis-
tics, machine learning and signal processing; indeed, such
a sparsity principle permeates many well known techniques
in machine learning and signal processing such as feature
selection, selective shrinkage and compressed sensing [10],
[16], [6], [1].
We specifically became interested in a version of this prob-
lem since it also pops up in a “dynamic Bayesian network”
identification scenario as discussed in [4], [2], [3]. Having
this last application domain in mind, in this paper we shall
be mainly concerned with a “group” version where the
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explanatory factors used to predict the output y can be
grouped, i.e. the parameter vector θ can be partitioned as
θ = [θ (1) θ (2) . . . θ (p)]> To be concrete, in a dynamic
network scenario the “explanatory variables” may be the past
histories of different input signals and the “groups” θ (i) be
the impulse responses from the i-th input to the output y.
Several approaches have been put forward in the literature
for joint estimation and variable selection problems. We
cite the well known Lasso [16], Least Angle Regression
(LAR), [7] their “group” versions Group Lasso (GLasso) and
Group Least Angle Regression (GLAR) [19], Multiple Ker-
nel Learning (MKL) [8], [12] as well as methods based on
hierarchical Bayesian models such as the Relevance Vector
Machine (RVM) [17] and the exponential hyperprior in [2].
Motivated by the stunning performance of the exponential
hyperprior approach in the dynamic network identification
scenario, see [2], [4], we believe an in depth comparison
with other available methods is due. In this paper we initiate
this comparison, discussing the relation among Lasso (and
GLasso), the Exponential Hyperprior (HGLasso algorithm
hereafter) and Multiple Kernel Learning by putting all these
methods in a common Bayesian framework (similar to that
discussed in [11]). Both Lasso/GLasso and MKL boil down
to convex optimization problems, while HGLasso does not.
However, one of the versions of HGLASSO here proposed
requires optimization with respect to only one scalar variable.
We discuss advantages and drawbacks of the nonconvex
formulation and propose also a “forward selection” type of
procedure for initializing the non-convex search, which may
be seen as an instance of the “screening” type of approach
for variable selection discussed in [18]. An optimization
procedure for the HGLasso algorithm is also proposed.

II. LASSO AND HLASSO

Let θ = [θ1 θ2 . . .θm]
> be an unknown parameter vector

while y ∈Rn denotes the vector containing some noisy data.
In particular, our measurements model is

y = Gθ + v (1)

where G ∈ Rn×m and v is the vector whose components are
white noise of known variance σ2.

A. The Lasso approach

When θ is assumed to be sparse, i.e. many of its compo-
nents are equal to zero or have a negligible influence on y,
one popular approach to reconstruct the parameter vector is
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Fig. 1. Bayesian networks describing the stochastic model for sparse
estimation (a) and group sparse estimation (b)

the so called Lasso [16]. It determines the estimate of θ as
follows

θ̂L = argmin
θ

(y−Gθ)>(y−Gθ)

2σ2 + γL

m

∑
i=1
|θi| (2)

where γL ∈R+ is the regularization parameter. One can easily
see that the above optimization problem is convex.
Now, we outline a derivation of the Lasso in terms of
marginalization of a suitable probability density function, as
also discussed in [11]. Our Bayesian model is depicted in
Fig. 1(a). Nodes and arrows are either dotted or solid depend-
ing on being representative of, respectively, deterministic or
stochastic quantities/relationships. Here, λ denotes a vector
whose components {λi}m

i=1 are independent exponential ran-
dom variables, with the same probability density given by

pγ(λi) = γe−γλi χ(λi) (3)

where γ is a positive scalar while χ(t) = 1 if t ≥ 0, 0
otherwise. In addition

θi|λi ∼N (0,λi), v∼N (0,σ2In) (4)

where N (µ,Σ) is the Gaussian density of mean µ and
autocovariance Σ while In is the n× n identity matrix. The
following result then holds, see also Section 2 in [11] for
details.

Proposition 1: Given the Bayesian network in Fig. 1(a),
let

θ̂ = arg max
θ∈Rm

∫
Rm
+

p(θ ,λ |y)dλ (5)

Then θ̂ = θ̂L provided that γL =
√

2γ .

B. The HLasso approach

The above result provides a hint for defining a different
estimator. Instead of marginalizing with respect of λ , one
could integrate out θ , finding the estimate of λ optimizing
the marginal density p(λ |y). Then, according to the empirical
Bayes approach, the minimum variance estimate of θ is
computed with λ set to its estimate. We call the resulting

estimator Hyperparameter Lasso (HLasso). It is defined
by the following proposition that exploits the fact that θ

conditional on λ is Gaussian, so that the marginal density of
λ becomes available in closed form.

Proposition 2: Given the Bayesian network in Fig. 1(a),
let

λ̂ = arg max
λ∈Rm

+

∫
Rm

p(θ ,λ |y)dθ (6)

Then

λ̂ = arg min
λ∈Rm

+

1
2

logdet(Σy)+
1
2

y>(Σy)
−1y+ γ

m

∑
i=1
|λi| (7)

where

Σy = GΛG>+σ
2In, Λ = diag{λi}

Then, given λ = λ̂ , the HLasso estimate of θ is given by

θ̂HL := E[θ |y, λ̂ ] = ΛG>(Σy(λ̂ ))
−1y (8)

�

Note that the objective in (7) used to determine λ depends
on m variables as in the Lasso case but the optimization
problem is not convex any more.

III. GLASSO AND HGLASSO

We now consider a situation where explanatory factors
able to predict y can be represented by groups of components
contained in θ . To be more specific, we factorize θ as follows

θ = [θ (1)
θ
(2) . . . θ

(p)]> (9)

and denote with ki the dimension of the i-th block, so that
m = ∑

p
i=1 ki. Partitioning also the matrix G as done for θ ,

we obtain the measurement model

y =
p

∑
i=1

G(i)
θ
(i)+ v (10)

In what follows, we assume that many of the blocks {θ (i)}
are null, i.e. with all of their components equal to zero, or
have a negligible effect on y.

A. The GLasso approach

One of the leading approaches adopted to solve this
problem is the so called Group Lasso (GLasso) [19]. It
determines the estimate of θ as

θ̂GL = arg min
θ∈Rm

(y−Gθ)>(y−Gθ)

2σ2 + γGL

p

∑
i=1
‖θ (i)‖ (11)

where ‖ · ‖ denotes the classical Euclidean norm. It is easy
to see that, as in the Lasso case, the objective is convex.
However, as we will discuss in the next subsection, GLasso
cannot be derived from the Bayesian models reported in Fig.
1.
The next proposition, taken from Section 2 in [19], charac-
terizes θ̂GL by the Karush Kuhn Tucker (KKT) conditions.



Proposition 3: Assume that G(i)>G(i) = Iki for i =
1, . . . , p. Then, a necessary a sufficient condition for θ =
[θ (1) θ (2) . . . θ (p)]> to be a solution of (11) is

−G(i)>(y−Gθ)+
θ (i)γGLσ2

‖θ (i)‖
= 0, ∀θ (i) 6= 0 (12)

‖−G(i)>(y−Gθ)‖ ≤ γGLσ
2, ∀θ (i) = 0 (13)

B. The HGLasso approach

The alternative approach we propose, discussed also in
[2], relies upon the group version of that in Fig. 1(a) and
is illustrated in Fig. 1(b). In the network, λ is now a p-
dimensional vector with i− th component given by λi ∈R+.
In addition, conditional on λ , each block θ (i) of the vector θ

is zero-mean Gaussian with covariance λiIki , i = 1, .., p, i.e.

θ
(i)|λi ∼ N(0,λiIki) (14)

Then, the new estimator we propose first optimizes the
marginal density of λ . Then, still according to the empirical
Bayes approach, the minimum variance estimate of θ is com-
puted with λ thought as known and set to its estimate. We
call this scheme Hyperparameter Group Lasso (HGLasso). It
is described in the following proposition.

Proposition 4: Consider the Bayesian network in Fig. 1
(b) and define

λ̂ = arg max
λ∈Rp

+

∫
Rm

p(θ ,λ |y)dθ (15)

Then, λ̂ is given by

arg min
λ∈Rp

+

1
2

logdet(Σy)+
1
2

y>Σ
−1
y y+ γ

p

∑
i=1
|λi| (16)

where

Σy = GΛG>+σ
2In, Λ = blockdiag({λiIki}) (17)

In addition, given λ = λ̂ , the HGLasso estimate of θ is given
by

θ̂HGL := E[θ |y, λ̂ ] = ΛG>(Σy(λ̂ ))
−1y (18)

�

It can easily be seen that the objective in (16) used to
determine λ is not convex. However, the optimization must
be performed in Rp, in place of Rm as in the GLasso case,
with possibly p << m.

Now, let the vector µ denote the dual variables associated
to the constraint λ ≥ 0. The Lagrangian for the problem (16)
is then given by

L(λ ,µ) := 1
2 logdet(Σy(λ ))+

1
2 y>Σy(λ )

−1y+ γ1>λ −µ>λ

(19)
Using the fact that

∂λiL(λ ,µ) =
1
2

tr
(

G(i)>
Σy(λ )

−1G(i)
)

− 1
2

y>Σy(λ )
−1G(i)G(i)>

Σy(λ )
−1y+ γ −µi,

the following result based on the KKT conditions for the
problem (16) is obtained.

Proposition 5: The necessary conditions for λ to be a
solution of (16) are

Σ = σ2In +∑
p
i=1 λiG(i)G(i)>

WΣ = In

tr
(

G(i)>WG(i)
)
−‖G(i)>Wy‖2

2 +2γ−2µi = 0, i = 1, . . . , p
µiλi = 0, i = 1, . . . , p
0≤ µ, λ and 0�W,Σ

C. Asymptotic behavior and BIC

It is well known [14] that the so-called BIC criterion for
order estimation can be derived as the asymptotic approxi-
mation of an exact Bayes procedure which takes, as a prior
on parameter space, a mixture of the form

p(θ) = ∑
j

α j p(θ | j)

where j indexes the different model classes (θ ∈ Θ j) and
p(θ | j) is a probability measure for θ ∈ Θ j. Under mild
assumptions on p(θ | j) [14] the asymptotics (in the number
of data) do not depend on the specific choice of α j.

With respect to the priors (14) let us now define the j− th
model class as follows:

θ
(i)| j ∼N

(
0,w jiλ̄ Iki

)
, i = 1, .., p

where w j := [w j1, ..,w jp] ∈ {0,1}p, j = 1, ..,2p is vector
of indicators defining which blocks θ (i) are allowed to be
nonzero and which are zero, and denote:

p(θ | j) := ∏
i:w ji=1

(
2πλ̄

)−ki/2
e−

(θ(i))
>

θ(i)

2λ̄ ∏
`:w j`=0

δ (θ (`))

(20)
With this notation we can define now a prior on θ as follows:

p(θ) :=
1
2p

2p

∑
j=1

p(θ | j) (21)

Note that the prior model obtained from (20) and (21) is
related, even though not equivalent, to the prior used for the
Stochastic Search Variable Selection (SSVS) method in [9].

It now follows from the derivation in [14] that the exact
Bayes procedure which selects ĵ as

ĵ := arg max
j=1,..,2p

p( j|y) = arg max
j=1,..,2p

∫
Rm

p(y|θ)p(θ | j)dθ

is asymptotically equivalent to minimizing

BIC(m j) := log(σ̂2
j )+

p

∑
i=1

(w ji pi)
logn

n
(22)

where σ̂2
j is the maximum likelihood estimator of the noise

variance under model class m j := {θ : θ (`) = 0 ∀` : w j` = 0}
Of course such an exhaustive search is infeasible for

large p and greedy procedures such as that outlined in
Section VI-B will have to be utilized. The arguments in this
Section show that, indeed, asymptotically, the criterion (50)
is equivalent to (22). This fact may be advantageous since



(22) will depend only on partial correlations which can be
computed recursively as new candidate groups are introduced
in the regression, thus greatly reducing the computational
load.

D. Comparing GLasso and HGLasso

The two estimators discussed above do not derive from
the same Bayesian model as in the previous case. In fact,
consider the problem of integrating out λ from the joint
density of θ and λ described by the model in Fig. 1(b). Then,
the result is the product of multivariate Laplace densities. In
particular, define B(i)(·) as the modified Bessel function of
the second kind and order ki/2− 1. Then, following also
[15], we obtain∫

λ∈Rp
+

p(θ ,λ )dλ =
(2γ)p

(2π)m/2

p

∏
i=1

(2γ))2−ki/4 B(i)(2γ
√

θ (i)>θ (i))

(θ (i)>θ (i))ki/4−2

(23)
whereas the prior density underlying the GLasso should be
such that

p(θ) ∝ exp(−γGL

p

∑
i=1

√
θ (i)>θ (i)) (24)

One can assess that, when ki > 1, for θ (i) tending to zero the
prior density on θ (i) related to GLasso remains bounded,
while the one related to the HGLasso, reported in (23),
tends to ∞. As it will be also apparent in the numerical
experiments section, this feature allows HGLasso to produce
sparser solutions.

IV. MKL AND HGLASSO

A. MKL and its Bayesian interpretation

In order to introduce the Multiple Kernel Learning (MKL)
approach, it is useful to start considering the following
measurements model

y = f + v =
p

∑
i=1

f (i)+ v (25)

In the MKL framework, f in (25) represents the sampled
version of a scalar function assumed to belong to a (gener-
ally infinite-dimensional) reproducing kernel Hilbert space
(RKHS). For our purposes, we can consider a simplified
scenario, where the domain of the functions in the RKHS
is the finite set [1, . . . ,n]. In this way, f represents the entire
function and y is the noisy version of f sampled on all its
domain. In addition, f is assumed to belong to the RKHS
HK whose kernel is defined by the matrix

K(λ ) =
p

∑
i=1

λiK(i) (26)

Then, each function f (i) is an element of the RKHS H(i)

induced by the kernel λiK(i), with norm denoted by ‖ · ‖(i).
According to the MKL approach, the estimates of the un-
known functions f (i) are obtained jointly with those of the

scale factors λi solving the following inequality constrained
problem

({ f̂ (i)}, λ̂ ) = argmin
{ f (i)},λ∈Rp

+

(y− f )>(y− f )
σ2 +

p

∑
i=1
‖ f (i)‖2

(i)

s.t.
p

∑
i=1

λi ≤M (27)

where M plays the role of a regularization parameter. Hence,
the “scale factors” contained in λ ∈ R+

p are optimization
variables, thought of as “tuning knobs” adjusting the kernel
K(λ ) to better suit the measured data. Using the extended
version of the representer theorem, e.g. see [5], [8], the
solution is

f̂ (i) = λ̂iK(i)ĉ, i = 1, . . . , p (28)

where

{ĉ, λ̂}= argmin
c∈Rn,λ∈R+

p

(y−K(λ )c)>(y−K(λ )c)
σ2 + c>K(λ )c

s.t.
p

∑
i=1

λi ≤M (29)

It can be shown that every local minimum of the above
objective is also a global minimum, see [5] for details.

For our purposes, it is now useful to define φ as the Gaus-
sian vector with independent components of unit variance
such that

θi =
√

λiφi (30)

We also factorize φ as done for θ , i.e.

φ = [φ (1)
φ
(2) . . . φ

(p)]> (31)

Then, the following connection with the Bayesian model in
Fig. 1(b) holds.

Proposition 6: Consider the joint density of φ and λ

conditional on y induced by the Bayesian network in Fig.
1(b). Let also K(i) = G(i)G(i)>. Then, there exists a value of
γ such that the maximum a posteriori estimate of λ is the λ̂

in (29). In addition, one has

λ̂ = arg min
λ∈Rp

+

y>(K(λ )+σ2In)
−1y

2
+ γ

p

∑
i=1

λi (32)

Finally, the maximum a posteriori estimates of the blocks of
φ are

φ̂
(i) =

√
λiG(i)>ĉ (33)

where ĉ is the same as in (29) and given by

ĉ(λ̂ ) = (K(λ̂ )+σ
2In)

−1y (34)
Proof: First, the expression for ĉ(λ̂ ) derives from (29)

after simple computations that are omitted.
Now, given the Bayesian network in Fig. 1(b), apart from



constant factors we are not concerned with, the minus log of
the joint density of y,φ ,λ is given by

(y−
√

λiGφ)>(y−
√

λiGφ)

2σ2 +
∑

p
i=1 φ (i)>φ (i)

2

+γ

p

∑
i=1

λi (35)

For known y and λ , φ is Gaussian so that the maximizer of
the joint density with respect only to φ is given by

φ
(i)(λ ) =

√
λiG(i)>(

p

∑
i=1

λiG(i)G(i)>+σ
2In)

−1y

=
√

λiG(i)>(K(λ )+σ
2In)

−1y (36)

where the last equality exploits the relation K(λ ) =

∑
p
i=1 λiG(i)G(i)>. Hence, from the above arguments, (33,34)

are immediately obtained.
Finally, (32) is derived replacing the expression of φ (i)(λ )
obtained above in (35) and performing simple algebraic
manipulations that exploit the following equality

In−
p

∑
i=1

λiG(i)G(i)>(K(λ )+σ
2In)

−1 = σ
2(K(λ )+σ

2In)
−1

It is also of interest to give the KKT conditions for the
objective (32). This is obtained in the next proposition.

Proposition 7: The necessary and sufficient conditions for
λ to be a solution of (32) are

Σ = K(λ )+σ
2In (37)

WΣ = In (38)
−‖G(i)>Wy‖2

2 +2γ−2µi = 0, i = 1, . . . , p (39)
µiλi = 0, i = 1, . . . , p (40)
0≤ µ, λ and 0�W,Σ (41)

�

Finally, we notice that, starting from (33), a natural
estimator for θ (i) is

θ̂
(i) =

√
λiφ̂

(i) (42)

We stress that the above expression does not provide the
maximum a posteriori estimate of θ (i). In fact, it is not
difficult to see that the joint density of θ and λ , conditional
on y, is not bounded above around the origin. Hence, this
kind of MAP estimator would always return an estimate of
θ equal to zero.

B. Comparing MKL and HGLasso

Proposition 6 points out how MKL derives from the
same Bayesian model underlying HGLasso but the estimate
of λ is now obtained maximizing a joint, in place of a
marginal, density. The expression of the estimator (32) is
interesting when compared with that reported in (16). In
fact, recall that, under the assumptions stated in Proposition
6, Σy(λ ) = K(λ )+σ2In. Hence, the two objectives in (32)
and (16) are identical except that the term 1

2 logdet(Σy) is

missing in the MKL objective (32). Notice also that this is
the component which makes problem (16) non convex. On
the other hand, this term allows HGLasso to favor sparser
solutions than MKL since it makes the marginal density of
λ more concentrated around zero.

V. SPARSITY VS. SHRINKING: COMPARISON VIA
OPTIMALITY CONDITIONS

In this section we compare the sparsity conditions for
HGLasso, MKL and GLasso; we show that HGLasso guar-
antees a more favorable tradeoff between sparsity and shrink-
age, in the sense that it induces greater sparsity with the same
shrinkage (or, equivalently, for a given level of sparsity it
guarantees less shrinkage). In order to illustrate this behavior,
we consider a specific example with 2 groups of dimension
1, i.e.

y = G(1)
θ
(1)+G(2)

θ
(2)+ v y ∈ R2,θ1 ∈ R,θ2 ∈ R (43)

where G(1) = [1 δ ]>, G(2) = [0 1]>, v ∼ N (0,σ2). We
assume θ (1) = 0, θ (2) = 1; our aim is now to understand
how the hyperparameter γ influences sparsity and estimates
of θ (2). In particular, we would like to understand which
values of γ guarantee that θ̂ (1) = 0 and how the estimator
θ̂ (2) varies with γ . In order to do so we consider the KKT
conditions obtained in Propositions 5 and 7.

For future recall that we have defined K(i) :=G(i)
(

G(i)
)>

;

we find that necessary conditions for λ̂1 = 0 and λ̂2 be the
hyperparameters estimators using the HGLasso estimator (for
fixed γ) are:

γHGL ≥ 1
2 tr
(

y>Σ−1K(1)Σ−1y
)
− 1

2 tr
(

K(1)Σ−1
)

ξ :=
−4γHGLσ2−1+

√
(1+4γHGLσ2)2−8γHGL(σ2+2γHGLσ4−tr(K(2)yy>))

4γHGL

λ̂ HGL
2 = max{ξ ,0}

Σ = K(2)λ̂2 +σ2I
(44)

Similarly, the same conditions for MKL read as

γMKL ≥ 1
2 tr
(

y>Σ−1K(1)Σ−1y
)

ξ =
√

1
2γMKL

tr
(
K(2)yy>

)
−σ2

λ̂ MKL
2 = max{ξ ,0}

Σ = K(2)λ̂ MKL
2 +σ2I

(45)

The corresponding estimators for θ (1) and θ (2) are:

θ̂
(1)
HGL = θ̂

(1)
MKL = 0

θ̂
(2)
HGL = λ̂ HGL

2 G(2)>
(

K(2)λ̂ HGL
2 +σ2I

)−1
y

θ̂
(2)
MKL = λ̂ MKL

2 G(2)>
(

K(2)λ̂ MKL
2 +σ2I

)−1
y

(46)

If we take, δ = 0 in the definition of G(2), i.e. G(2) =
[1 δ ]> = [1 0]> and denote y := [y1 y>2 , the expressions
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simplify considerably, yielding for HGLasso:

γHGL ≥ 1
2σ4

(
y2

1−σ2
)

λ̂ HGL
2 = max{ξ ,0}

ξ := −4γHGLσ2−1+
√

(1+4γHGLσ2)2−8γHGL(σ2+2γHGLσ4−y2
2)

4γHGL
(47)

and
γMKL ≥ 1

2σ4 y2
1

ξ =
√

1
2γMKL

y2
2−σ2

λ̂ MKL
2 = max{ξ ,0}

(48)

for MKL. It is clear that MKL requires a more stringent
condition on γ (i.e. larger γ) in order to set λ̂ MKL

1 = 0
(and hence θ̂

(1)
MKL = 0). Of course having a larger γ tends

to yield smaller λ̂2 and hence more shrinking on θ̂ (2). This
is illustrated in figure 2 where we report the estimators θ̂

(2)
HGL

(solid) and θ̂
(2)
MKL (dotted) for σ2 = 0.005, δ = 0.5. The

estimators are arbitrarily set to zero for the values of γ which
do not yield θ̂ (1) = 0. In particular from (44) and (45) we
obtain that GHLasso sets θ̂

(1)
HGL = 0 for γHGL > 5 while MKL

sets θ̂
(1)
MKL = 0 for γMKL > 20. In addition it is clear that MKL

tends to yield more shrinking on θ̂
(2)
MKL (recall that θ (2) = 1).

Note that when the groups have dimension 1, as stated
in Proposition 8, GLasso is equivalent to MKL with a
proper rescaling of the regularization parameter, so that the
comparison between HGLasso and MKL can be extended to
GLasso.

Proposition 8: Assume that k1 = . . . = kp = 1 for i =
1, . . . , p and G = In so that GLasso reduces to Lasso. Then,
the regularization paths of Lasso and MKL are the same.

Proof: The proof easily comes from the KKT condi-
tions. In fact, assume that θ̂i is the i-th component of the
solution obtained by Lasso and that it is different from zero.
From Proposition 3 one obtains

−(yi− θ̂i)+
θ̂i

‖θ̂i‖
γLσ

2 = 0 =⇒ θ̂i = yi− γLσ
2

Instead, if θ̂i = 0, one must have

γL ≥
yi

σ2

Using also Proposition 7, one obtains that the MKL estimates
of λ̂i and θ̂i that are different from zero must satisfy

(λ̂i +σ
2)2 =

y2
i

2γMKL
, θ̂i =

λ̂i

λ̂i +σ2
yi

that imply
θ̂i = yi−

√
2γMKLσ

2

On the other hand, the condition for θ̂i = 0 becomes

γMKL ≥
y2

i
2σ4

Hence, θ̂ returned by the two methods is the same provided
that γL =

√
2γMKL.

VI. IMPLEMENTING HGLASSO

In this section we discuss the implementation of our
HGLasso approach. This will also lead to the introduction
of three different variants of this estimator.

A. Projected Quasi-Newton Method

The objective (16) is a differentiable function of λ with
simple box constraints (λ ≥ 0). Note that in order to compute
the derivatives, the matrices G(i)G(i)> need to be computed
only once, and the inverse of the matrix Σy(λ ) needs to be
computed once per iteration. Hence, an interesting feature
of the problem is that the evaluation of the objective may
be costly, as it depends on computing inverses of possibly
large matrices and large matrix products. On the other hand,
the dimension of the parameter vector λ can be small, and
projection onto the feasible set is trivial.
We tried several methods, available from the Matlab pack-
age minConf, to optimize (16). The fastest method we
implemented turned out to be a limited memory projected
quasi-Newton algorithm detailed in [13]. It uses L-BFGS
updates to build a diagonal plus low-rank quadratic approx-
imation to the function, uses the Projected Quasi-Newton
Method to minimize the quadratic approximation subject to
the constraints present in the original problem, and uses a
backtracking line search to generate new parameter vectors
satisfying an Armijo-like sufficient decrease condition. The
method is most effective since computing the projection onto
the constraint set can be done much more efficiently than
evaluating the function.

B. Bayesian Forward Selection

In this section we introduce a forward-selection type of
procedure which will be useful to define a computationally
efficient version of the HGLASSO estimator. In order to
obtain an estimator of λ we consider the constraint κ = λ1 =
λ2 = . . .= λp and treat κ as a deterministic hyperparameter
whose knowledge makes Σy completely known. Therefore
we set:

κ̂ := arg min
κ∈R+

1
2

logdet(Σy)+
1
2

y>Σ
−1
y y (49)



The forward-selection procedure is then designed as follows;
let I ⊆ {1,2, .., p} be the subset of currently selected groups
and, considering now the Bayesian model in Fig. 1(b), define
the marginal log posterior

L(I,κ,γ) := log
[

pγ(λ̃I |y)
]

(50)

where λ̃I := [λ̃I,1, ..., λ̃I,p] and λ̃I,i = κ̂ if i ∈ I and λ̃I,i = 0
otherwise.

Then do the following:
• set γ̂ := 1

κ̂

• initialize I := /0
• repeat the following procedure:

(a) for j ∈ {1, .., p}\ I, define I
′
j := I∪ j and compute

L(I
′
j; κ̂, γ̂).

(b) select

j̄ := arg max
j∈{1,..,m}\I

L(I
′
j; κ̂, γ̂)−L(I; κ̂, γ̂)

(c) if L(I
′
j̄; κ̂, γ̂)−L(I; κ̂, γ̂)> 0

set I := I
′
j̄ and go back to (a)

else
finish.

Note that the set I contains the indexes of selected variables
different from zero.

C. The three variants of HGLasso

The numerical procedures described above permit to in-
troduce three different versions of HGLasso. They are listed
below.
• HGLa: the optimization problem (49) is solved ob-

taining κ̂ . The regularization parameter γ is set to the
inverse of κ̂ . Then, the forward-selection procedure
described in the previous subsection is adopted to
sparsify the solution, obtaining the estimate λ̂ of the
hyperparameter vector whose components are equal to
0 or κ̂ . Finally, the estimate θ̂HGL is obtained using (18).

• HGLb: the regularization parameter γ is set to the
inverse of κ̂ obtained by HGLa. Then, the optimiza-
tion problem (16) is solved using the Projected Quasi-
Newton method with starting point λ1 = λ2 = . . . =
λp = κ̂ obtaining the estimate λ̂ (notice that now all
the components of λ̂ different from zero may assume
different values). Finally, θ̂HGL is obtained using (18).

• HGLc: this estimator performs the same operations of
HGLb except that the components of λ set to zero
by HGLa are kept at zero. Hence, problem (16) is in
general optimized with respect to a restricted number
of components of λ .

VII. SIMULATION RESULTS

We consider a Monte Carlo study of 500 runs where at any
run a linear model of the form (10) is considered with p= 10
groups, each composed of ki = 5 parameters, and n = 100.
For each run, 5 of the groups θ (i) are set to zero, one is
always taken different from zero while each of the remaining
4 is set to zero with probability pi = 0.5. The components of

every block not set to zero are independent realizations from
a uniform distribution on [−a,a] where a is an independent
realization (one for each block) from a uniform distribution
on [−100,100]. The value of σ2 is equal to the variance of
the noiseless output divided by 25 and is assumed known.
The columns of G are correlated, being defined at every run
by

Gi, j = Gi, j−1 +0.2vi, j−1, i = 1, ..,n, j = 2, ..,m
vi, j ∼N (0,1)

where vi, j are i.i.d. (as i and j vary) zero mean unit variance
Gaussian and Gi,1 are i.i.d. zero mean unit variance Gaussian
random variables. Note that correlated inputs renders the
input selection problem more challenging.

We compare the following 5 estimators:
• HGLa,HGLb,HGLc: these are the three variants of our

HGLasso procedure defined at the end of Section VI.
• GLasso: the regularization parameter is determined via

cross validation, splitting the data set in two segments of
the same size and testing a finite number of parameters
from a pre-specified grid with 30 elements logarithmi-
cally distributed between 10−2γ̂ and 106γ̂ where γ̂ is the
regularization parameter adopted by the three HLasso
procedures. Finally, GLasso is reapplied to the full data
set fixing the regularization parameter to its estimate.

• MKL: the regularization parameter is estimated using
the same cross validation strategy adopted for GLasso.

The 5 estimators are compared computing the performance
indexes listed below:

1) Percentage estimation error:

Err1 = 100× ‖θ − θ̂‖
‖θ‖

% (51)

where θ̂ is the estimate of θ .
2) Absolute error on “zero” parameters:

Err0 = ‖θ̂ (i)‖, i s.t. ‖θ (i)‖= 0 (52)

where θ̂ (i) is the estimate of the i-th block of θ .
3) Percentage of the blocks equal to zero correctly set to

zero by the estimator after the 500 runs.
Fig. 3 displays the boxplots of the 500 errors Err1 and of
Err0. It is apparent that all of the three versions of the
HGLasso outperform both GLasso and MKL. In addition,
from the results reported in Table I one can see that the
first and third versions of HGLasso obtain the remarkable
performance of 99.5% of blocks correctly set to zero, while
the second version obtains 72.5%. Instead, GLasso and
MKL correctly set to zero 26.2% and 18.1% of the blocks,
respectively. This result, which can appear surprising, is
partially explained by the arguments in Section V; in a
nutshell, MKL and GLasso need to trade sparsity for shrink-
ing. The value of the regularization parameter γ needed to
avoid oversmoothing is not large enough to induce “enough”
sparsity. This drawback does not affect our new nonconvex
estimators as described in Section V in a simplified scenario.
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Fig. 3. Boxplot of the percentage errors in the reconstruction of θ (top) and of the absolute errors in the estimation of the null blocks of θ obtained by
the 5 estimators after the 500 Monte Carlo runs.

HGLa HGLb HGLc MKL GLasso
99.5% 72.5% 99.5% 26.2% 18.1%

TABLE I
PERCENTAGE OF THE θ (i) EQUAL TO ZERO CORRECTLY SET TO ZERO BY

THE EMPLOYED ESTIMATORS.

VIII. CONCLUSIONS

We have presented a comparative study of three methods
for sparse estimation, namely GLasso, MKL and the new
HGLasso. It is shown that HGLasso and MKL derive from
the same Bayesian model, yet in a different way; for GLasso,
instead, this holds only for the case in which the groups
have dimension 1. It is argued that the marginalization
involved in HGLasso is advantageous, especially when the
size of the groups is large. The tradeoffs between sparsity
and shrinking are also studied in a simple example using
the Karush Kuhn Tucker (KKT) conditions; our analysis
suggests that HGLasso is able to achieve higher levels of
sparsity without paying too much in terms of shrinking.
This is indeed confirmed by the simulation experiments.
Future work will include more efficient implementations of
HGLasso, a thorough analysis of the optimality conditions
and a more in depth study of the Bayesian forward selection
used for initialization.
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