
24 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 3, NO. 1, MARCH 2016

Dynamic Partitioning and Coverage Control With
Asynchronous One-to-Base-Station Communication

Rushabh Patel, Student Member, IEEE, Paolo Frasca, Joseph W. Durham,
Ruggero Carli, and Francesco Bullo, Fellow, IEEE

Abstract—We propose algorithms to automatically deploy a
group of mobile robots and provide coverage of a nonconvex
environment with communication limitations. In settings, such
as hilly terrain or for underwater ocean gliders, peer-to-peer
communication can be impossible and frequent communication
to a central base station may be impractical. This paper instead
explores how to perform coverage control when each robot has
only asynchronous and sporadic communication with a base sta-
tion. The proposed algorithms rely upon overlapping territories,
monotonically minimize suitable cost functions, and provably con-
verge to a centroidal Voronoi partition. We also describe how the
use of overlapping territories allows our algorithms to smoothly
handle dynamic changes to the robot team.

Index Terms—Asynchronous communication, autonomous
agents, distributed algorithms, partitioning algorithms.

I. INTRODUCTION

IN applications, such as environmental monitoring [1] or
warehouse logistics [2], a team of robots is asked to perform

tasks over a large space. The distributed environment partition-
ing problem consists of designing control and communication
laws for individual robots such that the team divides a space
into regions in order to optimize the quality of service pro-
vided. Coverage control additionally optimizes the positioning
of robots inside a region. Coverage control and territory par-
titioning have applications in many fields. In cyber-physical
systems, applications include automated environmental moni-
toring [1], fetching and delivery [2], and other vehicle-routing
scenarios [3].

A broad discussion of partitioning and coverage control is
presented in [4] which builds on the classic work of Lloyd [5]
on algorithms for optimal quantizer design through “centering
and partitioning.” The Lloyd-type approach was first adapted

Manuscript received January 2, 2014; revised May 20, 2014; accepted
April 9, 2015. Date of publication April 30, 2015; date of current version March
16, 2016. This work was supported in part by the National Science Foundation
under Grant CPS-1035917 and in part by ARO under W911NF-11-1-0092.
Recommended by Senior Editor Naomi Ehrich Leonard and Associate Editor
Fabio Fagnani.

R. Patel and F. Bullo are with the Department of Mechanical Engineering,
University of California, Santa Barbara, CA 93106 USA (e-mail: r_patel@
engineering.ucsb.edu; bullo@engineering.ucsb.edu).

P. Frasca is with the Department of Applied Mathematics, University of
Twente, Enschede 7522 NB, The Netherlands (e-mail: p.frasca@utwente.nl).

J. W. Durham is with Kiva Systems, North Reading, MA 01864 USA (e-mail:
joey@engineering.ucsb.edu).

R. Carli is with the Department of Information Engineering, University of
Padova, Padova 35131, Italy (e-mail: carlirug@dei.unipd.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2015.2428304

for distributed coverage control in [6] and has since seen many
variations, including nonconvex environments [7], [8] and self-
triggered coverage algorithms [9].

Many existing coverage control algorithms assume that
robots can communicate peer to peer [6], but in some envi-
ronments, this is impractical. For example, underwater acoustic
communication between ocean gliders has very low bandwidth
and hilly or urban terrain can block radio communication.
Instead, we present a coverage control algorithm for a team of
robots which collectively maintains complete coverage of the
environment and individually has only occasional contact with
a central base station. This one-to-base-station communication
model can represent ocean gliders surfacing to communicate
with a tower [10], unmanned aerial vehicle (UAV) data mules
that periodically visit ground robots [11], or cost-mindful use
of satellite or cellular communication. Our algorithm optimizes
the response time of the team to service requests in a nonconvex
environment represented by a graph, with optimality defined by
relevant “multicenter” cost functions for overlapping territories.
Early work in coverage control of discrete nonconvex domains
(represented by graphs) is presented in [12]. Discrete coverage
problems are closely related to the literature on data clustering
and k-means [13] as well as the facility location or k-center
problem [14].

There are several specific contributions of this paper.
First, we present the first coverage control algorithm for an
asynchronous one-to-base-station communication model. This
model is realistic and relevant for a variety of application do-
mains. We handle the time delay between when robots commu-
nicate with the base station using overlapping regions instead
of a partition. The algorithm can be adapted for various cost
functions and allows for heterogeneity among agents. Second,
we prove that the algorithm converges to a centroidal Voronoi
partition in finite time for two relevant cost functions. Our
Lyapunov argument is based on an adaptation of the standard
partition-based coverage cost function. Third, we introduce the
notion of Pareto-optimal partitions and provide a cost function
to achieve such a partition using our algorithm. Finally, we
describe how the algorithm can seamlessly handle changes in
the environment as well as unscheduled arrival, departure or
change in functionality of robots from the team. This feature
leverages overlapping regions and eases integration of coverage
control with task servicing.

A preliminary version of this paper appeared at the 2011
IEEE Conference on Decision Control and European Control
Conference as [15]. This paper contains various results not
found in [15]. First, we introduce a more general algorithm to

2325-5870 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PATEL et al.: DYNAMIC PARTITIONING AND COVERAGE CONTROL 25

achieve centroidal Voronoi partitions with a one-to-base-station
communication architecture; we accomplish this by revising
how updates occur in the algorithm. Second, we extend the
framework of [15] by allowing for heterogeneous agents using
weighted Voronoi partitions. Third, we introduce the notion of
Pareto-optimal partitions and provide a method to converge to
such a partition. Finally, simulation results have been extended
and updated to demonstrate the performance of the new policies
not present in [15].

II. PRELIMINARIES: COVERINGS OF

GRAPHS AND COST FUNCTIONS

The one-to-base-station communication model studied in
this paper requires that in the design of coverage algorithms,
we adopt overlapping coverings instead of partitions. In this
section, we translate concepts used in the partitioning of contin-
uous environments [4] to coverings on graphs. In our notation,
R>0, R≥0, and Z≥0, respectively, denote the sets of positive,
non-negative and non-negative integer numbers. Given a set
A, |A| denotes the number of elements in A. Given sets A,B,
their union and intersections are denoted as A ∪B and A ∩B,
respectively, and their difference is A \B = {a ∈ A|a �∈ B}.

A. Graphs and Distances

Let the finite set Q be a set of points in a continuous envi-
ronment. These points can represent locations or small areas of
interest. They are assumed to be the nodes of an (undirected)
weighted graph G(Q) = (Q,E, l) with edge set E ⊂ Q×Q
and weight map l : E → R>0; we let le > 0 be the weight of
edge e. We assume that G(Q) is connected and think of the
edge weights as travel distances between nearby nodes.

In any weighted graph G(Q), there is a standard notion of
distance between vertices defined as follows. A path in G is an
ordered sequence of vertices such that any consecutive pair of
vertices is an edge of G. The weight of a path is the sum of
the weights of the edges in the path. Given vertices h and k in
G, the distance between h and k, denoted as dG(h, k), is the
weight of the lowest weight path between them, or +∞ if there
is no path. If G is connected, then the distance between any two
vertices is finite. By convention, dG(h, k) = 0 if h = k. Note
that dG(h, k) = dG(k, h), for any h, k ∈ Q.

B. Coverings of Graphs

We will be covering Q with n subsets or regions which will
each be owned by an individual agent.

Definition 1 (n-Covering): Given the graph G(Q) =
(Q,E, l), we define a n-covering of Q as a collection P =
{Pi}ni=1 of subsets of Q such that:

i)
⋃n

i=1 Pi = Q;
ii) Pi �= ∅ for all i ∈ {1, . . . , n}.

Let Covn(Q) be the set of n-coverings of Q.
Note that a vertex in Q may belong to multiple subsets in P ,

that is, a vertex may be covered by multiple agents. The above
definition is an important change from prior work [12], which
was limited to partitions of Q, defined as follows.

Definition 2 (n-Partition): A n-partition is a n-covering
with the additional property that:

iii) if i �= j, then Pi ∩ Pj = ∅.
Let Partn(Q) to be the set of n-partitions of Q.

Among the ways of covering Q, there is one which is
worth special attention. Before we state the partition, let us
define the vector of weights w := {w1, . . . , wn}, such that
wi > 0 and

∑n
j=1 wi = 1. For brevity, we denote W = w ∈

R
n
>0|

∑n
i=1 wi = 1. Then, given w ∈ W and a vector of distinct

points c ∈ Qn, the partition P ∈ Partn(Q) is said to be a multi-
plicatively weighted Voronoi partition of Q generated by c and
weighted by w if, for each Pi and all k ∈ Pi, we have ci ∈ Pi

and 1/widG(k, ci) ≤ (1/wj)dG(k, cj), for j �= i. The elements
of c are said to be the generators of the Voronoi partition
multiplicatively weighted by w. Note that there can be more
than one multiplicatively weighted Voronoi partition generated
by c and w since how to assign tied vertices is unspecified.
The multiplicatively weighted Voronoi partition allow us to
accommodate heterogeneous agents. For example, if agent i is
faster than another agent j (i.e., wi > wj), it would make sense
that agent i should control more territory than agent j. From this
point forward, we refer to multiplicatively weighted Voronoi
partitions simply as Voronoi partitions and the vector of weights
w is given and fixed. Given that the weights are fixed, for the
rest of this paper, we refer to a Voronoi partition generated by c
and w simply as a Voronoi partition generated by c.

C. Cost Functions

Let weight function φ : Q → R>0 be a bounded positive
function which assigns a relative weight to each element of
Q. The weight assigned to a node by φ can be thought of as
the “service time” or importance of that node. The one-center
function H1 gives the cost for a robot to cover a subset A ⊂ Q
from a vertex h ∈ A with relative prioritization given by φ

H1(h;A) =
∑
k∈A

dG(h, k)φ(k).

This cost function leads us to the following definition.
Definition 3 (Centroid): We define the set of generalized

centroids of A ⊂ Q as the set of vertices in A which minimize
H1, that is

C(A) := argmin
h∈A

H1(h;A).

In what follows, we drop the word “generalized” for brevity.
Note that the centroid of a set always belongs to the set. Fig. 1
shows an illustrative example of the set C(A) for a simple
environment.

With these notions, we are ready to define other useful cost
functions. We can define the multicenter function H : Qn ×
Covn(Q) → R≥0 to measure the cost for n robots to cover a
n-covering P from the vertices c ∈ Qn by

H(c, P) =

n∑
i=1

∑
k∈Pi

1

wi
dG(ci, k)φ(k).

26 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 3, NO. 1, MARCH 2016

Fig. 1. Left image shows a grid environment whose corresponding graph
representation is shown in the right image. Each cell in the grid represents a
node in the graph and if two cells are adjacent, then there is a unit weight edge
between those nodes. The black nodes in the graph denote the set of generalized
centroids for the corresponding grid environment.

Note that ifwi=wj for all i, j, then the multicenter cost function
above is the same as in [12]. Furthermore, we define the mini-
mum cost-to-cover mapping Hmin : Qn×Covn(Q)→R≥0 by

Hmin(c, P) =
∑
k∈Q

min
i

{
1

wi
dG(ci, k)|k ∈ Pi

}
φ(k).

Note that if P is a partition, then Hmin(c, P) = H(c, P) for
any c. We aim to minimize these performance functions with
respect to the covering P and the vertices c. In the motivational
scenario we are considering, each robot will be periodically
asked to perform a task somewhere in its region with tasks
located according to distribution φ. When idle, the robots
would position themselves at the vertices c. By minimizing the
coverage cost, the robot team minimizes the expected distance
between a task and the furthest robot which can service the task.

We are almost ready to introduce a notion of optimal par-
tition, the centroidal Voronoi partition. Our discussion begins
with the following results, which are direct consequences of the
above definitions.

Proposition 4 (Properties of H): Let P ∈ Partn(Q) and c ∈
Qn, then the following properties hold:

i) If P ′ is a Voronoi partition generated by c, then

H(c, P ′) ≤ H(c, P).

ii) Let I ⊂ {1, . . . , n}. If c′ ∈ Qn satisfies c′i ∈ C(Pi) for
i ∈ I and c′j = cj for j �∈ I, then

H(c′, P) ≤ H(c, P)

with a strict inequality if ci �∈ C(Pi) for any i ∈ I.

Proposition 5 (Properties of Hmin): Let P ′ ∈ Partn(Q) be
a Voronoi partition generated by c ∈ Qn, then the following
properties hold:

i) If P ∈ Covn(Q) is a covering such that P ′
i ⊆ Pi for all i,

then

Hmin(c, P
′) = Hmin(c, P).

ii) If P ∈ Partn(Q) is a partition satisfying P i ∩ P ′
i � ci for

all i, then

Hmin(c, P
′) ≤ Hmin(c, P).

iii) Let I ⊂ {1, . . . , n}. If c′ ∈ Qn satisfies c′i ∈ C(P ′
i) for

i ∈ I and c′j = cj for j �∈ I, then

Hmin(c
′, P ′) ≤ Hmin(c, P

′)

with a strict inequality if ci �∈ C(P ′
i) for any i ∈ I.

Fig. 2. Figure shows two environments with two agents. Each cell denotes a
node in a graph and if two cells are adjacent, then there is a unit-weight edge
between those nodes. The left image shows a Voronoi partition generated by
the two agents. Note that the blue agent is not at its region’s centroid. The right
image is instead a centroidal Voronoi partition.

Propositions 4 and 5 imply that if P ∈ Partn(Q) and (c, P)
minimizes H (equivalently Hmin), then ci ∈ C(Pi) for all i and
P must be a Voronoi partition generated by c. This motivates
the following definition.

Definition 6 (Centroidal Voronoi Partition): P ∈ Partn(Q)
is a centroidal Voronoi partition of Q if there exists a c ∈ Qn

such that P is a Voronoi partition generated by c and ci ∈ C(Pi)
for all i.

For a given environment Q, a pair made of a centroidal
Voronoi partition and the corresponding vector of centroids
is locally optimal in the following sense: the cost functions
H and Hmin cannot be reduced by changing either P or c
independently. Fig. 2 demonstrates the difference between a
Voronoi and centroidal Voronoi partition.

III. MODEL, PROBLEM, AND PROPOSED SOLUTION

A. One-to-Base-Station Robotic Network Model

Given a team of n robotic agents and a central base station,
each agent i ∈ {1, . . . , n} is required to have the following
basic computation capabilities:
(C1) agent i can identify itself to the base station;
(C2) agent i has a processor with the ability to store a region

Si ⊂ G(Q) and a center si ∈ Si.
Each i ∈ {1, . . . , n} is assumed to communicate with the

base station according to the asynchronous one-to-base-station
communication model described as follows:
(C3) there exists a finite upper bound Δ on the time between

communications between i and the base station. For sim-
plicity, we assume no two agents communicate with the
base station at the same time.

The base station must have the following capabilities:
(C4) it can store an arbitrary n-covering of Q, P = {Pi}ni=1, a

list of centroids c ∈ Qn and weights w ∈ W;
(C5) it can perform computations on subgraphs of G(Q);
(C6) it can store and operate on multiple n-coverings of Q, P =

{Pi}ni=1, and a list of centroids c ∈ Qn.

B. Problem Statement

Given weights w ∈ W assume that, for all t ∈ R≥0, each
agent i ∈ {1, . . . , n} maintains in memory a subset Si(t) of
environment Q and a vertex si(t) ∈ Si(t). Our goal is to
iteratively update the covering S(t) = {Si}ni=1 and the centers
s(t) = {si}ni=1 while solving the optimization problem

min
s∈Qn

min
S∈Covn(Q)

U(s, S) (1)

PATEL et al.: DYNAMIC PARTITIONING AND COVERAGE CONTROL 27

for some cost function U(s, S) subject to the constraint that ev-
ery node in the environment Q maintains coverage from some
agent, and subject to the constraint imposed by the robot network
model with asynchronous one-to-base-station communication.

C. One-to-Base Coverage Algorithm

Given the cost function defined by U(s, S) and the one-
to-base network model described by C1)–C6), we introduce
the One-to-Base Coverage Algorithm to solve the optimization
problem (1).

One-to-Base Coverage Algorithm

The base station maintains, in memory, an n-covering P =
{Pi}ni=1, vector of locations c = (ci)

n
i=1 and normalized

weights w = (wi)
n
i=1, while each robot i maintains, in memory,

a set Si and a vertex si. The base station maintains in temporary

memory n-coverings P = {P i}ni=1 and P = {P i}ni=1, along
with vectors c = (ci)

n
i=1 and c = (ci)

n
i=1 for computational

purposes. At t = 0, let P (0) ∈ Covn(Q), S(0) = P (0), and
let all ci(0)’s be distinct. Assume that at time t ∈ R>0, robot i
communicates with the base station. Let P+, c+, S+

i , and s+i be
the values after communication. Then, the base station executes
the following actions:

1: update P := P , c := c, P := P , c := c
2: compute sets

Pi,+ :=

{
x ∈ Q| 1

wi
dG(x, ci)

< min

{
1

wj
dG(x, cj)|x ∈ Pj , j �= i

}}

Pi,− :=

{
x ∈ Pi ∩ (∪i�=jPj)|

1

wi
dG(x, ci)

≥ min

{
1

wj
dG(x, cj)|x ∈ Pj , j �= i

}}

3: update P i := (Pi\Pi,−) ∪ Pi,+;
4: for k ∈ Pi\c do
5: compute sets

Pi,+ :=

{
x ∈ Q| 1

wi
dG(x, k)

< min

{
1

wj
dG(x, cj)|x ∈ Pj , j �= i

}}

Pi,− :=

{
x ∈ Pi ∩ (∪i�=jPj)|

1

wi
dG(x, k)

≥ min

{
1

wj
dG(x, cj)|x ∈ Pj , j �= i

}}

6: update P i := (Pi\Pi,−) ∪ Pi,+

7: update ci := k

8: if U(c, P) < U(c, P) then
9: update P i := P i

10: update ci := ci
11: P+

i := P i

12: c+i := ci
13: tell agent i to set S+

i := P+
i and s+i = c+i .

Remark 7 (Constant Cost): Given the constant cost function
U(c, P) = α for α ∈ R, for a set of initial conditions (c, P), the
One-to-Base Coverage Algorithm produces a Voronoi partition
generated by c.

Remark 8 (Full coverage): Notice that the set Pi,+ adds
points to an agents environment from the other agent’s territory
that are closer to it. Also, notice that Pi,− only removes points
from agent i’s territory if another agent is covering that territory.
Defining the sets in this way ensures that every point in the
environment will always have coverage by some agent.

We have the following main result on the limit behavior of
the algorithm.

Theorem 9 (Convergence of One-to-Base Coverage Algo-
rithm (Hmin)): Consider a network consisting of n robots
endowed with the computation capacities (C1), (C2) and com-
munication capacity (C3), and a base station with capacities
(C4), (C5), and (C6). Assume the network implements the
One-to-Base Coverage Algorithm with U(c, P) = Hmin(c, P).
Then, the resulting evolution

(s, S) : R≥0 → Qn × Covn(Q)

converges in finite time to a pair (s∗, S∗) composed of a
centroidal Voronoi partition S∗ generated by s∗.

D. Pareto-Optimal Partitions

Using the algorithms described thus far, ties along partitions’
boundaries are not handled in any optimal way and can often be
improved. The major source of suboptimal boundary allocation
is due to the discrete nature of how centroids of a region are
selected. Often times, when an agent has more than one “cen-
ter” location, the overall partition can become better balanced
if the agent takes an alternate center value as its centroid. The
following definition and proposition make this notion more
precise.

Definition 10 (Pareto-Optimal Partition): Given a vector of
positions c = {c1, . . . , cn}, the Voronoi partition P generated
by c is Pareto-optimal if for all c = {c1, . . . , ci, . . . , cn} for i ∈
{1, . . . , n} such that ci �= ci and ci ∈ Pi, the Voronoi partition
P generated by c satisfies H(c, P) ≤ H(c, P).

As an immediate consequence of the definition of a Pareto-
optimal partition and of Proposition 4, we can conclude that
every Pareto-optimal partition is also a centroidal Voronoi
partition. However, the reverse implication does not hold, as
shown in the following example.

Example 1 (1-D Pareto-optimal Partition): Consider the
three environments in Fig. 3, each with two agents denoted
by the colored circles. Assume that each cell denotes a node
in the graph and that unit-weight edges connect any adjacent
cells. Assume φ is constant. If the environment is partitioned
according to leftmost image of Fig. 3, then each agent is at the
centroid of its region, and the graph is a centroidal Voronoi
partition whose multicenter function cost-to-cover is H = 4.
This partition is clearly not well balanced, and unless ties are
broken in some nontrivial way, this is a valid (worst-case)
partition that the system can reach. If, however, the blue agent
moves to its other centroid, as shown in the middle image, then

28 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 3, NO. 1, MARCH 2016

Fig. 3. Figure shows three environments with two agents. Each cell denotes a
node in a graph, and if two cells are adjacent, then there is an unit-weight edge
between those nodes.

the worst case partition must be a variant of the partition shown
in the rightmost image whose cost-to-cover is H = 3. There
exists no partition with smaller cost-to-cover (with regards to
H) by moving any single agent and, hence, the partition in the
rightmost image is Pareto-optimal.

The aforementioned results show that Pareto-optimal par-
titions are a subset of centroidal Voronoi partitions. We can
define the cost function U(c, P) in the One-to-Base Coverage
Algorithm so that the algorithm converges to a Pareto-optimal
partition. We define the new cost function

Hinf(c) =
∑
k∈Q

min
i

{
1

wi
dG(ci, k)|k ∈ Q

}
φ(k). (2)

Notice that this function is different from Hminin in that it
looks for the absolute minimum distance to a point k. The func-
tion Hinf allows the case when k �∈ Pi, but (1/wi)dG(ci, k) <
(1/wj)dG(cj , k), for all j �= i. The Hinf function is linked to
the multicenter function in the following sense.

Proposition 11 (Properties of Hinf): Given c ∈ Qn and w ∈
W , let P be a Voronoi partition generated by c, then

H(c, P) = Hinf(c).

Proof: Voronoi partitions are optimal in the sense that
H(c, P) = Hinf(c) by definition of Hinf . �

We are now ready to state the main result of this subsection.
Given the One-to-Base Coverage Algorithm with U(s, S) =
Hinf(c), we have the following result.

Theorem 12 (Convergence of One-to-Base Coverage Al-
gorithm (Hinf)): Consider a network consisting of n robots
endowed with the computation capacities (C1), (C2) and com-
munication capacity (C3), and a base station with capacities
(C4), (C5), and (C6). Assume that the network implements
the One-to-Base Coverage Algorithm with U(c, P) = Hinf(c).
Then, the resulting evolution

(s, S) : R≥0 → Qn × Covn(Q)

converges in finite time to a pair (s∗, S∗) composed of a Pareto-
optimal partition S∗ generated by s∗.

Some remarks are in order. First, it is possible for the One-to-
base Algorithm with U = Hmin to converge to a Pareto-optimal
partition; however, it is not guaranteed as in the case with
U = Hinf . Second, if a partition is not Pareto-optimal, then the
cost to cover a region, in the context of the multicenter function,

can be further decreased by making it Pareto-optimal. This
point is clarified in Proposition 11, which relates the multicenter
function to Hinf . Finally, we emphasize that the difference in
the cost-to-cover a region for a Pareto-optimal partition versus
a centroidal Voronoi partition decreases as the map defining a
region becomes less coarse. This is because the notion of a cen-
troidal Voronoi partition not being Pareto-optimal only exists
when a region has more than one centroid, a property of discrete
spaces but not of continuous ones. Therefore, as the grid
approximating a region becomes less coarse, the more likely
it is that a centroidal Voronoi partition is also Pareto-optimal.

E. Combining Hmin and Hinf

Although the One-to-Base Coverage Algorithm with U =
Hinf is guaranteed to converge to a Pareto-optimal partition
whereas the algorithm with U = Hmin is not, the algorithm
with U = Hmin is still of practical importance. Computing
Hinf requires that for each node in the graph, all agents compare
their relative distances to that node regardless of whether that
node exists in the agent’s territory or not. The Hmin function,
however, only requires a comparison if the node belongs in
the agent’s territory. Given the computational capabilities of
the base station being used, one method may be preferred
over the other. A user can take advantage of both algorithm
properties by running the algorithm with U = Hmin until it
converges to get an initial partition, and then run the algorithm
with U = Hinf to reach a Pareto-optimal solution, if the so-
lution system has not already reached it during the U = Hmin

portion of the algorithm. With a slight abuse of notation we will
refer to this combined algorithm as the One-to-Base Coverage
algorithm with U = Hmin,inf .

IV. IMPLEMENTATION AND SIMULATIONS

In order to efficiently implement the One-to-Base Coverage
Algorithm and under the assumption of using Hmin or Hinf as
cost functions, we provide the following revised version, which
can be easily seen to be equivalent to that in Section III-C.

One-to-Base Coverage Algorithm—revised

The base station maintains in memory an n-covering P =
{Pi}ni=1, vector of locations c = (ci)

n
i=1, and normalized

weights w = (wi)
n
i=1, while each robot i maintains, in mem-

ory, a set Si and a vertex si. The base station maintains, in
temporary memory, an n-covering P = {P i}ni=1 and vectors
c = (ci)

n
i=1 and c = (ci)

n
i=1 for computational purposes. At

t = 0, let P (0) ∈ Covn(Q), S(0) = P (0), and let all ci(0)’s be
distinct. Assume that at time t ∈ R>0, robot i communicates
with the base station. Let P+, c+, S+

i , and s+i be the values
after communication. Then, the base station executes the fol-
lowing actions:

1: update P := P , c := c, c := c, P i = Q
2: for k ∈ Pi\c do
3: update ci := k
4: if U(c, P) < U(c, P) then
5: update ci := k

PATEL et al.: DYNAMIC PARTITIONING AND COVERAGE CONTROL 29

Fig. 4. Snapshots from a simulation of three robots partitioning an environment with black obstacles using the Hmin,inf One-to-base station algorithm. The
free space of the environment is modeled by using the indicated occupancy grid where each cell is a vertex in the resulting graph. The robots’ optimal coverage
position is marked by an X and the boundary of each robot’s territory drawn in its color. Some cells are on the boundary of multiple territories: for these, we draw
superimposed robot colors.

Fig. 5. Snapshots from a simulation of three robots partitioning an environment with black obstacles using the Hmin,inf One-to-base station algorithm. Note
that the initial condition is the same as in Fig. 4, but the evolution is different.

6: compute sets

Pi,+ :=

{
x ∈ Q| 1

wi
dG(x, ci)

< min

{
1

wj
dG(x, cj)|x ∈ Pj , j �= i

}}

Pi,− :=

{
x ∈ Pi ∩ (∪i�=jPj)|

1

wi
dG(x, ci)

≥ min

{
1

wj
dG(x, cj)|x ∈ Pj , j �= i

}}

7: P+
i := (Pi\Pi,−) ∪ Pi,+

8: c+i := ci
9: tell agent i to set S+

i := P+
i and s+i = c+i .

This revised version of the algorithm takes advantage of how
the cost functions Hmin and Hinf , and sets Pi,+ and Pi,− are
defined. Indeed, setting P i = Q in line 1 avoids having to
calculate Pi,+ and Pi,− for every k ∈ Pi\ci, as was done in
Section III-C, because Hmin and Hinf already distribute costs to
nodes that are closer to one agent as opposed to another. Hence,
this implementation produces the same evolutions but requires
less memory, as we no longer need the set P , and less compu-
tation time, as the sets Pi,+ and Pi,− are calculated only once.

We are now ready to proceed with our simulation results,
which are obtained by running the revised version of the algo-
rithm. To demonstrate the utility of the One-to-Base Coverage
Algorithm for various values of cost function U , we imple-
mented it using the open-source Player/Stage robot control

system and the Boost Graph Library (BGL). All results pre-
sented here are generated using Player 2.1.1, Stage 2.1.1, and
BGL 1.34.1. A nonconvex environment (borrowed from [12])
is specified with three robots. The free space is modeled using
an occupancy grid with 0.6 m resolution, producing a lattice-
like graph with all edge weights equal to 0.6 m. The 0.6 m
resolution is chosen so that each robot can fit in a grid cell.

One example with U = Hmin,inf is shown in Fig. 4. In
the simulation, the robots have a uniform weight assignment
defined by wi = 1/3 for i ∈ {1, . . . , n}3. We start with each
robot owning the entire environment and stationed at its unique
centroid as shown in the first panel, and then proceed by
choosing a random robot to communicate with the base station
at each iteration. The second panel shows an intermediate
covering of the environment before convergence to a centroidal
Voronoi partition. The third panel shows convergence of the
U = Hmin portion of the U = Hmin,inf algorithm. The fourth
panel shows the Pareto-optimal partition which is achieved
after convergence of the U = Hinf portion of the U = Hmin,inf

algorithm. As can be seen, the movement of the robot relative to
the third panel is marginal, but the partition appears to be more
balanced and is still centroidal Voronoi. The cost to cover in
terms of the multicenter function H decreases from H = 729 to
H = 728. Although the final partition and the decrease in cost-
to-cover change only marginally in this example, the change
can be much more noticeable as is explained in the following.

Another example with U = Hmin,inf is shown in Fig. 5. As
before, the robots have uniform weight assignment defined by
wi = 1/3 for i ∈ {1, . . . , n}3. The example starts with each

30 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 3, NO. 1, MARCH 2016

TABLE I
MULTICENTER FUNCTION COST-TO-COVER STATISTICS

FOR EACH ALGORITHM FROM 100 SIMULATION RUNS

agent owning the entire territory, with the agent being stationed
at their unique centroid, and the simulation continuing with
the agents being selected at random to communicate with the
base station. The second panel shows the convergence of the
U = Hmin portion of the algorithm, which leads to a final
multicenter cost of H = 804. The third panel shows the update
after the first iteration of the U = Hinf portion of the algorithm
with the green agent. The update shows that the lower portion
of the environment is getting less than optimal coverage and is
improved by moving an agent closer to that region. The fourth
panel shows the Pareto-optimal partition which is achieved
after convergence of the U = Hinf portion of the U = Hmin,inf

algorithm. Notice that in this example, the final partition is quite
different from the partition achieved at the end of the U = Hmin

portion of the algorithm. The final multicenter function cost of
this partition is H = 753, which is a noticeable improvement in
coverage.

So far, we have looked at two representative examples of
using the algorithm with U = Hmin,inf . These examples il-
lustrate that, like centroidal Voronoi partitions, Pareto-optimal
partitions are not necessarily unique, and that the evolution
under the One-to-base station algorithm is only guaranteed to
converge to a locally optimal solution. To see how the algo-
rithm compares, in general, and for different choices of U , we
simulate the algorithm with the same initial setup as shown in
Figs. 4 and 5. The One-to-Base Coverage Algorithm with U =
Hmin, U = Hinf , and U = Hmin,inf is run 100 times for each
choice of U . Table I summarizes the final cost-of-coverage for
each choice of U . We observe that the One-to-Base Coverage
Algorithm with U = Hmin converges to partitions that have
the same minimum cost as those attained with the algorithm
using U = Hinf or U = Hmin,inf . On the other hand, the max-
imum cost-to-cover with U = Hmin can be much larger than
with the other two choices of U . Of the three algorithms, the
algorithm with U = Hinf converges consistently to partitions
with the lowest coverage costs; however, as discussed earlier,
it is computationally the most expensive. Finally, the algorithm
with U = Hmin,inf behaves as expected, converging on average
to partitions with values similar to those of the algorithm with
U = Hinf although with a slightly larger deviation.

A. Handling Dynamic Changes

Evolving overlapping coverings in the One-to-Base Coverage
Algorithm enable simple handling of environmental changes
along with dynamic arrivals, departures, and even the disap-
pearance of robots. Changes in the environment, along with
robot departures or disappearances, can increase coverage cost,
but those increases are only a transients and, with the appro-
priate algorithmic additions, the system will converge in finite
steps after such an event. The One-to-Base Coverage Algorithm

also has the additional advantage that it can account for changes
in robot performance due to changes in capability caused by
potential damage to the hardware. The following algorithmic
additions address how to handle the events described.

a) Environment changes: Each region in the environment
is initially assigned an importance according to the weight
function φ(x). As robots explore the environment, they may
determine that certain regions are more/less important than
what was originally assigned. Robots can communicate this to
the base station at which point the base station can update φ(x).

b) Arrival: When a new robot i communicates with the
base station, it can be assigned any initial Pi desired. Possibili-
ties include adding all vertices within a set distance of its initial
position or assigning it with just the single vertex which has the
highest coverage cost in Q.

c) Departure and disappearance: A robot i might an-
nounce to the base station that it is departing, perhaps to
recharge its batteries or to perform some other task. In this
situation, the base station can simply add Pi to the territory
of the next robot it talks to before executing the normal steps
of the algorithm. The disappearance or failure of a robot i can
be detected if it does not communicate with the base station
for longer than Δ. If this occurs, then the departure procedure
above can be triggered. Should i reappear later, it can be
handled as a new arrival or given its old territory.

d) Performance: Malfunction of a robot i can be detected
by the agent via self diagnosis and communicated to the base
station. If this malfunction causes the robot to survey less
territory, then wi will have changed, so the base station can
simply re-normalize the vector of weights w.

V. CONCLUSION

We have described a coverage algorithm, with corresponding
cost functions, which uses the One-to-Base station communica-
tion architecture that drives territory ownership among a team
of robots in a nonconvex environment to a centroidal Voronoi
partition in finite time. We have also defined the notion of
Pareto-optimal partition and have provided a provably correct
method to reach such a partition using the One-to-Base Cover-
age Algorithm. Finally, we have demonstrated the effectiveness
of the algorithm through simulation, and have outlined various
ways that the algorithm can be adapted to allow for dynamic
changes in the system. We have focused on dividing territory
in this work, but the algorithm can easily be combined with
methods to provide a service over Q, as in [16]. This work
leaves various extensions open for further research. First, it
would be worthwhile to adapt the algorithm to allow for area-
constrained partitions similar to the work done in [17] and [18].
Second, we would like to extend the One-to-base Coverage
Algorithm to other communication settings (e.g., directional
or pair-wise gossip) to take advantage of the notion of Pareto-
optimal partitions.

APPENDIX

In this appendix we prove Theorems 9 and 12. Any mention
to the One-to-Base Coverage Algorithm in this appendix will

PATEL et al.: DYNAMIC PARTITIONING AND COVERAGE CONTROL 31

refer to the version presented in Section III-C. Their proof
is based on the following convergence result for set-valued
algorithms on finite state spaces, which can be recovered as a
direct consequence of [19, Theor. 4.3].

Given a set X , a set-valued map T : X ⇒ X is a map
which associates to an element x ∈ X a subset Z ⊂ X . A set-
valued map is nonempty if T (x) �= ∅ for all x ∈ X . Given a
nonempty set-valued map T , an evolution of the dynamical
system associated to T is a sequence {xn}n∈Z≥0

⊂ X with the
property xn+1 ∈ T (xn) for all n ∈ Z≥0.

Lemma 3 (Convergence Under Persistent Switches): Let
(X, d) be a finite metric space. Given a collection of maps
T1, . . . , Tm : X → X , define the set-valued map T : X ⇒ X
by T (x) = {T1(x), . . . , Tm(x)} and let {xn}n∈Z≥0

be an evo-
lution of T . Assume that:

(i) there exists a function U : X ⇒ IR such that U(x′) <
U(x), for all x ∈ X and x′ ∈ T (x) \ {x}; and

(ii) for all i ∈ {1, . . . , n}m, there exists an increasing se-
quence of times {nk|k ∈ Z≥0} such that xnk+1 =
Ti(xnk

) and (nk+1 − nk) is bounded.

Let Fi = {x ∈ X|Ti(x) = x} be the set of fixed points of Ti.
Then, for all x0 ∈ X there exist N ∈ N and x̄ ∈ (F1 ∩ · · · ∩
Fm) such that xn = x̄ for all n ≥ N .

Note that the existence of a common fixed point for the
collection of maps Ti is guaranteed by this result.

We now apply Lemma 13 to the evolution of One-to-
base Coverage Algorithm with U(c, P) = Hmin(c, P) and
U(c, P) = Hinf(c), respectively. To do so, for each function
given by U(c, P), we must describe the algorithm as a set-
valued map and find a corresponding Lyapunov function. The
first step is possible because the One-to-Base Coverage Algo-
rithm is well posed in the sense of the following immediate
result.

Proposition 14 (Well Posedness): Let P ∈ Covn(Q) and c ∈
Qn such that ci ∈ Pi and ci �= cj for all i and all j �= i. Then,
P+ and c+ produced by the One-to-Base Coverage Algorithm
meet the same criteria.

Given this result, the One-to-Base Coverage Algorithm can
be written as a set valued map. For any i ∈ {1, . . . , n}, we
define the map TU,i : Q

n × Covn(Q) → Qn × Covn(Q) by

TU,i(c, P) =
{
{c1, . . . , c+i , . . . , cN}, {P1, . . . , P

+
i , . . . , Pn}

}

where c+i and P+
i are defined per the algorithm when i is the

communicating robot, and U is dependent on the cost function
we are referring to (i.e., U = Hmin or U = Hinf). Then, we
can define the set-valued map TU : Qn × Covn(Q) �→ Qn ×
Covn(Q) by

TU (c, P) = {TU,1(c, P), . . . , TU,N (c, P)}.

Thus, the dynamical system defined by the application of the
algorithm is described by {c+, P+} ∈ TU (c, P).

For our Lyapunov arguments, we will need to define M(P)
as the set of vertices which are owned by multiple agents. We
now proceed by stating two useful propositions, which allow us
to conclude Theorem 9.

Proposition 15 (Decaying Hmin Cost Function): After each
iteration of the one-to-base station algorithm if (c+, P+) �=
(c, P) then one of the following holds:

i) Hmin(c
+, P+) < Hmin(c, P);

ii) Hmin(c
+, P+) = Hmin(c, P), and |M(P+)| < |M(P)|.

Proof: If c+ = c, then Hmin(c
+, P+) ≤ Hmin(c, P).

This is a direct consequence of how the sets Pi,+ and Pi,−
are defined. Points are added to Pi if and only if they are
strictly closer to ci than any other center cj and, hence, the
cost of Hmin must decrease by the addition of these points.
Points are removed if and only if they are strictly farther away
or tied points and so Hmin must decrease or stay the same. If
c+ �= c, then by lines 8–10 of the algorithm Hmin(c

+, P+) <
Hmin(c, P). For the case Hminin(c

+, P+) = Hminin(c, P),
then for every x ∈ Pj\Pi, for all j �= i, there exists no point that
is strictly closer to the center ci than any other center cj , j �= i.
Therefore, no points can be added to P+

i , and so if P+ �= P , it
must be the case that |M(P+)| < |M(P)|. �

Proposition 16 (Convergence of THmin
): The evolution of

the One-to-Base Coverage Algorithm (c(t), P (t)) generated by
the map THmin

converges in finite time to the intersection of the
equilibria of the maps THmin,i, that is, to a pair (c, P) where P
is a centroidal Voronoi partition generated by c.

Proof: The proof proceeds with an application of
Lemma 13 to (c(t), P (t)). The algorithm is the mapping
THmin

: Qn × Covn(Q) �→ Qn × Covn(Q) defined above and
is well posed. We can form a Lyapunov function using
Proposition 15 as follows. Since the set Q is finite, there exists
only a finite number of possible values for Hminin and |M |.
Let εm be the magnitude of the smallest nonzero difference
between any two values of Hminin. Let αM be larger than
twice the maximum possible value of |M |. Define V : Qn ×
Covn(Q) → R≥0 by

V (c, P) = Hmin(c, P) +
εm
αM

|M(P)|.

Thanks to this scaling of |M(P)|, Proposition 15 implies that
if (c′, P ′)∈THmin

(c, P), then either V (c′, P ′)<V (c, P) or (c′,
P ′)= (c, P). Thus,V (c, P) fulfills assumption (i) in Lemma 13.
Moreover, the communication model (C3) ensures that assump-
tion (ii) in Lemma 13 is met. Now, applying Lemma 13, we are
ensured that the dynamics converge to a fixed point (c∗, P ∗).
It remains to show that P ∗ is a centroidal Voronoi partition
generated by c∗. We do this by refining in three sequential
steps the properties that the fixed point must have: P ∗ is a
partition; (c∗, P ∗) is a a Voronoi partition; and, finally, (c∗, P ∗)
is a centroidal Voronoi partition. First, if P ∗ is not a partition,
then P ∗

i,− �= ∅; this establishes that P ∗ is a partition. Second, if
the partition P ∗ is not Voronoi, then P ∗

i,+ �= ∅; this establishes
that (c∗, P ∗) is a Voronoi partition. Third, if P ∗ is a Voronoi
partition generated by c∗, but c∗i �∈ C(P ∗

i) for any i, then from
part (iii) of Proposition 5, there exists a location c∗∗i (at a
centroid location) that improves the cost to cover P ∗

i ; line 4 of
the algorithm guarantees that this location is checked, and lines
8–10 ensure the position is updated to that location or one with
an even lower cost. It should be noted that an update in location
to c∗∗i can simultaneously lead to an update in territory P ∗

i :
however, given that P ∗ is a partition, only P ∗

i,+ can contribute to

32 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 3, NO. 1, MARCH 2016

the territory, which further decreases the coverage cost by the
definition of Hmin and P ∗

i,+. Therefore, we have established
that there exists an update reducing the cost function THmin

if the fixed point is not a centroidal Voronoi partition. Then,
P ∗ must be a centroidal Voronoi partition generated by c∗.
(Note that the fixed point could also potentially have other
properties in addition to being a centroidal Voronoi partition,
however, establishing those properties are beyond the scope of
this proof.) �

Since updates to agent i in base-station memory also occur
on the physical agent, we can conclude the convergence proof
of Theorem 9.

Finally, we state two propositions which allow us to conclude
Theorem 12.

Proposition 17 (DecayingHinf Cost Function): After each it-
eration of the one-to-base station algorithm if (c+,P+) �=(c,P)
using Hinf as the cost function then one of the following holds:

i) Hinf(c
+) < Hinf(c);

ii) Hinf(c
+) = Hinf(c), and Hmin(c

+, P+) < Hmin(c, P);
iii) Hinf(c

+) = Hinf(c), Hmin(c
+, P+) = Hmin(c, P) and

|M(P+)| < |M(P)|.
Proof: If c+ = c then Hmin(c

+, P+) ≤ Hmin(c, P) and
Hinf(c

+) = Hinf(c). This is a direct consequence of how we
define Hinf and the sets Pi,+ and Pi,−. Points are added to Pi

if and only if they are strictly closer to ci than any other center
cj and hence the cost of Hmin must decrease by the addition
of these points. Points are removed if and only if they are
strictly farther away or tied points and so Hmin must decrease
or stay the same. If c+ �= c then by the lines 8–10 of the
algorithm Hinf(c

+) < Hinf(c). For the case Hmin(c
+, P+) =

Hmin(c, P), then for every x ∈ Pj\Pi, for all j �= i, there exist
no point that is strictly closer to the center ci than any other
center cj , j �= i. Therefore, no points can be added to P+

i , and
so if P+ �= P it must be the case that |M(P+)| < |M(P)|. �

Proposition 18 (Convergence of THinf
): The evolution of

the One-to-Base Coverage Algorithm (c(t), P (t)) generated
by the map THinf

converges in finite time to the intersection
of the equilibria of the maps THinf ,i, that is, to a pair (c, P)
where P is a Pareto-optimal partition generated by c.

Proof: The proof follows the lines of the proof of
Proposition 16, with the important modification of using a
different Lyapunov function, defined as follows. Let εi and εm
be the magnitude of the smallest possible nonzero difference
between two values of Hinf and Hmin, respectively. Let αm

and αM be larger than twice the maximum possible value of
Hmin and |M |, respectively. If we define the function V as

V (c, P) = Hinf(c) +
εi
αm

Hmin(c, P) +
εiεm

αmαM
|M(P)|

and we invoke Proposition 17 and Lemma 13, we conclude that
the dynamics converge to a fixed point (c∗, P ∗).

It remains to be shown that P ∗ is a Pareto-optimal partition
generated by c∗. If P ∗ is not a partition, then P ∗

i,− �= 0 and
if the partition is not Voronoi, then P ∗

i,+ �= 0. Continuing by
contradiction, assume that c∗ forms a Voronoi partition which
is not Pareto-optimal. This implies that there exists a c′ ∈ P ∗

where for at least one agent c′i �= c∗i and a partition P ′ generated

by c′ such that H(c′, P ′) < H(c∗, P ∗). By the definition of the
algorithm and Proposition 11, this is not possible. Therefore,
the fixed point partition is Pareto-optimal. �

REFERENCES

[1] E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer, and
D. M. Fratantoni, “Multi-AUV control and adaptive sampling in Monterey
Bay,” IEEE J. Ocean. Eng., vol. 31, no. 4, pp. 935–948, Oct. 2006.

[2] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29, no. 1,
pp. 9–20, 2008.

[3] B. Golden, S. Raghavan, and E. Wasil, The Vehicle Routing Problem:
Latest Advances and New Challenges, vol. 43, Operations Research/
Computer Science Interfaces. New York, USA: Springer-Verlag, 2008.

[4] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Net-
works. Princeton, NJ, USA: Princeton University Press, 2009.

[5] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[6] J. Cortés, S. Martínez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, Apr. 2004.

[7] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira,
“Sensing and coverage for a network of heterogeneous robots,” in Proc.
IEEE Conf. Dec. Control, Cancún, México, Dec. 2008, pp. 3947–3952.

[8] S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot coverage and
exploration in non-Euclidean metric spaces,” in Algorithmic Founda-
tions of Robotics X, vol. 86. New York, USA: Springer-Verlag, 2013,
pp. 245–262.

[9] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic net-
works for optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077–
1087, 2012.

[10] A. Pereira, H. Heidarsson, C. Oberg, D. Caron, B. Jones, and
G. Sukhatme, “A communication framework for cost-effective operation
of AUVs in coastal regions,” in Field and Service Robotics, vol. 62, Tracts
in Advanced Robotics, A. Howard, K. Iagnemma, and A. Kelly, Eds.
New York, USA: Springer-Verlag, 2010, pp. 433–442.

[11] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling
and analysis of a three-tier architecture for sparse sensor networks,”
Ad Hoc Netw., vol. 1, no. 2/3, pp. 215–233, 2003.

[12] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete partitioning and
coverage control for gossiping robots,” IEEE Trans. Robot., vol. 28, no. 2,
pp. 364–378, Apr. 2012.

[13] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[14] V. V. Vazirani, Approximation Algorithms. New York, USA: Springer-
Verlag, 2001.

[15] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Dynamic partitioning and
coverage control with asynchronous one-to-base-station communication,”
in Proc. IEEE Conf. Dec. Control Eur. Control Conf., Orlando, FL, USA,
Dec. 2011, pp. 5589–5594.

[16] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” in Proc. IEEE, 2011, vol. 99, no. 9,
pp. 1482–1504.

[17] J. Cortés, “Coverage optimization and spatial load balancing by robotic
sensor networks,” IEEE Trans. Autom. Control, vol. 55, no. 3, pp. 749–
754, Mar. 2010.

[18] R. Patel, P. Frasca, and F. Bullo, “Centroidal area-constrained partitioning
for robotic networks,” ASME J. Dynam. Syst. Meas., Control, vol. 136,
no. 3, p. 031024, 2014.

[19] F. Bullo, R. Carli, and P. Frasca, “Gossip coverage control for robotic
networks: Dynamical systems on the space of partitions,” SIAM J. Control
Optimiz., vol. 50, no. 1, pp. 419–447, 2012.

Rushabh Patel (S’12) received the B.S. and M.S.
degrees in aerospace engineering from California
Polytechnic State University, San Luis Obispo, CA,
USA, in 2007, and the Ph.D. degree in control and
dynamical systems at the University of California,
Santa Barbara, CA, USA, in 2015.

Currently, he is a Control Analyst at Northrop
Grumman Aerospace Systems, Redondo Beach, CA,
USA. From 2007 to 2011, he was a Performance
Analyst with Northrop Grumman Aerospace Sys-
tems. His research interests include coordination and

surveillance in networked systems.

PATEL et al.: DYNAMIC PARTITIONING AND COVERAGE CONTROL 33

Paolo Frasca received the Ph.D. degree in mathe-
matics for engineering sciences from Politecnico di
Torino, Torino, Italy, in 2009.

Between 2008 and 2013, he held research and
visiting positions at the University of California,
Santa Barbara, CA, USA, at the IAC-CNR, Rome,
and at the Politecnico di Torino. Since 2013, he is
an Assistant Professor with the Department of Ap-
plied Mathematics, University of Twente, Enschede,
the Netherlands. He has (co)authored more than 40
journal and conference papers and has given several

invited talks at international institutes and events on his research interests:
theory of network systems and cyber-physical systems, with applications on
robotic, sensor, infrastructural, and social networks.

Prof. Frasca is a recipient of the 2013 SIAG/CST Best SICON Paper Prize.
He is currently Subject Editor for the international journal of robust and
nonlinear control and in the conference editorial boards of the IEEE Control
Systems Society and of the European Control Association (EUCA).

Joseph W. Durham received the B.A. (Hons.) de-
gree in physics from Carleton College, Northfield,
MN, USA, in 2004, and the M.Sc. and Ph.D. degrees
in control and dynamical systems from the Univer-
sity of California, Santa Barbara, CA, USA, in 2007
and 2011, respectively.

Currently, he is a Senior Research Scientist at Kiva
Systems, North Reading, MA, USA. His research in-
terests include robotic coordination and navigation,
distributed resource allocation, and voting methods.

Ruggero Carli received the Laurea degree in com-
puter engineering and the Ph.D. degree in infor-
mation engineering from the University of Padova,
Padova, Italy, in 2004 and 2008, respectively.

He was a Postdoctoral Fellow with the Department
of Mechanical Engineering, University of California
at Santa Barbara, Santa Barbara, CA, USA, from
2008 to 2010. Currently, he is an Assistant Professor
with the Department of Information Engineering,
University of Padova. He has published more than 70
journal and conference papers. His current research

interests include control theory and, in particular, control under communication
constraints, cooperative control, and distributed estimation.

Francesco Bullo (S’95–M’99–SM’03–F’10) is a
Professor with the Mechanical Engineering Depart-
ment and the Center for Control, Dynamical Systems
and Computation, at the University of California,
Santa Barbara, CA, USA. He was previously with
the University of Padova, Padova, Italy; the Cali-
fornia Institute of Technology, Pasadena, CA, USA,
and the University of Illinois at Urbana-Champaign,
Champaign, IL, USA. He is the coauthor of Ge-
ometric Control of Mechanical Systems (Springer,
2004) and Distributed Control of Robotic Networks

(Princeton, 2009). His main research interests are network systems and dis-
tributed control with applications to robotic coordination, power grids, and
social networks.

Prof. Bullo received the 2008 IEEE CSM Outstanding Paper Award, the 2010
Hugo Schuck Best Paper Award, the 2013 SIAG/CST Best Paper Prize, and
the 2014 IFAC Automatica Best Paper Award. He has served on the editorial
boards of IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ESAIM: Con-
trol, Optimization, and the Calculus of Variations, SIAM Journal of Control
and Optimization, and Mathematics of Control, Signals, and Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

