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Abstract

In this paper, we propose a stochastic model to describe kavels service providers charge client
companies based on users’ queries for the keywords relatétese companies’ ads by using certain
advertisement assignment strategies. We formulate amizatiion problem to maximize the long-term
average revenue for the service provider under each diémtg-term average budget constraint, and
design an online algorithm which captures the stochastpeaties of users’ queries and click-through
behaviors. We solve the optimization problem by making emtions to scheduling problems in wireless
networks, queueing theory and stochastic networks. Urgiker models, we do not assume that the
number of query arrivals is known. Due to the stochastic reatdi the arrival process considered here,
either temporary “free” service, i.e., service above thecfied budget (which we call “overdraft”) or
under-utilization of the budget (which we call “underdtais unavoidable. We prove that our online
algorithm can achieve a revenue that is witliiie) of the optimal revenue while ensuring that the
overdraft or underdraft i®(1/¢), wheree can be arbitrarily small. With a view towards practice, we
can show that one can always operate strictly under the butigaddition, we extend our results to
a click-through rate maximization model, and also show howalgorithm can be modified to handle
non-stationary query arrival processes and clients witittslerm contracts.

Our algorithm also allows us to quantify the effect of errorglick-through rate estimation on the
achieved revenue. We show that we lose at ”'iﬁ fraction of the revenue i\ is the relative error
in click-through rate estimation.

We also show that in the long run, an expected overdraft le¥el(log(1/€)) is unavoidable
(a universal lower bound) under any stationary ad assighmlgorithm which achieves a long-term
average revenue withi@(¢) of the offline optimum.

. INTRODUCTION

Providing online advertising services has been the majorcgoof revenue for search service
providers such as Google, Yahoo and Microsoft. When an neteuser queries a keyword,
alongside the search results, the search engine may alptaydiadvertisements from some
companies which provide services or goods related to thysvé&ed. These companies pay the
search service providers for posting their ads with a sgecdimount of price for each ad on a
pay-per-impression or pay-per-click basis. We call thefirefds” in the following text.

Maximizing the revenue obtained from their clients is theg labjective of search service
providers. Research which targets this objective hasvi@tbtwo major directions. One is based
on auction theory, in which the goal is to design mechanisnfavour of the service provider,
and much of the research in this direction considers stadie (®.9. [13]; see [10] for a survey),
while dynamic models such the onelin[22] are still emergiritg other is from the perspective of
online resource allocation without considering the impzcthe service provider's mechanisms
on the clients’ bids, and the main focus of this kind of reskais on designing an online
algorithm which posts specific ads in response to each seg@ty arriving online, in order to
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achieve a high competitive ratio with respect to the offlip¢imal revenue. Our work follows
the second direction.
Our model is as follows:

Online Advertising Moddl:

Assume that queries for keywoudarrive to the search engine according to a stochastic pgoces
at ratey, queries per time slot, where we have assumed that time igetiisand &time slot” is
our smallest discrete time unit. In response to each quemahrthe search engine may display
ads from some clients on the webpage. There Jardifferent places (e.g., top, bottom, left,
right, etc.) on a webpage where ads could be displayed. Wecalll these placeSswebpage
slots” When clienti’s ad is displayed in webpage slstwhen keywordg is queried, there is
a probability with which the user who is viewing the page (tdme who generated the query)
will click on the ad. This probability, called thelick-through rate,” is denoted by:;s.

A client specifies the amount of money (“bid”) that it is wilg to pay to the search service
provider when a user clicks on its ad related to a specificyquake user, to denote this
per-click payment from client for its ad related to a query for keyword Additionally, client
1 also specifies an average budggetwhich is the maximum amount that it is willing to pay
per “budgeting cycle” on average, where a budgeting cycle equalsVtdime slots (we have
introduced the notion of a budgeting cycle since the tinsesover which queries arrive may
be different than the time-scales over which budgets mayeliéed).

The problem faced by the search service provider is thensigrmagadvertisements to webpage
slots, in response to each query, so that its long-term geervenue is maximized.

Based on the above model, we design an online algorithm wadghbieves a long-term average
revenue withinO(e) of the offline optimal revenue, wherecan be chosen arbitrarily small,
indicating the near-optimality of our online algorithm. fBee entering into the details, in the
next two subsections we will first survey the related literaf highlight the main contributions
of our work, and discuss the differences between our mod#lpaevious ones.

A. Related Work

We will only survey the online resource allocation modelsehend not the auction models.
The online ads model in prior literature mainly include twgpés, namely AdWords (AW)
and Display Ads (DA), of which the difference lies in the ctvaged resource of each client.
In the AW model, the resource is the client’s budget, whilethe DA model, the resource
is the maximum number of impressions agreed on by the cliedt the service provider.
Correspondingly, after each resource allocation steprabeurce of a client whose ad is posted,
is reduced by the bid valfleén the AW model, orl impression in the DA model. Both of
them belong to a general class of packing linear progranmutated in [8]. Most of the prior
online algorithms for solving the AW and DA model respect baed constraint on the client’s
resources. One exception iis [9], where the authors arguéftba disposal” of resources makes
the DA model more tractable (but not necessary for the AW rf)ode

Mehta et al.[[2D0] modeled the online ads problem as a gemetan of an online matching
problem [16] on a bipartite graph of queries and clientsetat [5], Buchbinder et al. showed
that matching clients to webpage slots (whether it is a sis@fit or multiple slots) can be solved

1This refers to the pay-per-impression scheme. With a paglpek scheme, the reduction only happens if the ad is elick



as a maximum-weighted matching problem. Following [5], aber of other online algorithms

using the maximum-weighted bipartite matching idea hawnbgoposed in [19],]9],.16] and

[8]. The algorithms in[[15] and[ [20], which were earlier th§s], can also be regarded as
maximum-weighted matching solutions on this bipartitepgraf clients and webpage slots.

In [15], the “b-matching” problem (related to the online ammtext, bids are trivially) or 1
and budgets are a) is solved by anl — 1/e competitive algorithm as — oo and the weights
are the remaining budgets of those clients interested im#évdy arrived query (i.e., the bid
equalsl). For the online ads problem in which bids and budgets cae hawneral and different
values, [[20] (its longer version i5 [21]) uses the “disc@dfitbids as the weights corresponding
to each client. The discount factor is calculated by a famcti(z) = 1—e*~!, of which the input
x is the fraction of a client’s budget that has been consumédirTalgorithm is alsal — 1/e
competitive, under an assumption that bids are small comapi@ budgets. By taking advantage
of estimated numbers of query arrivals for each keyword iwithgiven period and modifying
the discount factor in_[20], Mahdian et al. |19] designed asslof algorithms which achieve a
considerably better competitive ratio with accurate eatés while still guarantee a reasonably
good competitive ratio with inaccurate estimates, alsoragsg small bids.

The algorithms in[[5], [[9], [[6], [8] and[]1], all use a primdlal framework to compute a
maximum-weighted matching at each iteration, in which th@ldsariables (corresponding to
each client) are used to determine the weights. The itwol /e competitive algorithms in |5]
and [9] update the dual variables dynamically in their ptihaal type algorithms every time
a decision is made. Specifically, each dual variable in [3jiclv implicitly tracks the fraction
of budget that has been spent by the corresponding cliemtysgduring each iteration at a rate
parameterized by the fraction of the bid for the incomingrgue this client’s total budget, while
[9] uses an “exponentially weighted average” of the up-ted (i) most valuable impressidhs
assigned to client as a new dual variable with respect to this client. On therdthed, the three
dual type learning-based algorithms in [6]] [8] and [1] @@ a competitive ratio of — O(e)
based on a random-order arrival model (rather than the sanal model in most of the earlier
work), assuming small bids and knowledge of the total nunabeyueries. The main difference
between them is that [[6] and![8] use an initiafraction of queries to learn the optimal dual
variables (with respect to this training set), while theoaithm in [1] repeats the learning process
over geometrically growing intervals. Additionally, therhall bids” condition in[[1] is slightly
weaker than the condition inl[6] and] [8].

B. Our Contributions and Comparison to Prior Work

As in prior work (especially[[5] and [9]), our solution redien a primal-dual framework to
solve a maximum-weighted matching problem on a bipartigglrof clients and webpage slots,
with dynamically updated dual variables which contributetite weights on the edges of the
bipartite graph. However, unlike prior work, we are able bdain a revenue which i®(¢) close
to the optimal revenue using a purely adaptive algorithninewt the need for the knowledge of
the number of query arrivals over a time period or the avemgeal rates.

Our solution is related to scheduling problems in wirelessmorks. In particular, we use
the optimization decomposition ideas in_[11], the stodkagérformance bounds in [18] and
the modeling of delay-sensitive flows ih_[14]. Borrowing fmothat literature, we introduce
the concept of arfoverdraft” queue The overdraft queue measures the amount by which the

%In the DA model in [9],n() is defined as the maximum number of impressions agreed fentdli After allowing free
disposal, only the current(:) most valuable impressions assigned to cliemtill be considered.



provided service temporarily exceeds the budget specifyea dient. In making the connection
to wireless networks, we define something called tper-client revenue region,’which is

related to the concept of capacity region in queueing nétsvésee [[11],[[18]). In our context,
it characterizes the revenue extractable from each cleit fanction of all the clients’ budgets.

Our online algorithm exhibits a trade-off between the rexeabtained by the service provider
and the level of overdrafts. We can further modify our onkgorithm so that clients can always
operate strictly under their budgets. Finally, our algonitand analysis naturally allow us to
assess the impact of click-through rate estimation on thacgeproviders revenue.

We are able to show that our online algorithm achieves andoaérlevel of O(1/¢). So a
natural question is whether this bound is tight. We show thatoverdraft for any algorithm
must beQ(log(1/¢)). While there is a gap between the upper and lower boundsthegtey
imply that the overdraft must increase whemoes to zero. This work is related tal [3], [25],
[26], [24] and [12] in the context of communication netwarl&ee Section IV for a detailed
survey.

Besides the revenue maximization model, we also study anottiine ads model in which the
objective is to maximize the average overall click-througte, subject to a minimum impression
requirement for each client. We also show that our resultsbeanaturally extended to handle
non-stationary query arrival processes and clients whiabe hshort-term contracts with the
service provider. .

Like the algorithm in [[1], our algorithm can also be genamdi to a wider class of linear
programs within different application contexts, where toefficients in the objective function
and constraints are not necessarily nonnegative.

There are two points of departure in our algorithm compaoceexisting models: the first one
is that we assume a purely stochastic model in which the gaemal rates are unknown. Thus,
there is no need to know the number of arrivals in a time peasdn prior models, and this
is even true for non-stationary query arrival processeg. dther is that we assume an average
budget rather a fixed budget over a time horizon. This allosv®etter model permanent clients
(e.g., big companies who do not stop advertising) and whoad@rovide a fixed time-horizon
budget. Clients who advertise for a limited amount of tima eéso be handled well since the
algorithm is naturally adaptive.

A minor difference with respect to prior models is that ourdabassumes that time is slotted.
This can be easily modified to assume that query arrivals canrcat any time according to
some continuous-time stochastic process. The only difterds that our analysis would then
involve continuous-time Lyapunov drift instead of the dete-time drift used in this paper. From
a theoretical point of view, our analysis is different fromop work which uses competitive ratios:
our model and solution is similar in spirit to stochastic mpgmation [4] where gradients (here
the gradient of the dual objective) are known only with sttt perturbations. This point of
view is essential to model stochastic traffic with unknowatistics.

Instead of thel — O(e) competitive ratio in prior work, we show that our algorithrchéeves
a revenue which is withirO(e¢) of the optimal revenue. Thé(¢) penalty arises due to the
stochastic nature of our model. However, we do not requisairaptions such as knowledge
of the total number of queries in a given periad![19], [6],,[§]], or information of keyword
frequencies[[19].

%It should be mentioned that another common assumption tdoids” (or “large budgets”, “large offline optimal value”)
used in [15], 20], [[19], 19], [[6] and[[8] is not essentiallyfiedrent from our “long-term” assumption.



C. Organization of the Paper

The rest of the paper is organized as follows: In Secfibn B, farmulate an optimization
problem involving long-term averages. In Section Ill, warstonsidering the stochastic version
of our model and propose an online algorithm, which alscoohiices the concept of “overdraft
queue.” Performance analysis of this online algorithm,alvhincludes the near-optimality of
the long-term revenue and an upper bound on the overdradt, leml also be done in Section
[ The last two subsections of Sectignllll present two estens, namely the decisions based
on estimated click-through rates and the “underdraft’” naecdm. In Sectiom IV, we derive a
universal lower bound on the expected overdraft level uaggrstationary algorithms for online
advertising. The second online ads model “click-througtie raaximization problem” with its
related extensions, algorithm design and analysis is gineBection[V. Sectiof VI concludes
the whole paper.

Compared to an earlier version of this paper which appeard28], we give a more detailed
literature survey in Subsection T+FA, all the proofs for tleenimas, theorems and corollaries in
Sectionll] (we only stated these results without proofs[28][due to page limits), and full
discussions on the underdraft mechanism in Subselctida Hections TV and V are completely
new.

II. AN OPTIMIZATION PROBLEM INVOLVING LONG-TERM AVERAGES

Based on the model described in Section I, we first pose theteymaximization problem as
an optimization problem involving long-term averages. #is purpose, we define an assignment
of clients to webpage slots as a matfix of which the (i, s)* element is defined as follows:

1, if client ¢ is assigned to webpage slot
Mi -
0, else.

The matrixM has to satisfy some practical constraints. First, a webgligecan be assigned to
only one client and vise versa. Furthermore, the assignafeciients to certain webpage slots
may be prohibited for certain queries. For example, it maynmake sense to advertise chocolates
when someone is searching for information about treatnfentdiabetes. These constraints can
be abstracted as follows: For the queried keywgrdhe set of assignment matrices have to
belong to some seM,. We also letp, ,, be the probability of choosing matri%/ when the
queried keyword ig.

The optimization problem is then given by

meax RP) = vy Y Do D Miscqiary 1)
q MeMq i,8

subject to

NZ Vq Z qu Z Miscqisrqi S bi7 \V/’L7 (2)

q MeM, s
0 S qu S 17 VQ7 M < Mf]’ (3)
> b <1l Ve (4)

MeM,

In the above formulation, the objectivd (1) is the averagemae per time slot and constraint (2)
expresses the fact that the average payment over a budggtilegshould not exceed the average
budget. The optimization is a linear program and if all thelgpem parameters are known, in



principle, it can be solved offline, returning probabilétifp_,, } which can be used by a service
provider to maximize its revenue. However, such an offlinetean is not desirable for at least
two reasons:

« Being a static approach, it does not use any feedback abewltinent state of the system.
For example, the fact that the empirical average paymentabieat has severely exceeded
its average budget would have no impact on the subsequeignamst strategy. Since
the formulation and hence, the solution, only cares abong-term budget constraint
satisfaction, severe overdraft or underdraft of the budget occur over long periods of
time.

. The offline solution is a function of the query arrival ratgs }. Thus, a change in the
arrival rates would require a recomputation of the solution

In view of these limitations of the offline solution, we prg@oan online solution which

adaptively assigns client advertisements to webpage watsaximize the revenue. As we will
see, the online solution does use feedback about the ofte(draunderdraft) level in future
decisions, and does not require knowledgg of}.

[1l. ONLINE ALGORITHM AND PERFORMANCE ANALYSIS

A. A Dual Gradient Descent Solution

To get some insight into a possible adaptive solution to tlodlpm, we first perform a dual
decomposition which suggests a gradient solution. Howevelirect gradient solution will not
take into the account the stochastic nature of the problednvah also require knowledge of
the query arrival rategr,}. We will address these issues in the following subsectioss)gu
techniques that, to the best of our knowledge, have not bset in prior literature on the online
advertising problem.

We append the constrairii] (2) to the objective (1) using Laggamultipliersd; > 0 to obtain
a partial Lagrangian function

bi
L(pv 6) = Z Vq Z qu Z Miscqisrqi - Z 52 . Z Vq Z qu Z Miscqisri - N

q MeMq ,8 q MeMq

5i 7
SIS D PLIRSACETIES pLit

q MeMq 1,8

subject to constraint§l(3) and| (4). The dual function is

D(é) = mgXZ Vad | Do MisCaistai(1 = 0:) + Z %a

q MeMgy i,8

subject to constraint$](3) andl (4). Note that the maximirapart in the dual function can be
decomposed into independent maximization problems wigfance to each queried keyword
i.e., for all g,

max } Z Dot Z M;scgisrei(1 — 6;) = max Mscyisrqi(1 —6;),

, MeM
Pgar MeM, i\ 0,8

where it is easy to see that each maximization is solved byeardaistic solution. This suggests
the following primal-dual algorithm to iteratively solvile original optimization probleni{1): at



stepk,

vq? M (q7 k) € arg ]‘/Ijré%(q ‘ Miscqisrqi<1 - 5Z(k>)7

1,8

Vi,  0i(k+1) = léi(k‘)+6<NZVqZ[M*(q,k)]Z—S-qusrqi—bz-)] :

wheree > 0 is a fixed step-size parameter, apd™ = z if z > 0 or [z]" = 0 otherwise.
Furthermore, defining); (k) = §;(k) /¢, the above iterative algorithm becomes

~ 1 N
vq? M (q7 k) S arg Nglé%{q ; Miscqisrqi (E - Ql<k)) ’

Vi, Q1) = [@) + Ak —b]

where

Ai(k) 2N vy > (Mg, k)]isCqisTqr- (5)

Note thatQ;(k) can be interpreted as a queue which has:) arrivals andb; departures at
step k. Although this algorithm already uses the feedback pravidg {Q(k)} (or {5(k)})
about the state of the system, it is still using a priori infation about the arrival rates of
queries in{\(k)}, hence not really “online.” However, it motivates us to irporate a queueing
system with stochastic arrivals into the real online aldyoni, which will be described in the next
subsection.

B. Stochastic Model, Online Algorithm, and “Overdraft Qeéu

In practice, a search service provider may not have a pnéoiination about the query arrival
rates{v, }, and generally, query arrivals during each time slot arehststic rather than constant.
Let time slots be indexed bye Z+ U {0}. We specify our detailed statistical assumptions as
follows:

« Query arrivals: Assume that a time slot is short enough sbdhary arrivals in each time
slot can be modeled as a Bernoulli random variable with gecge probabilityy. The
probability that an arrived query is for keywordis assumed to b&, and Zq v, = L.
Let G(¢) represent the index of the keyword queried in time gJatuch thatj(t) = ¢ w.p.
v, = vi, for all ¢ (indexed by positive integers) ardt) = 0 w.p. 1 — v, which accounts
for the case that no query arrives.

« Budget spending: We limit the values of budget spent in eaclyéting cycle to be integers.
To match the average buddgt(when it is not an integer), the budget of cliénb budgeting
cyclek is assumed to be a random varialilg) which equalgb; | w.p. o; and|b; | otherwise,

such thatB[b(k)] = 0:[b;] + (1 — 0:) [bi] = by, i-€., 0 = 71 = b — |bi] . For the trivial
case that; is already an integer, we letf = 1.

« Click-through behaviors: In time slat after a query for keyword arrives, if the ad of
clienti is posted on webpage sletin response to this query, then whether this ad will be
clicked is modeled as a Bernoulli random variab)e(¢) with occurrence probability,;.

We now want to implement the above iterative algorithm anlased on this stochastic model.

According to definition[(b),\; includes average query arrivals and click-through choieitisin




N time slots (i.e., one budgeting cycle). Thus, each itenasi@p in the online algorithm should
correspond to a budgeting cycle. For convenience, we define
u(k) = {q(t),e(t) for kN <t <kN+ N —1}

as a collection of random variables describing user bemaviocluding stochastic query arrivals
and click-through choices) in budgeting cydle The online algorithm is then described as
follows:

Online Algorithm: (in each budgeting cyclé > 0)

In each time slot € [kN, kN + N — 1], if ¢(t) > 0, choose the assignment matrix

~ R 1
1000, Q0 € s g 5 Mot (t-em).  ®
At the end of budgeting cyclg, for each cllenh, update
- +
Qilk+1) = |Qu(k) + Ailk, Q(k), u(k) — bik)] (7)
where
kN+N—-1
Ai(k, Q(R), u(k) &Y 7N C[ME(E, (1), QUR))is - vy () - oy ®
t=kN s

Here, A;(k, Q(k),u(k)) represents the revenue obtained by the service provider &élent
during budgeting cyclé;, and recall thab;(k) is a random variable which takes integer values
whose mean is equal to the average budget per budgeting cycle

In this algorithm, clienti is associated with a virtual queug; (maintained at the search
service provider). During budgeting cycle the amount of money client is charged by the
search service providet;(k, Q(k),u(k)) is the arrival to this queue, and the average budget per
budgeting cyclé; is the departure from this queue. Note that if this queue tpe, it means
that the total value of the real service already providedht dlient has temporarily exceeded
the client’s budget, i.e., “free” service has been proviteadporarily. Hence, we call this queue
the “overdraft queue.”

There are two different time scales here. The faster oneiimea glot, the smallest time unit
used to capture user behaviors (including stochastic qaeiyals and click-through choices)
and execute ad-posting strategies. The slower one is a tmgggcle (equal taV time slots),
at the end of which the overdraft queues are updated basedeore¥enue obtained over the
whole budgeting cycle.

We make the following assumptions on the above stochastiemég(¢)} are i.i.d. across
time slotst; {¢,s(t)} are independent acrogs i, s, andt; each variable in{¢(t)} and each
variable in{¢,;;(t)} are mutually independent. In fact, the model can be gezeghlio allow
for query arrivals correlated over time and across keywadd other similar correlations inside
the click-through choices or between these two stochasticgsses. Such models would only
make the stochastic analysis more cumbersome, but the e®itts will continue to hold under
these more general models.

In order to guarantee that the Markov chain which we will defiter is both irreducible and
aperiodic, we further assume that the probability of whethere is an arrival in a time slot

€ (0,1). We also assume that,; for all ¢ andi can only take integer values. Together with
the fact thatb(k) takes integer valueg,Q(k)} becomes a discrete-time integer-valued queue.
Note that assuming integer values is only for ease of arslpsit not necessary.



C. An Upper Bound on the Overdraft

According to the ad assignment stép (6), if at the beginnfrimidgeting cycle:, Q;(k) > 1/,
then for this budgeting cycle, thé row of M*(t, ¢, Q(k)) is always a zero vector, i.e., the service
provider will not post the ads of clientuntil Q;(k) falls below1/e. Since by assumption the
number of query arrivals per time slot is upper bounded, for budgeting cycle:, one can
bound the transient length of each overdraft queue as below:

1
Qi(k) < - + N - argmax{rycqs} — [bi], Vi.
q,s
Therefore,Q;(k) ~ O(1/¢) for all 7, and stability is not an issue for these “upper bounded”
gueues. It further implies that this online algorithm d&ss the budget constraints in the long
run, i.e., for all clients,
K-1

k=0

) 1
am B
must hold.

It should be mentioned that ih [12], through using the LIF@u@eing discipline, the authors
show anO((log(1/¢))?) bound on the averaged waiting time encountered by most qfdbkets,
which is tighter than the boun@(1/¢) under the FIFO queueing discipline (see e.g! [11]; our
above result also fits this bound). While the length of a FIR@ueg is proportional to the arrival
rate according to Little’s law_[2], the length of a LIFO quene[12] is still O(1/¢), even if it is
occupied by very “old” packets which only accounts for a igiggle fraction O(¢°(1/9)) of all
the packets that have arrived. Unlike in a communicatiowast where waiting time is usually
the main concern and dropping a small fraction of old packietss almost no hurt to many
online applications, what clients of online advertisingvé®me care about is how much they have
paid beyond their budgets, which is measured by the overdtegue in our model.

D. Near-Optimality of the Online Algorithm

We now show that, in the long term, the proposed online algariachieves a revenue that is
close to the optimal revenuR(p*) (wherep* is the solution to the optimization problef (1)).
We start with the following lemma:

Lemma 1:Consider the Lyapunov function (Q) = 1 >~ Q7. For anye > 0, and each time
period k,

EIV(QUE+ 1)IQU) = Q) = V(Q) <~ (R(p) — R (. Q) + B~ B2 3 Qs
Here, Z
B 2 % (NN = 1)L + NE)(arg max{eoryr})?
£ DIBTA0 — (b)) + (20— bt (b)), (10)

where L is the number of webpage slots;

B2 £ I'Ilzln{bl —N Z Vq Z p:M Z Miscqisrqi}; (11)

q MeM,
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andp(k, Q) £ {p",,(k,Q), Vg, M € M,} wherej* (k,Q) equalsl if M = M*(t,q, Q) for
EN <t < kN + N —1 (i.e., the optimal matrix in the maximization stép (6)) ahdtherwise.
<&

The proof is given in AppendikJA.

Now we are ready to present one of the major theorems in tiperpandicating that the
long-term average revenue achieved by our online algorihmithin O(e) of the maximum
revenue obtained by the offline optimal solution. The preofjiven in Appendix_B.

Theorem 1:For anye > 0,

1 ! Bie
. = * 1
< lim F |R R — E R <

for some constanB; > 0 (defined in [(ID) in Lemmal1), wherB(k) £ >, A;(k, Q(k), u(k)).
is defined as the revenue obtained during budgeting dycle o

Remark 1:1f we choose a very smal, the matching in[{(6) behaves like a greedy solution
until the queue lengths grows comparably large. This indxa tradeoff between how close to
the long-term optimal revenue the algorithm can achievethadactual convergence time.

Additionally, supposing thafr,;} and{b,} are both measured in another scale with a factor
«, €.g., using cents instead of dollaks £ 100), and assuming that is unknown, it can be
shown that the)(¢) convergence bound will also be scaled dyf we measure the revenue in
the original scale. To change the algorithm into a “scadée’frversion,{r,;} and {b;} should
be divided by a common benchmark value, e.g., the largegidigpecified by all the initially
existing clients. Since the benchmark value is also imgyianultiplied by « if measured in
another scale, the scaling factor will be canceled in thenatired{r,;} and{b;} and no longer
affect the convergence bound. o

E. Impact of Click-Through Rate Estimation

In our online algorithm, the decision of picking an optima assignment matrix i _{6) in
response to each query is based on the true click-throughaatn reality, an estimaté based
on historical click-through behaviors is used, i.e., ip@sse to each query for keywogdwhich
arrives in time slot € [kN, kN + N — 1], we choose the assignment matrix

v~ R 1
M*(t,q(t), Q(k)) € argM%”;t) a M;sC)isT (1) (E - Qz(k‘)) (12)

We then have the following corollary in addition to TheorehmiSubsection II-D:

Corollary 1: Assume that the estimated click-through raées [c(1 — A),c(1 + A)] with
someA € (0,1). Under our online algorithm with estimated click-througties,Q(%) is still

positive recurrent. Then, for any> 0,
K-1
1 1-A — Ble
- > —— ). N o
KN Zk:OR(k) = (1+A) h(p) =

for some constanB; > 0 (defined in equatior (10) in Lemna 1). o

lim F

K—o0
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Proving this needs some minor changes to the proof of Lemimad Irheoreni 1, which will
be shown in AppendikIC.

Remark 2:Corollary[1 tells us that for smal, the long-term average revenue achieved by
our online algorithm with estimated click-through ratedlvoe at least({=%) of the offline
optimal revenue. o

F. Underdraft: Staying under the Budget

In the previous sections, we allowed the provision of terappfree service to clients, which
we call overdraft. If this is not desirable for some reasbme, dlgorithm can be modified to have
non-positive overdraft. We do this by allowing the queuegtés to become negative, but not
positive. The practical meaning of negative queue lengths allow each client to accumulate a
certain volume of “credits” if the current budget is undéiized and use these credits to offset
future possible overdrafts. We call this negative queugtlefunderdraft.” Corresponding to this
mechanism, we modify our online algorithm as follows: inp@sse to each query for keyword
¢, which arrives in time slot € [kN,kN + N — 1], choose the assignment matrix

M*(t,q(t), Q(k)) € arngenABﬁt); MisciisTawy (T — Qi(k))

and at the end of budgeting cycle for each client;, update

Qi(k + 1) = max{Q:(k) + A;(k, Q(k), u(k)) — b;(k), —C:},

where I'; denotes a customized “throttling threshold” (not necelysar/c) and C; denotes
the maximum allowable credit volume for client Recall thatA;(k, Q(k),u(k)) is defined
in equation[(B).

We can bound each overdraft queue as below:

Qi(k) < T+ N -argmax{rycqs}t — [bi], Vi, k.
q,S

Thus, if our objective is to eliminate overdrafts (i.€;(k) < 0 for all k), we can set

;= ||bi] = N -argmax{rgcus}| , Vi, (13)
q,8

where in contrary tdz|*, [z]~ takes the non-positive part aof, i.e., [z|]- = z if x < 0 or
[z]~ = 0 otherwise. We further let

1
Ci = - — Fi, \V/’L,
€

so that after convertin@; (k) to be nonnegative by using; (k) = Q;(k)+C; for all i, everything
is transformed back to the original online algorithm exdéjat each?); (k) is replaced byQ;(k),
hence we can still show that the revenue achieved by thisfreddrersion of online algorithm
is within O(e) of the optimal revenue.

It might seem counter-intuitive that by lettinggo to zero, we can incur potentially large
underdrafts (under-utilization of the budget) and yet dole & achieve maximum revenue. This
is not a contradiction: for each fixed in the long term, the average service provided to each
client is close to the average budget. Thél /¢) is a fixed amount by which the total budget
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Fig. 1: Temporary unfairness in service

up to any timeT" is under-utilized, and, after divided ¥, it goes to zero whefi’ approaches
infinity.

We note that while an underdraft does not seem to significdnift either the client, who
actually benefits from an underdraft, or the service prayid#ose long-run average revenue is
still diminished only byO(e), large values of the underdraft may result in temporary iuméas
in the systerfl. If, for example, a client accumulates a large underdraft mamed to the other
clients, then it may receive priority over other clients farge periods of time. To illustrate
this, we consider an example with two clients and one quek&dvord. Assume thal; < 0
for i = 1,2, and at time slot,, Q1(ky) = I'y and Q2(ko) = —C> (this occurs with a positive
probability due to the ergodicity of the Markov chaj®(k)} proved before). We simulate the
sample paths of the weights in the maximization step (32 wie following setting: budgets
by = by = 0.6, click-through rates;; = ¢, = 0.5, revenue-per-clicky, = r, = 1; the number
of query arrivals per time slot equalsw.p. 0.5 and 0 otherwise; a budgeting cycle equals to
one time slot (V. = 1) for simplicity. The results for botlk = 0.01 ande = 0.005 (k = 0
corresponds td;, here) are shown in Figufé 1. Cliedtkeeps getting services until the weights
of both clients reaches the same level, and the smaiterthe longer the “unfair serving” period
lasts.

It should be mentioned that this underdraft idea can be usddruany upper-bounded query
arrival model, not restricted in the Bernoulli arrival mbdensidered in this paper.

IV. A UNIVERSAL LOWER BOUND ON THE EXPECTED OVERDRAFT LEVEL

We want to show that in the long run, an expected overdrad leff2(log(1/¢)) is unavoidable
under any stationary ad assignment algorithm which ackiaveng-term average revenue within
O(e) of the offline optimum, when the queue length is only allowedé& nonnegative. An ad
assignment algorithmo is defined as a strategy which uses mati& (¢t,q) € M, for ad

“Note that this temporary unfairness is not an artifact of uhelerdraft mechanism. In fact, it occurs once a sample path
enters a state where some clients have huge differencesofiftars in their corresponding queue lengths, which cantagpen
under the original algorithm. We are just using the unddtdreheme to illustrate this phenomenon.
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assignment when a query for keywaydrrives at each time slét During each budgeting cycle
k, the revenue obtained from clientunder algorithme is defined as

kN+N-1
AZ(R) & T D IME(,G(E))is - Eqyis(t) - Ty (14)
t=kN s

We then define average revenue obtained from cliguer budgeting cycle as? £ E[AZ (k)]
in the steady state. The long-term average revenue (persiioteis thuskR= = > . A7 /N, and
the overdraft level of client evolves as

QF(k+1) = [QF(K) + A (k) — Bu(h)] (15)

Note that our online algorithm is one particular, which makes the decision based on the
current overdraft levels of all clients.

To seek a universal lower bound on expected overdraft levdie long run (here, equivalent
to steady state), we only have to consider those algorithnssich thatQ® £ E[QZ (k)] < oo
for all 7. To categorize these “stable” algorithms, we define “pantirevenue region,” similar
to the concept of “capacity region” in the context of quegeietworks:

Definition 1 (“Per-Client Revenue Region”):
C é{AW:{A;ﬂ}zo: I 5.t AT 2 B[AZ(K)] < by, Vi} ,

given fixed parameterr,; }, {b;}, {cqis}, IV and statistical properties @ft) and {¢,s(t)}. ©
The offline optimal average revenue is then equahtoxyec ), \;/N, which is denoted a&*.

Note that if the query arrival rates per budgeting cycle acelow, the average revenue drawn
from some client will never hit its specified budget, no mattdich algorithmw s.t. A € C
you pick (i.e.,3 i s.t. no feasible solutiop can make constrainil(2) for thistight). The system
resources (here, budgets) are underutilized and it is natmportant to consider the tradeoff
between revenue and overdraft. To avoid this, we can assuneéatvely large N (i.e., the
number of time slots in one budgeting cycle) such that

N > max{ b } , (16)

v Zq VqTlqi - MaXpre M Cqis(i,M)

where M}, C M, is defined as a set of ad assignment matrices, of which“thew has a “1”,
ands(i, M) in cgsi,0r) refers to the column i/ where that “1” stays. This guarantees that for
eachi, there exists an algorithnw; such thatA\®: € C and A" = b,. The reason is that

In the following text, we will assume the above condition fgr

A. One Keyword, One Client and One Webpage Slot

We start with the simplest model: one keyword, one client ané webpage slot (hence
we omit all the subscripts in the corresponding notatiokk)der condition [(16), the offline
maximum average revenue is trivialby NV.
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Theorem 2:Given a smalk > 0, if an algorithme leads toE[A” (k)] > b — e in the steady
state, then
~ log(1/e€)

@72 30 log(pPy))

_1’

where we assume that
¢ = Pr(no query arrival in a budgeting cygle- 0,

and P, £ Pr(b(k) > 0) > 0. o

Note that this result works for any query arrival and budgetrgling model satisfying the
above two stated assumptions, and not only restricted tonthael we described in Subsection
[I-B] In the proof below, we generally writé(k) as a random variable which can possibly take
all nonnegative integer values.

Proof: We ignore the superscript for brevity. The dynamics of the queue is rewritten as
Q(k+1) =Q(k) + A(k) — b(k), where the actual departure process is defined as

2oy A b(k if Q(k)+ A(k) — b(k) > 0;
b(k) _{ Q(k):—)A(k) e (17)

Let p; 2 Pr(b(k) = i) and¢; £ Pr(b(k) = i) in the steady state. Note that

b—e < E[A(K)] = E[b(k)] => Pr(b(k) > i) = Pr(b(k) > 1) + > _Pr(b(k) > i)
(%) (1= po) +iPr(b(k) >i)=1-po+ (b—Pr(b(k) > 1)) =1—po+b—(1-q)
= qo—po+ b,l_

where (a) holds becauger(b(k) > i) < Pr(b(k) > i) for all i > 0. Thus,p, < gy + €. Since
Pr(b(k) = 0) = Pr(b(k) = 0) + Pr(b(k) = 0, b(k) > 1),
we havep, = qo + o, Wherep, £ Pr(b(k) = 0, b(k) > 1). Therefore,
Do < € (18)

Next, we are looking for a lower bound gi in relation toQ. Letting P, £ Pr(b(k) > 0)
(which is surely a positive constant singe- 0), we then have

npy = nijpr(z;(k) =0, b(k) > 0) (2) Pr (D{B(k) =0, b(k) > 0}>
k=0 k=0

—~
=
=

Pr(Q0)<n—1; A(k)=0,b(k) >0, VO<k<n-—1)

v

Pr(Q(0) <n—1)- 1:[ Pr(A(k) = 0) - Pr(b(k) > 0)

— (eP)" - PrQO0) <n—1) 2 (¢Py)" (1— O/n), (19)
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where (a) holds according to the union bound, (b) holds stheeevent on the RHS implies
the one on the LHS, and (c) holds due to the Markov inequdlitye pick n := (2@] €
2Q,2 (Q + 1)], inequality [I9) further implies that

5y > PP nciogtor)) 5 2@+ (1-l0g(ors) (20)
- 2n -_ —_— )
where (e) holds becausg > ¢ for all z > 0. Combining inequalities[{18) an@(20) then
completes the proof. [ |

In the related literature|[ [3] comes up with &{1/,/¢) bound for a set of algorithms under
some admissibility conditions, whileé [25] provides &l(log(1/¢)) bound for more general
algorithms.

Our proof uses the following ideas inspired by [25]: if theainghput is lower bounded by a
number close to the average potential departure rate, tiegorobability of zero actual departures
given nonzero potential departures must be upper boundeal $mall number; further, if the
average queue length is given, then the probability ofrfgtdero must be upper bounded because
otherwise, the queue length would become small. Howevecameot directly use the expression
for the lower bound in[[25] since it imposes certain strichwexity assumptions which do not
apply to our model where the objective is linear. So we hawwiged a very simple derivation
of the lower bound on the queue length for our specific model.

Additionally, our Q(log(1/¢)) bound based on a linear objective function can be extended to
the multi-queue case (in Subsectlon1V-B). Thél /,/¢) bound in [3] has been extended to the
multi-queue case in_[24] but still under strict convexityasption and for a restrictive class of
algorithms. Whether th€(log(1/¢)) bound in [25] can be easily extended to multiple queues
still remains a question.

B. Multiple Keywords, Multiple Clients and Multiple Webpa§lots

We now extend this lower bound to the original general modglich can have multiple
keywords, multiple clients and multiple webpage slots.slteasy to see that the “per-client
revenue regionC in Definition[1 is a polytope, which can then be rewritten as

cz{Azoz Zhﬁ."mgd("),wgngL}, (21)

WherehE") > 0 andd™ > 0 for all  andn.The outer boundary of the polytogkconsists of
the L hyperplanes, i.ey", i\, = d™ for all n € [1, L.

Under condition [(16),L is at least equal to the number of clients (i.e., number ofgetid
constraints), sd_(21) gives a more precise description @fstability condition for this “multi-
gueue system,” compared to the original definitionCofThus, corresponding to the normal
vector of each hyperplane, we convert the original mulewg system into a new one with

queues: For each € [1, L], we first scale the'® queue described | in(IL5) blyf.”), so that it
has a queue length equal W’Qi( with h(" A (k) arrivals andh 'b:(k) potential departures
in time slotk, for all i. Next, we treatz h Q (k) as then'® queue, and since any € C
satisfies) _, h(" N\, < d™, its maximum achievable average departure rate eqiizls where

dm <y h(” b;, because the potential departure rate of each individudédaqueue may not
be fuIIy achieved when all of them are coupled together.
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We then come up with the formal definition of the class of allpons which achieves a “near-
optimal” average revenue.

Definition 2 (“e-Neighbourhood” of the maximum).et A* be one optimal point i€ such
that) . \* = R*. The e-neighbourhood ol\* is defined as

N.E2{A"€C\dC: 0< N - (R —R%) <e¢}, (22)
wheredC represents the outer boundary @fand it should be noted that the average revenue
is evaluated per time slot whilk is evaluated pe/N time slots. o

Note that in the above definition, sineé® € A, is not on any boundary?* is strictly larger
than R”, which is easy to see from some basic principles of lineaggmmming.
The following theorem shows the universal lower bouddog(1/¢)) for the general case.

Theorem 3:For any algorithmem s.t. A® € N,, we have
ZQW > log(1/e) = Cy 1,

where ¢ £ Pr(no query arrival in a budgeting cygle= (1 — v)¥ > 0, P, £ Pr(b(k) >
0, Vi) > 0, and

Cy 2 2(1—log(¢Py)) maxh" € (0,00),

C, 2 max{log(maxh™),0} € [0, 00). (23)

<&

Proof: We ignore the superscript for brevity. According to some basic principles of linear
programming, an optimal poimx* is at a corner of. If there are several optimal points, any
convex combination of them is also optimal. Denote thisrmoptipoint sets agd* andvVA* € A*,
Ante[1,L), s.t. 3, AN = d),

Given aX € N/, 3 0 s.t. Yo.0:i=>".Arand6; > \; for all i (but at least one inequality is

strict). Besides, for thi®, 3 7 € [1, L], s.t. 3, A0, > d™ (otherwise,0 € C \ AC will hold
and hence)_.0; < . Af, which leads to a contradiction). Therefore,

=3 < Zh(” =2 < WL S0 A

= hﬁﬁm > (A =) < hie (24)
where {2, £ max; hf.ﬁ) > 0 and inequality (a) holds becauge> ); for all i. Letting P/ £
Pr(3", h(" bi(k) > 0), it is easy to see thaP, > Pr(b;(k) > 0, Vi) = P, > 0. Together with
Theoreni®, we can conclude that

o _ () (7)
S, > Bl —loslik) | log(1/e) ~log(liik)

— 2(1 —log(ePy)) —2(1 —log(pPy))
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Ao ha= A+ A2

M+ ha=A%+ R

b1 A|

Fig. 2: An illustration of the idea in the proof of Theorém 3

Since) . hﬁﬁ)Ql <™ >, Qi it is further concluded that

ZQ log(1/e) — log(hmax) 1 log(1/e) = Co 1.
2higo (1 — log(¢ Py ) C
where the universal constants are defined[id (23), and it &agteed that’; € (0,00) and
C5 € [0,00). This completes the proof. u

Remark 3:We briefly explain the idea behind choosifign the above proof: For those € N,
such that);, < A for all i (at least one is strict)y can be directly chosen a¥* to make
inequality (a) in [24) hold. But for the othex € N. which do not satisfy the above condition,
it is necessary to introduce éother than\*, which both lies on the “maximum revenue line”
(e, >, 0; = >, A\;) and dominates\ component-wise, in order to derive inequalityl(24). Note
that @ is not unique and furthermoré, lies either ondC or in the exterior ofC and it can be
chosen as a boundary point only if the optimal revenue psimtoit unique. Figurgl 2 illustrates
this idea using an example with one keyword, two clients amel webpage slot, specifically for
showing where such @ is located. o

The basic idea in our proof is to use Theorem 2 to first get a ddveeind for those new
single queues written as a “weighted sum” of the originalwpse(described above). This idea is
similar to one part in the proof for the lower bound on the etpée queue length of a departure-
controlled multi-queue system i [26], but some techniquéhieir proof cannot directly apply
to arrival-controlled queues like ours.

C. Tightness of the Lower Bound

We want to show that th(log(1/¢)) universal lower bound is tight, i.e., achievable by some
algorithms. Consider the following simple queueing modkk arrival process:.(k) is i.i.d.
across timega(k) = 2 w.p. v anda(k) = 0 otherwise. The service rate is constant and equal
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to 1. Assume thav € (1/2,1). With the controlled arrival procesg k), we want to achieve a
throughputE[a(k)] > 1 — e for a given smalk > 0. A “threshold policy” based on a threshold
T is proposed below:

« WhenQ(k) > T, reject all arrivals;

« WhenQ(k) = T, accept one arrival w.pp;, accept two arrivals w.pp,, and reject all of

them otherwise.

« WhenQ(k) < T', accept all arrivals.
Defining 7; as the steady-state probability th@tk) = i (0 < ¢ < T + 1) for the resulting
Markov chain, the local balance equations are given below:

my = mp(l—v), V0<i<T -2
Tp_y D1V = WT(l - (pl +p2)7/)§
Ty DoV = Ty
T+1

Zﬂ'i = 1 (25)
i=0

Combining these equations with the throughput requiremeatget

T-1
v QZWMLWT(QPZ +p1)| =1—¢, (26)

=0

and one can finally show that (ignoring detailed calculat)on

log(1/€) + log C'(¢)
T = > ,
log (%)

2 (2v—1+4¢€)(1 —v(ps + p2))
v(2—-21=v)ps—p1)

The above result further implies th@ ~ ©(log(1/¢)). we can also see that as— 1, T'— 0,
which is consistent with the fact the lower bound given in dieen[2 goes td) as the “zero
arrival probability” ¢ — 0.

Another example showing the tightness of &ilog(1/¢)) bound is the dynamic packet
dropping algorithm in[[25] (note that this universal lowesund is proved based on a strict
convexity assumption as mentioned before in SubseEfioA)IV-

where

Cle)

V. CLICK-THROUGH RATE MAXIMIZATION PROBLEM

In this section, we consider another online ads model, ircivkine objective is to maximize
the long-term average total click-through rate of all geerilnstead of average budget, client
specifies in the contract an averagmpression requiremehtn;, which is the minimum number
of times an ad of this client should be posted by the serviceiger per ‘tequirement cycle
(equal toN time slots) on average. The other parameters are the sametlesmodel proposed
in Sectionl for the revenue maximization problem.

The corresponding optimization formulation now becomes

rgg}( j(p) = Z Vqy Z Py Z Miscqis (27)

q MeMq 1,8
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where the feasible sef is characterized by

NY vy D po ZMM >m;, Vi (28)

¢  MeM,
0<p. <1, Vg, M € Myg; (29)
Z Por < 1, Yq. (30)
MeM,

Different from the revenue maximization problem, here thasible set can become empty if
somem; is too high. Basically, without constrairit (28F; is relaxed to

Fo2{p:0<p,, <1, Vg MeMg Y p,, <1, Y} (31)
MeMq,

We can then define the following capacity region which chiarémes how large the average
number of impressions can be achieved for each client petireggent cycle:

= NZl/qZ qMZMZS, Vi, s.t. p € Fo

q MeM,

Clearly, m € C must hold to ensure the existence of a solution for the abg@ienization
problem.

Through a similar approach as in Subsection TlI-A, we cantevdown a similar online
algorithm based on the same stochastic model as defined se&itr{1I-B. We definey(k) =
{q(t), for kN < t < kN + N — 1}. Similar to b;(k), m(k) = [m;] w.p. m; — [m;| and
m(k) = |m;| otherwise.

Online Algorithm: (in each requirement cycle > 0)
In each time slot € [kN, kN + N — 1], if ¢(t) > 0, choose the assignment matrix

M (t,4(), Q(K)) € arg | max ZMM(% +Qilk)). (32)

M)

At the end of requirement cycle, for each client,, update

Qi(k +1) = [Qi(k) + (k) — S;(k, Q(k), a(k)]",

where
kN+N—-1
Si(k, Q(k YE DY D M (1), QR)) - (33)
t=kN S

In real online advertising business, some clients may omlyehshort-term contracts, i.e.,
clients may not be interested in the average number of irfmes per time slot but may be
interested in a minimum number of impressions in a given ttmasuch as a day). Further,
guery arrivals may not form a stationary process. In fa@y thre more likely to vary depending
on the time of day. These extensions are considered in App&ndsuch extensions also make
sense for the revenue maximization model considered indqus sections, but the approach
is similar to Appendix E and so will not be considered here.
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A. Performance Evaluation

Si(k,Q(k),q(k)) defined in [[(3B) represents the actual number of impressionscifent
i's ads during requirement cycle. The queue length increases when the average impression
requirements in a particular requirement cycle cannot bflléd. Hence, a positive queue
represents accumulated “credits,” which enhances thecehaihbeing assigned with a webpage
slot in the future, much like a negative queue in the revenagimzation problem. We thus
call this queue acredit queué

Unlike the revenue maximization problem in which @1 /e) upper bound on the transient
gueue length is automatically imposed by the online algorjthere we need to prove the stability
of the queues and show an upper bound on the mean queue |8iyte.{Q(%)} defines an
irreducible and aperiodic Markov chain, in order to prowestability (positive recurrence), we
will first bound the expected drift oQ(k) for a suitable Lyapunov function.

Lemma 2:Consider the Lyapunov functiolr (Q) = 13, Q?. For anye > 0 and each
requirement cyclé:,

BIVQUE+1)Q0) = Q) - V(@) £ 2+ D - D, Y Q. (34)

D, 2 %(N(N —~1)L*+ NL + Z(mJ?(mz— = [m]) + [ma 2 (1 —m; + LmiJ))> (35)

where L is the number of webpage slots;

D2 £ min{NZVq Z ﬁqM ZMis - mi}7 (36)

q MeMygy s

for somep € F such thatD, > 0; and
D3 £ N -max J(p) (37)

PEFo

where F, is defined in[(31L). o

The proof is similar to the proof of Lemna 1 with some modificas in the final steps, which
will be given briefly in AppendiXD. With this lemma, we can abnde thatQ(k) is positive
recurrent because the expected Lyapunov drift is negakeepe for a finite set of values of
Q(k), according to Foster-Lyapunov theoreml ([2],1[23]).

Remark 4:Note that compared to the definition 8% in (11) of Lemmd L wherd3, > 0, D,
needs to be strictly positive in order to prove the stabiityqueues. Such g in the definition
of Dy can always be found unless is a degenerate set with at most one element. o

The stability of the queues directly implies the followingrollary:

Corollary 2 (Overservices in the long term):

K—o0

K
lim F %ZSi(k,Q(k),q(k)) > mi, Vi
k=1
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In addition to proving stability, Lemml 2 will be used to avate the upper bound on the
expected total queue length in the steady state, as showe ifoliowing theorem:

Theorem 4:Under the online algorithm,

B Qe ]_ *(D1+%), (38)

2

where D; and D5 are respectively defined i (35) arid37); is defined as
£ A
D; = max Dy(p). (39)
where D, is defined in[(36) (regarded as a functionf o

Proof: Averaging both sides of inequality (34) over< k£ < K — 1, taking K — oo and
doing some simple algebra, one obtains

hmsup—ZE ZQ ] <D1+%).

K—o0

The LHS equals td¥ [, Q;(c0)] according to Theorem 15.0.1 in [23]. The RHS is minimized
through maximizingD, over allp € F, (which will certainly satisfyp € F and D, > 0). This
completes our proof. [ |

The following theorem shows that the online algorithm prsgzb above achieves a long-term
average click-through rate withi@(e) of the offline optimum. The proof is similar to the one
for Theorem L and hence will be omitted.

Theorem 5:For anye > 0,

D1€
< AT
- N

MN

0< lim F

K—o0
k:

for some constanD; > 0 (defined in [(35) in Lemma&l2). Here](k) is defined as the total
number of click-through events within requirement cykle o

B. Customizing Impression Requiremefits;} Based on Query Arrival Rateg/, }

Since a positive queue measures how much the service prdemes” a client, reducing the
coefficient of thel/e term in the upper bound on the mean queue length becomestanpor
Besides, we also need to guaraniaec C. In order to handle these two issues, we introduce
an approach to customizingn;} based on known (or estimated) query arrival rates,

ReplacingD; in Theoreni #t by a commoR, defined in equatior (36), if we want the expected
total queue length to be upper bounded®y,., it suffices to let

Dy>¢2 ! <D1+%), (40)
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where D5 is already determined, anf?; does not matter much given a smallalthough it
includes unknowr{m;}. We then solve the following optimization problem to deteve{m,}:

max g log m;
PEFo,m

s.t. NZVq > QMZMZS—mZ>£ Vi.

q MeMygy

Here we usé) , logm; as the objective function in order to guarantee a uniqueraptsolution
and impose a certain fairness rule called “proportionainfss” (see e.g/ [17]). Note that
cannot be set too large (i.62.... cannot be set too small), otherwise there may not exist a
feasible solution.

Naturally, a question would arise: now that we need to sobveesmathematical programming
like the above one based on knowledge of query arrival ratey, not also directly solve the
original linear programming in_(27) and use the offline omtireolutionp* to assign ads? The
answer to this is similar to the max-weight algorithm for elass networks. I [27] and [29], it
has been shown that adaptive algorithms lead to much beaireing performance compared
to static offline algorithms. We verify this assertion in aantext through simulations in the
next subsection.

C. Queue Update in a Faster Time Scale

In the original algorithm, the queue length is updated orilgha end of each requirement
cycle and used in the max-weight matching for the next whetgiirement cycle. The longer
a requirement cycle lasts, the more obsolete the queuehlenfgirmation becomes, so with a
large N, short-term performances may not be so good even if long-fErformances are still
guaranteed.

We then propose a solution which updates queue lengths ster fiame scale. Specifically, we
divide each requirement cycle inf® queueing cyclesiith equal lengths (assuminy/7T € Z*
without loss of generality). We usgQ(k,7) : 0 < 7 < T} to denote this new queueing
system and assum@(—1,7) = 0. At the beginning of each requirement cydiebefore any
decision, update A A

and at the end of the'™ queueing cycle within this requirement cycle € = < T), for all
client,

kN—i—T——l +

Qilk,7) = |Qi(k,7=1) — > N [M(t.G(t), Q(k, 7))

t=kN+(r—1)% s

Since |Q(k,T) — Q(k)|| < B for some constan3 independent of the queue lengths, it can
be shown that the long-term performances evaluated in 8tibs&/~A| are still guaranteed (the
idea behind such a proof would be similar to the one_in [7] amdssomitted).

Next, we use simulations to compare three different algors, namely a randomized algo-
rithm following the offline optimal solution (labeled as OpPand two versions of our online
algorithm “max-weight matching” with and without “fast que update” respectively (labeled as
MWM-Fast and MWM respectively). In each scenario we tedtthed parameters are randomly
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Fig. 3: Average overall over-service and under-servicenfradized by the total impression
requirement) impacted by the “fast queue update”

0.05 j j ] 0.05 1
0.045 — 0.045 .
. oo4 T __ 004 R
£ £ |- -
=4 0.0357 4 £ 0035 1
5 E g
2 003 — 2 o003 —
< Z 002
£ 0.025 E———— < 0.025 E——=—
E 002 —— MWM E 002 MWM
2 —+— MWM-Fast 3 —+— MWM-Fast
® 0015 B 0015 —
0.01 E 0.01
0.005 — 0.005
0 . . 0 . .
0 500 1000 1500 0 500 1000 1500
# time slots in a queueing cycle # time slots in a queueing cycle
(a) Over-Service (b) Under-Service

Fig. 4: The standard variance of overall over-service ardetsservice (normalized by the total
impression requirement) impacted by the “fast queue update

generated. The impression requiremefits;} are chosen through the approach in Subsection
V-Bl

We take an example scenario with 2 webpage slots, 5 keywordid@clients. The probability
that a query arrives in a time slot equél3. Specifically, for the five keywords, the query arrival
rates arev = [0.2364,0.0594, 0.1669, 0.0714, 0.1659]. Table[] shows the click-through rates for
the ten clients ©; ~ Cyy) corresponding to each keyword; (~ ¢5), on webpage slots 1 and
2 respectively (a zero click-through rate indicates thatdbrresponding client is not related to
this keyword). We uséV = 1440 (say, one time slot is one minute and one requirement cycle is
one day),c = 107! and Q,,... = 20/¢ (recall thatQ,,.. is used to set up an upper bound on the
mean queue length by the heuristic in Subsedfion V-B). Thrukition has been run for 1000
requirement cycles.

To compare the performances of all the three algorithmgeaas of considering the long-
term performance requirements that we have used in theytheerintroduce two new metrics:
over-serviceS; (k) £ [S;(k) — m;(k)]" and under-servicé; (k) £ [m;(k) — Si(k)]" to clients
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NG [C[C[CG][C [0 ] 0[]0 [0 [Cuol

Webpage Slot 1
¢l 0 [0.519/0.973] 0 [0.649] O 0 0 [0.800] O
|| O 0 0 [0.3400 O 0 [0.952] O 0 0
q3]/0.982/0.645/0.856/0.461/0.190] 0 [0.369 0.6690.156| O
q4][0.423 O 0 0 [0.599] 0 [0.179] O [0.471/0.094
gl O 0 0 [0.875) 0 [0.518 O 0 0 0
Webpage Slot 2
q1|| 0 [0.235/0.421] 0 [0.536] O 0 0 [0.067] O
|| O 0 0 [0.312] O 0 [0.0500 O 0 0
q3]/0.118/0.248/0.194/0.222/0.036] 0 [0.158/0.252(0.092] 0
q4]/0.296] O 0 0 [0.0200 O [0.124f 0 [0.032/0.060
gl O 0 0 [0.826) 0 [0.330] O 0 0 0

TABLE I: Click-through rates for all the clients’ ads

during requirement cyclé. Note that these metrics measure deviations from the gtessuover
short time scales and so are more stringent requirementsthiealong-term guarantees used in
the theory.

We show respectively in Figurds 3(a) ahd B(b) that the aeemagerall over-service and
under-service normalized by the total impression requémmi.e., E[>_, S;"(k)]/ >, m; and
E[>".S7(k)]/ >, mi, are both reduced by the fast queue update. Similarly, ddvee reduc-
tion” effect is shown by the fast queue update based on thistata \/var[>", S (k)]/ >, mi
and \/var[>_, S; (k)]/ >, mi, respectively in Figuref 4(a) arid 4(b). In terms of the dvera
click-through rate, our simulation has verified that theethalgorithms achieve approximately
the same performance (the figure is omitted here) and fudéeronstrated in Figufd 5 that the
fast queue update can also reduce its variance. Note theet tlexrformances of each individual
client also improve and we simply omit the figures here.

Observed from Figurgl 6, the offline optimal solution leads¢oy unstable queue dynamics.
This essentially arises from the fact that the algorithnrages on an optimal point* for which
some inequalities in constraini_(28) may be tight. In castiraur online algorithm guarantees
the stability of queues, and the faster the queues updaentre stable the queue dynamics
become (as an example we UBe= 24, i.e., the number of time slots per queueing cycle equals
60). This is consistent with the above results which show a¢tdun of over-service and under-
service in both mean and variance since these metrics lgineetasure the level of deviations
around the equilibrium point of each stable queue.

Remark 5:While a long-term client may only be concerned with averagggsmances, a
short-term client cares about both mean (the average levedlf the clients of its type) and
variance (related to its own individual level), especidlly the performances of under-service
and click-through rat@.All of these are well handled by our online algorithm with tfagieue
updates.

VI. CONCLUSIONS

In this paper, we propose a stochastic model to describe bavels service providers charge
client companies based on users’ queries for the keywordseteto these companies’ ads

Over-service are cared about by the online ads service g#ovi
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Fig. 6: Queue dynamics under three algorithms

by using certain advertisement assignment strategies. 0iMaufate an optimization problem
to maximize the long-term average revenue for the serviogiger under each client’'s long-
term average budget constraint, and design an online #igonvhich captures the stochastic
properties of users’ queries and click-through behavidfs.solve the optimization problem by
making connections to scheduling problems in wireless ag¢sy queueing theory and stochastic
networks. Our online algorithm is entirely oblivious to gquarrivals and fully adaptive, so even
non-stationary query arrival patterns and short-terrntdiecan be handled.

With a small customizable parametewhich is the step size used in each iteration of the
online algorithm, we have shown that our online algorithrhieees a long-term average revenue
which is within O(¢) of the optimal revenue and the overdraft level of this aldponi is upper
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bounded byO(1/¢). By allowing negative values for the length of overdraft geg we can
eliminate overdraft.

When estimated click-through rates instead of true onesised in our online algorithm, we
show that the achievable fraction of the offline optimal rexeis lower bounded b{—ﬁ, where
A is the relative error in click-through rate estimation.

We also show that in the long run, an expected overdraft lef/€l(log(1/¢)) is unavoidable
(a universal lower bound) under any stationary ad assighadgorithm which achieves a long-
term average revenue withifi(¢) of the offline optimum. The tightness of this universal lower
bound is also shown for a simple queueing model using a tbtegiolicy.

In another optimization formulation where the objectivéasnaximize the long-term average
click-through rate and the constraints include a minimurprigssion requirement for each client,
we further propose an approach to set impression requittsmdrich make the contract feasible
and limit the average accumulated under-service to cli&itsulations show that making queues
update in a faster time scale will reduce both over-servitd ander-service, which benefits a
system involving short-term clients.
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APPENDIX

A. Proof of Lemm&ll

EV(Q(k +1))1Q(F) = Q] - V(Q)
- B > ([o+ atk@um) -5w]") -2

< 58|30 (@i Ak Quth) (b)) - @2
L ~ 1 ~ 2

= B 2 Qu(Alk, Quu(k) = hik) + 5 3 (Al Q (k) ~ b))

< 3 Qu Q) = ) + 5 S(ELANE Quu(k)] + EEE)), @1)
where it was already defined in equatigh (8) that for:all

EN+N-1
Ak, QM) u(k) = S NI (), QUR) s - Fatey(t) - racoy
t=kN s

and we further define

Nk, Q(R)) £ E[A(k, Q(R), u(k)|QR)] = N D vy > [M(a,t, Q(R))]iscis i

Since each client can at most get one webpage slot for eacly, quee can further bound

S Ak, Quu(k)) < (N(N = D)L + NL)(arg max{eioryi )

EB (k)] = [b1%0 + [b:)*(1 = 01) = [b:17(b; — |bi)) + [b:)*(1 = b; + [b:]).
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Thus, by defining

= 1((N (N —1)L? + NL) (arg max{cyisrei})* + Z(W(b,- — 1ba)) + [bi)2(1 = b + [ J)),

Bl2

and continuing from inequality (41), we have
E[V(Q(k+1)[Q(k) = Q] - V(Q)
N Z v Y QilM*(g,t, Q)lisCqisryi — Z Qibi + By

ZS

= -NY Vq.z (E - Qz’) [M*(a,t, Q)lisCaisTai
F S Y gt Qo+ B = 3 Qb
= —NZ Vg Z <% — Qz) [M*(qv t, Q)lisCqisTqi

2R Q)+ B - S Qb (42)

Z <% - Qz) Z p:MMiquisrqi + gé(f)*(kv Q)) + Bl - Z szz

q 1,8 MeMygy

(R(p*) — R(p*(k,Q))) + B,

IN

—
S
=

IA
|
=
(]

~

q Mqu
where inequality (a) holds because equatn (6) in the erdigorithm is equivalent to

VQ7 f):;(ka Q( ) € arg maX Z qM ZMzscqzsrqz <_ - Qz(k)) )

M>
Meq/\/l y MeM,

(44)
which means that evaluating the objective functionin (44hw = p* cannot achieve a larger
value. Letting

B2 £ I'Illl'l{bl — N Z Vq Z p:M Z Miscqisrqi}7
' q MeMygy s
from inequality [4B), we finally obtain
N D, D (%
EV(Q(k+1))Q(k) = Q] - V(Q) < —— (R(p") - R(p*(*, Q) + Bi — B; > Qi
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B. Proof of Theorerl1

The first inequality which shows that the online algorithrmmat do better than the offline
optimal solution is too obvious, so we just ignore it hereoymg it in a very rigorous way is
also very easy, after defining the “per-client revenue meégio Subsectio IV-B and then using
the fact that the average revenue vecXarorresponding to our online algorithm falls inside that
region, according to inequality](9) which is implied by stdp).

We now focus on the second inequality, i.e., thé) convergence bound. From Lemia 1,

E[R(p") — R(D" (k, Q(K)))]
£ E|B - B, Z Q(k) +V(Q(k)) — E[V(Q(k + 1))\Q(k)]]

IA

N

€
~ (B~ EV(Q(R))] - E[V(Q(k + 1)),
Adding the terms fof < k£ < K — 1 and dividing by K, we get

% - B [R(p") - R (k, Q)] < %(Bl_E[V(Q(K))] V(Q(O)))

IN

< o (ns V@O

SinceV(Q(0)) < oo, we get the following limit expression:

lim 3" B [R(p*) — B(D* (5, Q)] < 2 (45)

Finally, because
E [NR(p") - R(k)] = E [E [NR(p") — R(k)|Q(k)]] = N - E[R(p") — R(D" (k. Q(K)))] ,
inequality [45) is equivalent to

1

lim F
im 7

_ Bl

=

C. Proof of Corollary(1
Continuing from inequality[(42) in Appendix]A (the proof oemmall), we get

EV(Q(k+1)IQ(k) = Q] - V(Q)
%) TEA _i ANZ Vg Z (% - Qz) [M*(q,t, Q)lisCaisTqi + gR(f)*(lﬁ Q) + B — Z Qibi

(b

< sz%z(

(T\lH

R N = .
2) Z Dy MisCoisTqi + ?R(p (£, Q)) + B1 — Z Qib;

MeM,
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(c)

== 1 + ANZ Z <_ Z) Z p:MMiquiqui + ¥R<I~)*(kv Q)) + B — ;szz

MeM,

€

= (R - R Q) + By

- (b - mN 20 DL i Mc) . (46)

q MeMygy

Here, inequalities (a) and (c) hold respectively becatsec(1 + A) andé¢ > c(1 — A), with
the fact that all the coefficients in this summation are ngatiee. Inequality (b) holds because
equation[(IR) in the online algorithm with estimated clibkeugh rates is equivalent to

Vg, p,(k,Q(k)) € arg max Z Dot ZMZchquZ (— — Qz(k;)) , 47)

q]VI
Memgy MeEMq

which means that evaluating the objective functionin (4#hw = p* cannot achieve a larger
value. Letting

g MeM,

R X e

from inequality [48), we finally obtain

PIVQU:+ 1)1 = Q- V(@) £ -7 ({507 - AG.Q)) + By - B0,

Therefore, similarly as in the proof of Theorém 1, we can finahow that

K-1
. 1-A — Bl€
- > - . R
lim E N kgzo R(k)| > (1 ) R(p) i

K—o00

D. Proof of Lemmal2
By a similar approach as in the proof of Lemima 1 (Apperdix Ag kave

EV(QU:+1)/Q() = Q] - V(Q)
< NI (@) U Qe+ Sk, Q) + D+ Y Qo

SNT DD (@ ) 3 p et IO Q) 4Dk T Qo

q 1,8 MeMgy

¢  MeM,

:—g(J(p) J(5*(k,Q))) + Dy — ZQZ (szq > b ZM mz)»(48)
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where D, is an upper bound og Y, (E[S?(k, Q,u(k))] + E[m}(k)]) and defined as

1
D1 é §<N(N — 1)[/2 + NL -+ Z(mﬂz(ml — Lmlj) -+ LmZJ2(1 — my; -+ Lmlj))
Note that inequality({48) has the same form as inequdlity {#3he proof of Lemmall, except
that the offline optimunp* is replaced by somg € F. Letting

Dy, & miin{NZVq Z Pt ZMis —m;},

q MeMyg s

it is always possible to pick € F such thatD, > 0 (unlessF is a degenerated set which
has at most one element). We further bound the above in&ygaali

D
EV(Q(k+1))|Q(k) =Q] - V(Q) < 73 + D1 —Dy)) Q.
Here, D3 = N - max,cr, J(p) Where 7, is defined in[(3l). This concludes our proof.

E. Short-Term Clients and Non-Stationary Query Arrivals

We focus on the click-through rate maximization problenth@ligh a similar model and
solution can be used for revenue maximization problem.

First, consider how to include short-term clients in theteys Let us index long-term clients
from 1 to n, the i*" of which has an average impression requirementngfper requirement
cycle. There are furthen types of short-term clients indexed by+ 1 < ¢« < n + n. Each
short-term client of typé has a impression requirement lpfper contract term. Without loss of
generality, we assume that the contract term of any short-téient is equal to one requirement
cycle. In each requirement cycle there areX; (k) clients of typei in the system, wheré&(;(k)
follows a stationary stochastic process with mearand X;(k) is known at the beginning of
requirement cyclé:.

Correspondingly in an ad assignment mattik the firstn rows and the subsequentrows
represent thex long-term clients and the types of short-term clients, respectively. If short-
term type; is assigned to some webpage slot, one oukpfk) clients of this type is chosen
uniformly at random due to their homogeneity.

Additionally, for a short-term client of type, the algorithm is actually aimed to satisfy at
least only (1 — «;)l;, wherea; € [0,1] is called “unfulfilled rate” for clients of type and
to be determined by the algorithm. A strictly convex and mtongally increasing function
¢(a;) € [0,00) is then introduced to measure the “unhappiness” of sham-teients about
unfulfilled impression requirements, and deducted fromdhginal objective function “overall
average click-through rate” il_(R7) after scaled by somel@@rmined weighto; which reflects
the importance of the new metric “unfulfilled rate.”

The second extension from the original model is to considencae general query arrival
pattern. We introduce a new time scale “stationary-arpegiod” between the fast one “time slot”
t and the slow one “requirement cyclé,; namely one requirement cycle equalsstationary-
arrival periods (assuming th&(/H € Z* and usuallyN/H > 1), and we assume that query
arrivals with respect to each keywordform a stationary stochastic process with rajéh)
within the A" stationary-arrival period in one requirement cycle foriakk » < H. This is a
more reasonable assumption for the query arrival pattetinemeal Internet. For example, in one
day, the query arrivals are stationary within each indigichour, non-stationary across different
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hours, and stationary in the same hour across different. delyis corresponds tdd = 24,
although setting a contract term (already assumed to bd &moae requirement cycle) as one
day would only be a simplification for ease of exposition.&hen this example, in the following
text we are going to use “day” and “hour” instead of “requissrhcycle” and “stationary-arrival
period” to better describe the basic ideas.

In summary, the new optimization problem is formulated as

n+n
max =" Z Va(h) Y Doas () Y Miscois — D wic(cx)
{p(h),Vh; a} H _ . ,
q MeMygy 1<i<n+n,s i=n+1
subject to
H
N m; , vV 1<i<n
7 222 Y)Y o () D Mg > { (1—a)lzi, Yn+l<i<n+n
q h=1 MeM, s
and

0<p,,h) <1, Vg MecM, 1<h<H,; quM(h)Sl, Vg, 1<h<H.
MeM,

The only modification in the online algorithm described irbSection is to add the following
two steps specially for each type of short-term clients:

« At the beginning of the:'" day, update

it o (LY

which corresponds to the target “unfulfilled rate” for eaghe of short-term clients in this
. A [de —1
day. Here, the functiony £ [22]
« At the end of thek" day, “credit queue” maintained for type of short-term clients is
updated as

Qi(k+1) = Qi(k) + (1 —aj(k)) - LXi(k) — Si(k, Q(k),a(k)),

where S;(k, Q(k), q(k)) is defined in[(3B).

The conclusions and proofs about near-optimality of thectbje value, queueing stability and
upper bound on the expected queue length are similar as #hasen for the original problem
in Subsectiom V-A and hence omitted here.

Note that the online algorithm is still “oblivious” to the ety arrivals, when the arrival
processes become non-stationary to some extent. This iditattaof dual decomposition w.r.t.
each hourh, in addition to a decomposition w.r.t. each keywgrds we have seen before.
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