Tracking control in billiards using mirrors without smoke, Part I:
Lyapunov-based local tracking in polyhedral regions

F. Forni, A.R. Teel, L. Zaccarian

Abstract— In this paper we formulate the tracking problem
of a translating mass in a polyhedral billiard as a stabilizaion
problem for a suitable set. Due to the discontinuous dynami
arising from nonsmooth impacts, the tracking problem is
formulated within a hybrid systems framework and a Lyapunov
function is given, which decreases during flow (continuous
motion) and remains constant across jumps (impacts of the
masses). To guarantee non-increase of the Lyapunov functio
at jumps, we introduce a novel concept of mirrored images of
the target mass and prove that, with this concept, local traking
is achieved. Several simulations illustrate the effectiveess of the
proposed approach as compared to alternative solutions. I
companion paper [6] we address global results and generaiz
the local approach to curved billiards.

I. INTRODUCTION
Control of dynamical systems subject to nonsmooth i

pacts is a relevant problem in several application are#sn of ;
related to the robotics field [2]. Several Lyapunov-baseg‘e

solutions to the stabilization and tracking problem of eyss

m_

a mass moving on a billiard. We cast this problem within
the framework of [9], [8] for hybrid dynamical systems and
propose a novel control strategy which is capable of indycin
decrease of a suitable Lyapunov function during flows and
non-increase during jumps. This type of approach is some-
what new in the area as most of the existing Lyapunov-based
results treat the impacts as events which locally increlase t
Lyapunov function (a notable exception being the case in
[14]) and resort to weak stability concepts. Here, instead,
we design a Lyapunov function (and the arising control
law) which does not increase at the impact times because it
computes the tracking error based on a mirrored image of the
reference, whenever this is convenient to keep the tracking
error small. The resulting controller selects which mass to
track based on the closest reference among all the possible
flections given by the billiard boundaries. It is notaltiatt
so-called “mirror algorithm” is proposed in [5] to solveeth

e{'uéggling problem. This has little similarity with our apoh
S the “mirror” is used there at all times to make the actuator
"Wack a mirror image of the ball trajectory (which is regelht

with nonsmooth impacts have been proposed in the p
decade [3], [10], [20]. Some of them address the proble

via the larger class of complementarity Lagrangian systemgcting at jumps), whereas here it is used to prevent the

See [13] for a recent work which gives an updated overvie ; : . . .
of the results in this fields and generalizes and improvéf\fsa(:kmg algorithm (which acts during flows) from getting

the results in the previous papers [1], [4]. Several aditio confused by impacts. Local tracking for polyhedral biltiar

recent techniaues addressing tracking control with i ac.s discussed here and further developments are given in the
q ; 9 9 . T ompanion paper [6], where global tracking for some special
both from a theoretical and an experimental viewpoint arg

orovided in the works [14], [15], [11], [12], [19] and ref- ases is provided and local tracking in curved billiarddss a

. . achieved.
erences therein. The reader is referred to [13] for a more , . .
) . The paper is structured as follows. Section Il introduces
detailed overview. : . .
. N . . the proposed dynamical model. In Section Il local tracking
Tracking control in billiards is a representative examgdle o_ . o .
. wijth one boundary is discussed. In Section IV the results are
the control problem discussed above whenever the contrg ) :
L : . ; ._extended to the case of multiple boundaries and an example
action is allowed to act during the motion (like, e.g, in

is discussed in Section V.

walking robots) and the impacts correspond to jumps in thﬁotation' The Euclidean norm of a vector is denoted by
state occurring whenever the trajectory reaches a constraih | The.distance between two sefs and S is given by
.. ;

In this context, a number of results have been produced, o
which rely on the model first proposed in [20]. Theselriiéf%és"beestflvlzé;;2| gg?;;éssesggeg %yé%ilté‘g% yﬂ;re
are nicely summarized in [7],[12]. The parallel problem ofd o P : : o
. : . ) - : and it is equal tod({s},S). A continuous functionu(-) :
tracking trajectories while restricting the control aatiat the ) . s .
. . : . 0,a) — [0,400) is said to belong to clask if it is strictly
impact times is addressed in the work of [16] and referencés . L . ;
therein. increasing an.dx(o) =0; it is said to b_elong to clask J;f
The problem statement in this paper is motivated by [7@/: +00 andlim,, ;.o a(r) = +o0. Given a vector € R*,

. . o T
[12] where Lyapunov-based tracking control is designed fqb(flovxlglglsctc:)?l]{gdle;r;r ;n[yZPTg ;/i]n fzvr?ciirs ﬁt/h?g#txeﬂgo?v’i;

the vecto &5 - - ]”. (v1, v5) denotes the scalar product
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between the vectors, andvs.

II. THE DYNAMICS

We consider the motion of two translating massesnd
X on a geographical region defined by a closed convex
polyhedron with the origin in its interior and not necedyari



compact. Each boundary of the polyhedron can be associatedF’)” is the inverse rotation that completes the trans-
to a constraint of the formE'”s < 1 denoting the subset formation by mappings™ to the original base. Note that
of the state space in which the motion is allowed, wheréw,w,) =0 and F7w, = |F|.
F € R? is such that|F| characterizes the distance of the During impacts the positiom of the mass remains un-
boundary{s € R?| FTs = 1} from the origin, While% is  changed, thug™ =17 for F7n=1 (on the boundary), which
a unit vector orthogonal to the boundary characterizing itsan be rewritten in the following form, useful for control
orientation, as shown in Figure 1. design:

MassesZ and X move within the geogrqphlca! region as nt = M(F)y+ c(F), ()
long as no boundary of the polyhedron is active (namely
when the position of a mass is on the boundary and thgherec(F) = 27> We establish next this equivalence.
velocity vector has normal component to the boundary in Fact 1: M

- _ ’ (F)n+ ¢(F) = n if and only if FTn = 1.
the same direction ag’). When a boundary is active, the Based on (4) and Fact 1, the impulsive dynamicsZond

mass mot!on is not compatible with the direction forbldder}\, at impacts is summarized by the following equation.
by the active boundary and the state is reset to a new value,

suitably characterized by the impact of the mass on theectiv nt = M(F)n+ c(F) .
boundary. Figure 1 is illustrative of the setup, where we?:& : { Wt = M(F)w if FTn=1,F"w>0
represented a simple polyhedron defined by one boundary (5)

only. We loosely callbilliard the geographical region, to where the dynamics of arises from using; = 2, and
enlighten the fact that the dynamics 8fand X’ resembles ., = 2, and the dynamics oft' arises from the identities

the behavior of twddalls moving on a billiard and impacting » = z, andw = z,. For simplicity of exposition, in what
on its boundaries follows we will use

M(F) := diag(M (F), M(F)), &F):=[ ¢(F)" |0 ]"
(6)
to write compactly the impact model & and X'.

The model arising from the combination of continuous
motion and impacts itybrid, meaning that the behavior of
the two translating masses cannot be reduced to a continuous
motion only (there are discontinuities on the state), or to

Fig. 1. A closed, convex, not necessarily compact polyhedrith the

origin in its interior. an impulsive behavior only (there are intervals of time in
which the ball moves continuously). In Section 1V we will
Denoting by = [*] € R* andz = [37] € R* generalize this hybrid dynamics to a polyhedron having
respectively the state of and X, the continuous-time N boundaries, using the hybrid system framework of [8],
dynamics can be given as follows [9], [17], [18]. In particular, we will adopt the notation
. summarized, e.g., in [9, Section 2.1] (see also [8]), which i
Z { > = Z” (la) not recalled here due to space constraints. For pedagogical
o= hz) reasons, we first present the control design methodology for
. Tp = Iy a geographical region defined by only one boundary. We
X P (1b) . .
Ty, = ¢(x)+u will consider Z as anexogenoussystem that generates a

reference trajectory for theontrolled systemX’, which is
controlled only during the continuous-time evolution. Shu
LPbgser speaking, we will consider the goal of finding a
htrol inputw that guarantees the asymptotic convergence
81‘ the positionz,, of the controlled system to the position

z, of the exogenous system.

where h, ¢ : R* — R? are continuous functions possibly
modeling nonlinear factors affecting the accelerationhaf t
translating masses. When a mass impacts a boundary,
position remains unchanged while the velocitys reflected
in a direction that is determined by the mass velocity an
the boundary orientation. In particular,

wh = M(F)w (2) [1l. TRACKING WITH IMPACTS: SINGLE BOUNDARY
where M (F') is a transformation that inverts only the com-A. Possible problems of classical approaches

ponent ofw normal to the active boundary, defined by A naive approach to the solution of the tracking problem

M(F) = R(F)Tdiag(1,—1)R(F) (3a) isto adopt classical methods for the case without impagts, b
1 [ pT[0-1 defining a control input that enforces asymptotic convecgen
R(F) = 7 {4%@} (D) o zero of thex — » dynamics or, equivalently, asymptotic

stability of the setd, = {(z,z)|z = z} in the absence
where R(F") is the rotation matrix that maps to the of impacts. Thus, considering the Lyapunov functiti :
base{wy, w1} = {[ % §] 7. 177}, thus decomposing to R+ x R* — R, defined by
directions tangentialvy and normalw, to the boundary;
[5 %] inverts the normal directionv,, and R(F)~! = Vo(z,2) = (x — 2)TP(z — 2). (7)



where P" = P > 0, for any givenk € R*** such that the the errore(r; ) := Ap(£)eo = [ %905 0015’5533} eg, from

matrix which we can also mfer thal’ impacts first since foey ~
Ay = [M} (8) AC e(r) = A[-0.10850. 09317, that is, z, (") < zp(r).
K Consider now the interval of time between the impact of
satisfiesAZ, P + PA, < 0, the feedback input X and the impact ofZ which is given approximately by
Ty = —@. When X impacts, the position does not
u="h(z) = ¢(z) + K(x - 2) (®)  change,z,(r{") = z,(;) = 0, while the velocity resets

guarantees exponential convergence wofto z, as long TOM@u(71) = eu(m ) +20(7y l = eo(m )+ (-v+pm) =

as impacts never occur. In fact, looking at (1), we havée (1) = (v+5ep(m)) tozy (7 ):“Jr%ef(ﬁ )=eu(Tr),

V(z,2) = 2(x — 2)T PAg(z — z) < 0 on (R* x RY)\ A,.  from which we have:(rj) ~ [QM‘L:P:} - (T,)} . The
When impacts (5) are considered, the control law (9) doggput between the two impacts can be approximated by

not anymore guarantee stability nor convergence, as shown— _;, 4 [-4 —a]e(r;") ~ —u — 8v, from which the
in the following example. error dynamics between the impacts is approximativelyrgive

Example 1:In Figure 2 the horizontal motion of the two py ¢, = e, andé, = —8uv. Thus, by integration, at time
massesZ andX is constrained on the left by a wall placed at(r, + )~ immediately before the impact of, we have
0. The continuous dynamics is given By= [} ]z[—i— [] W] en((r +7)7) = en(rh) — 8um = 20 + 2Le, () —
wherey > 0 is a constant external force, atid= [{ § ep(T]) _ _

€ 4+ 8l ~ Qv — e, (T 8 +28)e,(r ) and

[9]u where the mpu'u = —pu+[-4—4](z — z) guarantees E(T )+ )" )v_ en(rH) + e ((TlJF))T (—41;7— )Npgel 27 )
that the matrixA = [ %, %] of the error dynamicg — 2 =  “P\\"1 7 72 P v Loy
A(z — z) is Hurwitz. from which e((ry + 72)7) = 2v—e, (7] )+p(841r2" Jep(T1)

From here Z impacts and reverses its speed, from WhICh the

w mismatch is given by((r, +7m2)%) = [_gzjfe(?(:i;)*)} -

X z 0z P —ep(7y) _ © - AN
i [*ev(ff)+(8+2%)ep(ff)} = As(5)e(rr), whered, (3) :=
= [8;21g _01}. Finally, after both impacts, the two masses

s v w w repeat the behavior analyzed above, therefore the mismatch
Fig. 2. Example 1: Sketch of the two masses (left); time eimiuof the € after the k-th impact of Z can be characterized by
positions of X and Z (right). (AJ( )AF( )) ey =: AJF(ﬁ)keO' J

Givenzo = [0 v]T andzy = 20 +¢, with e € R? typically ~B. Tracking through mirrors

small, for a specific set of initial mismatcheslefined next, The defective behavior of Example 1 can be avoided by
the cyclic behavior of the two masses can be qualitativelynticipating the fact that future impacts will invert theotn
characterized as a sequence of a continuous motion (Whe@) speed of the ball, which can be effectively implemented
the two masses reverse their direction under the effect gp tracking the exogenous Systeﬂ] through a mirror as
the forcey), followed by the impact oft’ to the wall, then shown in Figure 3, wheret may decide to track either
by the impact ofZ, from which this sequence repeats. Thehe real targetz or the mirrored targetn(F, Z), mirrored
EWismatChE—Z at thekth impact ofZ is given approximately  through the boundary. Mathematically, the functiom(-, -)
y . is given by

AJF(%)ICE = ([(8;21%) ,01} e{ 5 14}%)k g, (10) m(F,s) = M(F)(S —F)), (11)

where the matrix4 ;» (%) (whose deduction is given below) which maps states™ after an impact ton(F,z") = z,
presents an unstable eigenvalue when the ratie smaller as if the impact never happened. Its mirroring peculiasty i
than0.613. For example, givew — 1 and . = 2, the value underlined by the fact that(F, m(F, s)) = s, as stated in
of the unstable eigenvalue i34 and the corresponding the following statement.
eigenvector is¢ = [0.0773 —0.997]T, thus pickinge = A(,
with 0 < A <« 1, we have that the erroe = =z — z
immediately after théth impact of Z is given by1.34%¢, i.e.
impacts destabilize the system. Note that the other eige@va
of A;r has norm less than one, therefore the unstable
behavior would appear also for an initial mismatchmear s
AC, A>0. Il
Usingu = 2 andv = 1, considereyg = zp — zp = € ~ A(, "
0 < A < 1. Forv > 0 and )\ small, the time spent bg and
X to go back to zero is given approximately by := 7“
and fort € [0, 1] the time evolution of the error is given by  Fact 2: m(F, M(F)s+E(F))=s andm(F, m(F,s))=s.
e(t) = exp(At)eo. Thus, definingAr () = exp(4A22), at Note that the interaction between the continuous dynamics
the timer; (immediately before the flrst impact) we haveand the impacts dynamics allows for a nonunique behavior

mirrored

mp(Z2)

real
target

Fig. 3. A possible interpretation of the hybrid tracking @ithm.



of the translating masses from some specific configurationd, a feature used in the formulation of the hybrid control
of the state vectors ok’ and Z. Indeed, for a geographical law proposed next.
region defined by one boundawy, = {[:*] € R*| FTs, < Lemma 3.2 (Property ofl): If (z,2) € A, thenz, = z,
1}, when the state vector characterizes a positioon the Based on Lemmas 3.1 and 3.2, we can now formulate
boundary, F7 = 1, and a velocityw with null normal our hybrid controller for local tracking in the one-boungar
component to the boundary,”w = 0, both the continuous case. It will be generalized to the multi-boundary case in
dynamics and the impacts dynamics can be triggered, wiection IV. For the case of one boundary only, and for some
the former enforcing sliding along the boundary while thespecific shapes of the geographical region, the result below
latter enforcing an infinite sequence of impacts on the beundan be extended to a global result, as shown in [6].
ary (Zeno behavior), each of them resetting the velocity to Theorem 1: Considerd,; in (8) and V in (13), and
FTwt = 0. To avoid this kind of phenomena, we restrictconsider a matrixP = zi Z% > 0 with p1,pa,ps €
. . 3

the tra]ec.tones.on to a compact sek’ that excludes that R, and a matrix gaink € R2*4 such that for some > 0,
set of points, given by

P— . AT P+ PA, < —\P. (15)

KCF\{[>]eR|F z,=1,F"z,=0} (12)
_ _ o ~ Then the control law:
Thus, trajectories of within K do not present a nonunique h(z)—(z)+ K (1—2) if a(z,2)<0
behavior, and the same holds fras long as its trajectories u= .
. X ; . M(F)h(z)—¢(x)+ K(x—m(F, z)) if a(x,z)>0

remain close to the trajectories &f, as in our local results. (16)

Restricting _the state space af an(_jZ to (x,_z) €C:= \ith alz, 2) = Vo(z, 2) — Vo(z, m(F, 2)), locally asymptot-
F x K and using the mirroring functiom(F, -) in (11), the ically stabilizes the sef.

idea of tracking the exogenous system through a mirror Cafle " particular structure of guarantees that’ does not
be mathematically characterized by using a new LyapunQ¥crease at jumps. Note that the input differs from the

functionV: R x R* — R, one in (9) only when the functiof/(z,z) is equal to
V(z,z) = min{Vy(z, 2), Vo(z, m(F, )}, (13) Vo(z, m(F, z)), that is, intuitively, when the mirrored target

m(F, z) is closer tox than the real target. Note also that

which extends the quadratic measure of the mismatch be-is not defined forVy(z, z) = Vo(z, m(F,2)) but this is

tweenz and z to a combination of the mismatch betweennot an issue in a small neighborhood df as shown in

2 and z and between: and m(F,z), and by casting the Lemma 3.1. Finally, the notion gbre-asymptotic stability

tracking problem to the stabilization problem of the set  used in Theorem 1 underlines the fact that some solutions
may have a compact domain, since the motiomtoand Z

A= (A UAn)NC 14) s r)elstricted taC. P

where 4, = {(z,2)|z = 2} and A,, = {(z,2)|z = Theorem 1 can t_)e established by applying hybriq Lya-

m(F, z)} intuitively characterize state pairs af and 2 that Punov and LaSalle-like tools [17], [8] to the following hytr

perfectly match (the case od,) or that match by looking System, which models the interaction betwetrand Z:

at the reflection to the boundary/mirror (the case4f,). iy

= ZU

Note thatA is a compact set that can be considered as the | i = ¢(z)+u
generalization of the sed,, used in the case without impacts iy = 2 (z,2)€Cy x C (17a)
around (7), (9) (the setl,,, plays a fundamental role because Z, = h(z)
it allows for the invariance of the sefl along the hybrid -
dynamics). T = M(F)x +¢(F

The idea is then to asymptotically stabilize the geby a 2t = 2 o " (2,2)€ Do x C
feedback: constructed om, 2, andm(F, =), and designed to L (17b)
makeV decrease along the solutions of the system, namely o= _ (z,2)€Cyx D,
using the fact thafi” is a Lyapunov function for4 and Z = M(F)z+¢(F)

the important feature that the stabilization of the gets  \yherecy, = F, € = K, Dy = Fo{z|FTz,=1,FTz, >
equivalent to the solution of the tracking problem. All thes 0}, andDz = KN {z|FTz, = 1,FTz, > 0}. -
connections are formally stated in the next two lemmas. Note that an impact of bot’ and Z at the same time

Lemma 3.1 (Properties df): GivenV in (13), instant is modeled by a sequence of two consecutive jumps,
i) V(z,z)=0 foreach(z,z) € A, one for each system. This feature is not restrictive, sihee t

i)y V(z,z)> 0 foreach(z,z) e C\ A, and sequence of jumps is characterized by hybrid time instants

iy V(z,z) = Vo(z,2) for (z,2) € (A +eB)NC, (t,75),(t,5+1)and(t,j+1),(¢ j+2), thus both at the same

V(z, z) = Vo(x,m(F, z)) for (z,2) € (A, +eB)NC, ordinary timet.
for ¢ > 0 sufficiently small; Using the hybrid dynamics in (17) (note thét= Cy U
iv) Ve C!on(A+eB)NC, for e > 0 sufficiently small. Cz), the proof of Theorem 1 follows from the combination
Lemma 3.1 establishes thaf is a candidate Lyapunov of the invariance principle in [17] and the following lemma,
function for the setd. Moreover, item iii) above shows that which shows thal” decreases along the continuous motion
min(Vy(z, 2), Vo(x,m(F, z))) is strict in a neighborhood of of the two translating masses (i.e. alofigws of 7{) and



it does not increases on impacts (i.e. acrpsspg, from The hybrid system? in (17) can be generalized to
which it is also possible to partially justify the importanc the geographical region (19) by introducing the &t =

of avoiding Zeno solutions. {[*] € R*|Fls, = 1,Fl's, > 0}, based on which, the
Lemma 3.3: Under the hypotheses of Theorem 1, for eaflow and jump sets oft and Z can be defined a€y = F,

(x,2) €C, Cz = K, Dx = Fn{[z*]|3k € Z,z € Dy}, and
« V(z,2) < =\V(z,2) if alz,z) £0, Dz =Kn{[:*] |3k € Z,z € Dy}, whereDy and Dz are

o Vizt,2H) < Vi(z,2) if (z,2) € (CoxD.)U(DxC,).  essentially defined by the intersection @f and Cz with
Thus, combining Theorem 1 and Lemma 3.2, we get th@e impact points. Thus, with these flow and jump sets, the

following result. hybrid model# can be defined by the flow dynamics (17a)
Corollary 1: The controku in (16) guarantees that (i) for @nd the following jump dynamics:

eache > 0 there exist9 > 0 such that/(z, z)| 4 < ¢ implies 2ot = M(F)x +&(F)if 2 €D

|zp(t, ) — 2p(t, )| < e for all (¢,5) € dom (z,z), and ot — (F) (Fk) F (z,2)€D, xC,

(ii) there existsy > 0 such that for each complete solutfon N (23)

(SC,Z) from |(I07ZO)|.A S 7: hmt+]~>oo|xp(taj) - Zp(t7])| :O x - @v _ i (l’, Z) ECw X DZ'

Finally, for implementation reasons, in the next propositi 2t = M(Fy)z + ¢(Fy) if z € Dy,

we propose a specific but constructive solution to the inyote that the sef — C.. x C, is now generated by the many

equality (15). boundary geographical regioh in (19) and by the compact

_ Propgsiticl)n 1 (Feasibility):Selectk:, k2 € R 521022 that  set in (22). Moreover, to simplify the notation, we define
A=[15, % }_'ifHuﬂtz matrix, and také” = [1, 13| € the setD = (D, x C.) U (C, x D) characterizing the set
R? solution toA” P + PA < 0. Then, (15) is satisfied by of points from which an impact may occur, and we rewrite

P TNITE PRIV A
pol | psl |’ '
IV. LOCAL TRACKING WITH MANY BOUNDARIES m(Fk,5) = { ?VY(F;C)(S 029) Zj : Z; (242)
boﬁngdea()r?ergﬁshgi?/lerﬁgben defined by a polyhedron with many M(Fy) = { ]Iv[(Fk) Zz zg’ (24b)
F={[r]eR*|VkeT, Fls, <1} (19) and the Lyapunov functiofy can now be defined as
where eacht, € R? characterizes a boundafy, = {[:*] € V(z,z) = ke%i}nuz Vo(z, m(Fg, 2)). (25)

R*|Fls, = 1}, andZ = {1,...,N}, N € N, is an

index set. From Section Ill, we recover the assumption oW'th the closest mirrored target defined by

the state-space of’ and Z that guarantees the absence of o = argmin Vp(z, m(Fy, 2)). (26)
the “sliding vs impacts” phenomena characterized by (12). ke{0}uZ

Mathematically, with many boundaries, the correspondéig syhere » — 0 denotes the real target. Note thatis only

of defective points to be excluded is given by well defined in regions where the minimum in (25) is strict.

One such region is characterized in Item iii) of Lemma 4.1,

N Sp 41T . T. _
Qi = U {[2] eRY Fy'sy =1, Fy s,=0}) (20) below. In analogy with the previous section, the getan

kel now be generalized to
Another source of nonuniqueness in the behavioA'chnd
Z is given by corners points (namely any poine Fj, N F; A = ( U Ak> ne (27a)
for k,j7 € Z andk # j). Excluding these points is important ke{0}UT
for the feasibility of the tracking algorithm. In fact, supge A = {(z,2) eR* x R* |z = m(Fy, 2)}, (27b)

that X and Z impact together the point at the intersection
two boundariesk andj. Then, nondeterministicallyy’ may and the connections between the Lyapunov functidnn
follow the impact dynamics enforced by, while Z may (25), the setA in (27), and the tracking problem are
follow the one fromj, thus showing that a solution to the presented in the next two lemmas.
tracking problem cannot be achieved. Mathematically, this Lemma 4.1 (Properties df): GivenV in (25),
set of points is given by i) V(z,2)=0,V(z,z) € A
i) V(z,z)>0,V(z,2) e C\ A.
Q= U {[Z)eRY Fl'sy = F's, =10 #j} (21) iii) Trgere)exists £ 0 s).t.V(a:\, z) € (Ax+eB)NC, 0 = k.
“i€L iv) There existg > 0s.t. V € C! on (A +eB)NC.
Lemma 4.2 (Property ofl): If (z,z) € A, thenz, = z,.
From Lemmas 4.1 and 4.2, we can focus on the stabilization
KcF\(QiUQy). (22) of the setA, using the functiorl” as a candidate Lyapunov
function. Thus, the control law (16) can be generalized to
INamely, solutions whose hybrid time domain is unbounded. the many boundaries case as in the following theorem.

Thus, we restrict the trajectories &f to the compact set



Theorem 2: Considef{ in (17a) (23). Suppose that a

matrix P = [%”%] > 0, p1,p2,p3 € R, and a gain

matrix K € R?** satisfy equation (15) witd.; in (8) and
A > 0. Then the control law:

u=M(F,)h(z) — ¢(x) + K(x — m(Fy, 2)), (28)

with M (F,) andm(F,, z) as in(24), (26) is well defined in
a neighborhood of4 and it locally asymptotically stabilizes
the setA.
Theorem 2 can be established from Lemma 4.1, the invari-
ance principle in [16] and Lemma 4.3 below. Moreover, by
Lemma 4.2, Theorem 2 entails asymptotic convergence of
xp 10 z,, paralleling Corollary 1 of previous section.

Lemma 4.3: Using the aggregate stdte- (z, z), denot-
ing by H (&) the right-hand side of the flow mgp7a)and
by G(¢) the right-hand side of the the jump mé&28), under
the hypothesis of Theorem 2, the control I&8) guarantees
that there exists\ € (0,1) ande > 0 sufficiently small such
that

(VV(E), H(§)) <=AV(§) VEe((A+eB)NC)\ A

V(g)<V(€)  VeEe(A+eB)ND,VgeG(€).
29)

Fig.
law

V. SIMULATION EXAMPLES
We consider a billiard with five boundaries defined by

0 |-1]-1 3
—1

-1 0‘1

and a simple dynamics foE given by 2, = z,, 2, = 0.
Using P and K given by

0.41 | 0.11

in Figure 4 we show a comparison between the classical
control law (9) and the hybrid control law (28). The two
upper rows of Figure 4 represent trajectories Af and
Z on the billiard fromzy = [0.80.41.51.25]" and 2
[0.6 1.5 1.25], for simulation timesT" = 3.2. Finally, even
though Theorem 2 only guarantees local properties, the goach
behavior induced by the proposed approach for large initial
errors is reported in the third row of Figure 4. Note that (28213]
is undefined where the minimum of (25) is nonstrict. Bu
since this is a set of measure zero, this is not an issue for
running this simulation. A regularization of (28) to make itlt4
well defined everywhere ift is carried out in the companion [15]
paper [6], which focuses on global tracking.

(6]

1
[ B[P | By | B | F5 ] = 2 17

(8]
El

(11]
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