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Abstract— In this paper we formulate the tracking problem
of a translating mass in a polyhedral billiard as a stabilization
problem for a suitable set. Due to the discontinuous dynamics
arising from nonsmooth impacts, the tracking problem is
formulated within a hybrid systems framework and a Lyapunov
function is given, which decreases during flow (continuous
motion) and remains constant across jumps (impacts of the
masses). To guarantee non-increase of the Lyapunov function
at jumps, we introduce a novel concept of mirrored images of
the target mass and prove that, with this concept, local tracking
is achieved. Several simulations illustrate the effectiveness of the
proposed approach as compared to alternative solutions. Ina
companion paper [6] we address global results and generalize
the local approach to curved billiards.

I. I NTRODUCTION

Control of dynamical systems subject to nonsmooth im-
pacts is a relevant problem in several application areas, often
related to the robotics field [2]. Several Lyapunov-based
solutions to the stabilization and tracking problem of systems
with nonsmooth impacts have been proposed in the past
decade [3], [10], [20]. Some of them address the problem
via the larger class of complementarity Lagrangian systems.
See [13] for a recent work which gives an updated overview
of the results in this fields and generalizes and improves
the results in the previous papers [1], [4]. Several additional
recent techniques addressing tracking control with impacts
both from a theoretical and an experimental viewpoint are
provided in the works [14], [15], [11], [12], [19] and ref-
erences therein. The reader is referred to [13] for a more
detailed overview.

Tracking control in billiards is a representative example of
the control problem discussed above whenever the control
action is allowed to act during the motion (like, e.g, in
walking robots) and the impacts correspond to jumps in the
state occurring whenever the trajectory reaches a constraint.
In this context, a number of results have been produced,
which rely on the model first proposed in [20]. These
are nicely summarized in [7],[12]. The parallel problem of
tracking trajectories while restricting the control action at the
impact times is addressed in the work of [16] and references
therein.

The problem statement in this paper is motivated by [7],
[12] where Lyapunov-based tracking control is designed for
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a mass moving on a billiard. We cast this problem within
the framework of [9], [8] for hybrid dynamical systems and
propose a novel control strategy which is capable of inducing
decrease of a suitable Lyapunov function during flows and
non-increase during jumps. This type of approach is some-
what new in the area as most of the existing Lyapunov-based
results treat the impacts as events which locally increase the
Lyapunov function (a notable exception being the case in
[14]) and resort to weak stability concepts. Here, instead,
we design a Lyapunov function (and the arising control
law) which does not increase at the impact times because it
computes the tracking error based on a mirrored image of the
reference, whenever this is convenient to keep the tracking
error small. The resulting controller selects which mass to
track based on the closest reference among all the possible
reflections given by the billiard boundaries. It is notable that
a so-called “mirror algorithm” is proposed in [5] to solve the
juggling problem. This has little similarity with our approach
as the “mirror” is used there at all times to make the actuator
track a mirror image of the ball trajectory (which is regulated
acting at jumps), whereas here it is used to prevent the
tracking algorithm (which acts during flows) from getting
confused by impacts. Local tracking for polyhedral billiards
is discussed here and further developments are given in the
companion paper [6], where global tracking for some special
cases is provided and local tracking in curved billiards is also
achieved.

The paper is structured as follows. Section II introduces
the proposed dynamical model. In Section III local tracking
with one boundary is discussed. In Section IV the results are
extended to the case of multiple boundaries and an example
is discussed in Section V.
Notation: The Euclidean norm of a vector is denoted by
| · |. The distance between two setsS1 andS2 is given by
infs1∈S1,s2∈S2

|s1 − s2| and it is denoted byd(S1, S2). The
distance between a points and a setS is denoted by|s|S
and it is equal tod({s}, S). A continuous functionα(·) :
[0, a) → [0,+∞) is said to belong to classK if it is strictly
increasing andα(0) = 0; it is said to belong to classK∞ if
a = +∞ andlimr→+∞ α(r) = +∞. Given a vectorz ∈ R

4,
we will considerz = [ zT

p zT
v ]

T where the subvectorszp, zv
belongs toR2. For any given functionV : Rn → R, ∇V is
the vector[ ∂V

∂x1
... ∂V

∂xn ]
T . 〈v1, v2〉 denotes the scalar product

between the vectorsv1 andv2.

II. T HE DYNAMICS

We consider the motion of two translating massesZ and
X on a geographical region defined by a closed convex
polyhedron with the origin in its interior and not necessarily



compact. Each boundary of the polyhedron can be associated
to a constraint of the formFT s ≤ 1 denoting the subset
of the state space in which the motion is allowed, where
F ∈ R

2 is such that|F | characterizes the distance of the
boundary{s ∈ R

2 |FT s = 1} from the origin, while F
|F | is

a unit vector orthogonal to the boundary characterizing its
orientation, as shown in Figure 1.

MassesZ andX move within the geographical region as
long as no boundary of the polyhedron is active (namely
when the position of a mass is on the boundary and the
velocity vector has normal component to the boundary in
the same direction asF ). When a boundary is active, the
mass motion is not compatible with the direction forbidden
by the active boundary and the state is reset to a new value,
suitably characterized by the impact of the mass on the active
boundary. Figure 1 is illustrative of the setup, where we
represented a simple polyhedron defined by one boundary
only. We loosely callbilliard the geographical region, to
enlighten the fact that the dynamics ofZ andX resembles
the behavior of twoballs moving on a billiard and impacting
on its boundaries.
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Fig. 1. A closed, convex, not necessarily compact polyhedron with the
origin in its interior.

Denoting by z = [ zpzv ] ∈ R
4 and x = [ xp

xv
] ∈ R

4

respectively the state ofZ and X , the continuous-time
dynamics can be given as follows

Z :

{
żp = zv
żv = h(z)

(1a)

X :

{
ẋp = xv

ẋv = φ(x) + u
(1b)

whereh, φ : R
4 → R

2 are continuous functions possibly
modeling nonlinear factors affecting the acceleration of the
translating masses. When a mass impacts a boundary, the
position remains unchanged while the velocityω is reflected
in a direction that is determined by the mass velocity and
the boundary orientation. In particular,

ω+ = M(F )ω (2)

whereM(F ) is a transformation that inverts only the com-
ponent ofω normal to the active boundary, defined by

M(F ) = R(F )T diag(1,−1)R(F ) (3a)

R(F ) =
1

|F |

[
FT

[
0 −1
1 0

]

FT

]
(3b)

where R(F ) is the rotation matrix that mapsω to the
base{w‖, w⊥} = {

[
0 1
−1 0

]
F
|F | ,

F
|F |}, thus decomposingω to

directions tangentialw‖ and normalw⊥ to the boundary;[
1 0
0 −1

]
inverts the normal directionw⊥, and R(F )−1 =

R(F )T is the inverse rotation that completes the trans-
formation by mappingω+ to the original base. Note that
〈w‖, w⊥〉 = 0 andFTw⊥ = |F |.

During impacts the positionη of the mass remains un-
changed, thusη+=η for FT η=1 (on the boundary), which
can be rewritten in the following form, useful for control
design:

η+ = M(F )η + c(F ), (4)

wherec(F ) = 2 F
|F |2 . We establish next this equivalence.

Fact 1: M(F )η + c(F ) = η if and only ifFT η = 1.
Based on (4) and Fact 1, the impulsive dynamics ofZ and
X at impacts is summarized by the following equation.

Z,X :

{
η+ = M(F )η + c(F )
ω+ = M(F )ω

if FT η=1, FTω≥0

(5)
where the dynamics ofZ arises from usingη = zp and
ω = zv and the dynamics ofX arises from the identities
η = xp andω = xv. For simplicity of exposition, in what
follows we will use

M̃(F ) := diag(M(F ),M(F )), c̃(F ) :=
[
c(F )T 0

]T
(6)

to write compactly the impact model ofZ andX .
The model arising from the combination of continuous

motion and impacts ishybrid, meaning that the behavior of
the two translating masses cannot be reduced to a continuous
motion only (there are discontinuities on the state), or to
an impulsive behavior only (there are intervals of time in
which the ball moves continuously). In Section IV we will
generalize this hybrid dynamics to a polyhedron having
N boundaries, using the hybrid system framework of [8],
[9], [17], [18]. In particular, we will adopt the notation
summarized, e.g., in [9, Section 2.1] (see also [8]), which is
not recalled here due to space constraints. For pedagogical
reasons, we first present the control design methodology for
a geographical region defined by only one boundary. We
will consider Z as anexogenoussystem that generates a
reference trajectory for thecontrolled systemX , which is
controlled only during the continuous-time evolution. Thus,
loosely speaking, we will consider the goal of finding a
control inputu that guarantees the asymptotic convergence
of the positionxp of the controlled system to the position
zp of the exogenous system.

III. T RACKING WITH IMPACTS: SINGLE BOUNDARY

A. Possible problems of classical approaches

A naive approach to the solution of the tracking problem
is to adopt classical methods for the case without impacts, by
defining a control input that enforces asymptotic convergence
to zero of thex − z dynamics or, equivalently, asymptotic
stability of the setA◦ = {(x, z) |x = z} in the absence
of impacts. Thus, considering the Lyapunov functionV0 :
R

4 × R
4 → R≥0 defined by

V0(x, z) = (x− z)TP (x− z). (7)



wherePT = P > 0, for any givenK ∈ R
2×4 such that the

matrix

Acl =

[
02×2 I2×2

K

]
(8)

satisfiesAT
clP + PAcl < 0, the feedback input

u = h(z)− φ(x) +K(x− z) (9)

guarantees exponential convergence ofx to z, as long
as impacts never occur. In fact, looking at (1), we have
V̇ (x, z) = 2(x− z)TPAcl(x− z) < 0 on (R4 × R

4) \ A◦.
When impacts (5) are considered, the control law (9) does

not anymore guarantee stability nor convergence, as shown
in the following example.

Example 1: In Figure 2 the horizontal motion of the two
massesZ andX is constrained on the left by a wall placed at
0. The continuous dynamics is given byż = [ 0 1

0 0 ] z+
[

0
−µ

]

whereµ > 0 is a constant external force, andẋ = [ 0 1
0 0 ]x+

[ 01 ]u where the inputu = −µ+ [−4 −4 ] (x− z) guarantees
that the matrixA =

[
0 1
−4 −4

]
of the error dynamicṡx− ż =

A(x− z) is Hurwitz.
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Fig. 2. Example 1: Sketch of the two masses (left); time evolution of the
positions ofX andZ (right).

Givenz0 = [0 v]T andx0 = z0+ε, with ε ∈ R
2 typically

small, for a specific set of initial mismatchesε defined next,
the cyclic behavior of the two masses can be qualitatively
characterized as a sequence of a continuous motion (where
the two masses reverse their direction under the effect of
the forceµ), followed by the impact ofX to the wall, then
by the impact ofZ, from which this sequence repeats. The
mismatchx−z at thekth impact ofZ is given approximately
by

AJF

(
v

µ

)k

ε =

(

[

−1 0
(8+2

µ
v
) −1

]

e

[

0 1
−4 −4

]

2v
µ

)k

ε, (10)

where the matrixAJF (
v
µ
) (whose deduction is given below)

presents an unstable eigenvalue when the ratiov
µ

is smaller
than0.613. For example, givenv = 1 andµ = 2, the value
of the unstable eigenvalue is1.34 and the corresponding
eigenvector isζ = [ 0.0773 −0.997 ]

T , thus pickingε = λζ,
with 0 < λ ≪ 1, we have that the errore = x − z

immediately after thekth impact ofZ is given by1.34kε, i.e.
impacts destabilize the system. Note that the other eigenvalue
of AJF has norm less than one, therefore the unstable
behavior would appear also for an initial mismatchε near
λζ, λ>0.

Usingµ = 2 andv = 1, considere0 = x0− z0 = ε ≃ λζ,
0 < λ ≪ 1. For v > 0 andλ small, the time spent byZ and
X to go back to zero is given approximately byτ1 := 2v

µ
,

and fort ∈ [0, τ1] the time evolution of the error is given by
e(t) = exp(At)e0. Thus, definingAF (

v
µ
) := exp(A2v

µ
), at

the timeτ−1 (immediately before the first impact) we have

the errore(τ−1 ) := AF (
v
µ
)e0 =

[
0.4060 0.1353
−0.5413 −0.1353

]
e0, from

which we can also infer thatX impacts first since fore0 ≃
λζ, e(τ−1 ) ≃ λ [−0.1035 0.0931 ]T , that is,xp(τ

−
1 ) < zp(τ

−
1 ).

Consider now the interval of time between the impact of
X and the impact ofZ which is given approximately by

τ2 := −
ep(τ

−

1
)

v
. When X impacts, the position does not

change,xp(τ
+
1 ) = xp(τ

−
1 ) = 0, while the velocity resets

from xv(τ
−
1 ) = ev(τ

−
1 )+zv(τ

−
1 ) = ev(τ

−
1 )+(−v+µτ2) =

ev(τ
−
1 )−(v+ µ

v
ep(τ

−
1 )) to xv(τ

+
1 ) = v+ µ

v
ep(τ

−
1 )−ev(τ

−
1 ),

from which we havee(τ+1 ) ≃
[

ep(τ
−

1
),

2v+2µ
v
ep(τ

−

1
)−ev(τ

−

1
)

]
. The

input between the two impacts can be approximated by
u = −µ + [−4 −4 ] e(τ+1 ) ≃ −µ − 8v, from which the
error dynamics between the impacts is approximatively given
by ėp = ev and ėv = −8v. Thus, by integration, at time
(τ1 + τ2)

− immediately before the impact ofZ, we have
ev((τ1 + τ2)

−) = ev(τ
+
1 ) − 8vτ2 = 2v + 2µ

v
ep(τ

−
1 ) −

ev(τ
−
1 ) + 8v

ep(τ
−

1
)

v
≃ 2v − ev(τ

−
1 ) + (8 + 2µ

v
)ep(τ

−
1 ) and

ep((τ1 + τ2)
−) = ep(τ

+
1 ) + ev(τ

+
1 )τ2 − 4vτ22 ≃ −ep(τ

−
1 ),

from which e((τ1 + τ2)
−) =

[
−ep(τ

−

1
)

2v−ev(τ
−

1
)+(8+2µ

v
)ep(τ

−

1
)

]
.

From here,Z impacts and reverses its speed, from which the
mismatch is given bye((τ1+τ2)

+) =
[

ep((τ1+τ2)
−)

−2v+ev((τ1+τ2)
−)

]
=[

−ep(τ
−

1
)

−ev(τ
−

1
)+(8+2µ

v
)ep(τ

−

1
)

]
= AJ(

µ
v
)e(τ−1 ), whereAJ(

µ
v
) :=

[
−1 0

8+2µ
v

−1

]
. Finally, after both impacts, the two masses

repeat the behavior analyzed above, therefore the mismatch
e after the k-th impact of Z can be characterized by
(AJ (

µ
v
)AF (

v
µ
))ke0 =: AJF (

v
µ
)ke0. y

B. Tracking through mirrors

The defective behavior of Example 1 can be avoided by
anticipating the fact that future impacts will invert the (nor-
mal) speed of the ball, which can be effectively implemented
by tracking the exogenous systemZ through a mirror as
shown in Figure 3, whereX may decide to track either
the real targetZ or the mirrored targetm(F,Z), mirrored
through the boundaryF . Mathematically, the functionm(·, ·)
is given by

m(F, s) = M̃(F )(s− c̃(F )), (11)

which maps statesz+ after an impact tom(F, z+) = z,
as if the impact never happened. Its mirroring peculiarity is
underlined by the fact thatm(F,m(F, s)) = s, as stated in
the following statement.

F

|F |

Z

X
|F |

mF (Z)

mirrored
target

real
target

Fig. 3. A possible interpretation of the hybrid tracking algorithm.

Fact 2: m(F, M̃(F )s+ c̃(F ))=s andm(F,m(F, s))=s.
Note that the interaction between the continuous dynamics

and the impacts dynamics allows for a nonunique behavior



of the translating masses from some specific configurations
of the state vectors ofX andZ. Indeed, for a geographical
region defined by one boundary,F = {[ spsv ] ∈ R

4 |FT sp ≤
1}, when the state vector characterizes a positionη on the
boundary,FT η = 1, and a velocityω with null normal
component to the boundary,FTω = 0, both the continuous
dynamics and the impacts dynamics can be triggered, with
the former enforcing sliding along the boundary while the
latter enforcing an infinite sequence of impacts on the bound-
ary (Zeno behavior), each of them resetting the velocity to
FTω+ = 0. To avoid this kind of phenomena, we restrict
the trajectories ofZ to a compact setK that excludes that
set of points, given by

K ⊆ F \ {[ zpzv ] ∈ R
4 |FT zp = 1, FT zv = 0} (12)

Thus, trajectories ofZ within K do not present a nonunique
behavior, and the same holds forX as long as its trajectories
remain close to the trajectories ofZ, as in our local results.

Restricting the state space ofX andZ to (x, z) ∈ C :=
F ×K and using the mirroring functionm(F, ·) in (11), the
idea of tracking the exogenous system through a mirror can
be mathematically characterized by using a new Lyapunov
functionV : R4 × R

4 → R≥0,

V (x, z) = min{V0(x, z), V0(x,m(F, z))}, (13)

which extends the quadratic measure of the mismatch be-
tweenx and z to a combination of the mismatch between
x and z and betweenx and m(F, z), and by casting the
tracking problem to the stabilization problem of the set

A = (A◦ ∪ Am) ∩ C (14)

where A◦ = {(x, z) |x = z} and Am = {(x, z) |x =
m(F, z)} intuitively characterize state pairs ofX andZ that
perfectly match (the case ofA◦) or that match by looking
at the reflection to the boundary/mirror (the case ofAm).
Note thatA is a compact set that can be considered as the
generalization of the setA◦ used in the case without impacts
around (7), (9) (the setAm plays a fundamental role because
it allows for the invariance of the setA along the hybrid
dynamics).

The idea is then to asymptotically stabilize the setA by a
feedbacku constructed onx, z, andm(F, z), and designed to
makeV decrease along the solutions of the system, namely
using the fact thatV is a Lyapunov function forA and
the important feature that the stabilization of the setA is
equivalent to the solution of the tracking problem. All these
connections are formally stated in the next two lemmas.

Lemma 3.1 (Properties ofV ): GivenV in (13),

i) V (x, z) = 0 for each(x, z) ∈ A,
ii) V (x, z) > 0 for each(x, z) ∈ C \ A, and
iii) V (x, z) = V0(x, z) for (x, z) ∈ (A◦ + εB) ∩ C,

V (x, z) = V0(x,m(F, z)) for (x, z) ∈ (Am+εB)∩C,
for ε > 0 sufficiently small;

iv) V ∈ C1 on (A+ εB)∩C, for ε > 0 sufficiently small.
Lemma 3.1 establishes thatV is a candidate Lyapunov
function for the setA. Moreover, item iii) above shows that
min(V0(x, z), V0(x,m(F, z))) is strict in a neighborhood of

A, a feature used in the formulation of the hybrid control
law proposed next.

Lemma 3.2 (Property ofA): If (x, z) ∈ A, thenxp = zp
Based on Lemmas 3.1 and 3.2, we can now formulate

our hybrid controller for local tracking in the one-boundary
case. It will be generalized to the multi-boundary case in
Section IV. For the case of one boundary only, and for some
specific shapes of the geographical region, the result below
can be extended to a global result, as shown in [6].

Theorem 1: ConsiderAcl in (8) and V in (13), and
consider a matrixP =

[
p1I p2I

p2I p3I

]
> 0 with p1, p2, p3 ∈

R, and a matrix gainK ∈ R
2×4 such that for someλ > 0,

AT
clP + PAcl < −λP. (15)

Then the control law:

u=

{
h(z)−φ(x)+K(x−z) if α(x, z)<0
M(F )h(z)−φ(x)+K(x−m(F, z)) if α(x, z)>0

(16)
with α(x, z) = V0(x, z)− V0(x,m(F, z)), locally asymptot-
ically stabilizes the setA.
The particular structure ofP guarantees thatV does not
increase at jumps. Note that the input differs from the
one in (9) only when the functionV (x, z) is equal to
V0(x,m(F, z)), that is, intuitively, when the mirrored target
m(F, z) is closer tox than the real targetz. Note also that
u is not defined forV0(x, z) = V0(x,m(F, z)) but this is
not an issue in a small neighborhood ofA, as shown in
Lemma 3.1. Finally, the notion ofpre-asymptotic stability
used in Theorem 1 underlines the fact that some solutions
may have a compact domain, since the motion ofX andZ
is restricted toC.

Theorem 1 can be established by applying hybrid Lya-
punov and LaSalle-like tools [17], [8] to the following hybrid
system, which models the interaction betweenX andZ:





ẋp = zv
ẋv = φ(x) + u

żp = zv
żv = h(z)

(x, z)∈Cx×Cz (17a)





x+ = M̃(F )x + c̃(F )
z+ = z

(x, z)∈Dx×Cz

x+ = x

z+ = M̃(F )z + c̃(F )
(x, z)∈Cx×Dz

(17b)

whereCX = F , CZ = K, DX = F∩{x |FTxp=1, FTxv≥
0}, andDZ = K ∩ {x |FT zp = 1, FT zv ≥ 0}.

Note that an impact of bothX andZ at the same time
instant is modeled by a sequence of two consecutive jumps,
one for each system. This feature is not restrictive, since the
sequence of jumps is characterized by hybrid time instants
(t, j),(t, j + 1) and(t, j+1),(t, j+2), thus both at the same
ordinary timet.

Using the hybrid dynamics in (17) (note thatC = CX ∪
CZ ), the proof of Theorem 1 follows from the combination
of the invariance principle in [17] and the following lemma,
which shows thatV decreases along the continuous motion
of the two translating masses (i.e. alongflows of H) and



it does not increases on impacts (i.e. acrossjumps), from
which it is also possible to partially justify the importance
of avoiding Zeno solutions.

Lemma 3.3: Under the hypotheses of Theorem 1, for each
(x, z) ∈ C,

• V̇ (x, z) ≤ −λV (x, z) if α(x, z) 6= 0,
• V (x+, z+) ≤ V (x, z) if (x, z) ∈ (Cx×Dz)∪(Dx×Cz).
Thus, combining Theorem 1 and Lemma 3.2, we get the

following result.
Corollary 1: The controlu in (16) guarantees that (i) for

eachε > 0 there existsδ > 0 such that|(x, z)|A ≤ δ implies
|xp(t, j) − zp(t, j)| ≤ ε for all (t, j) ∈ dom (x, z), and
(ii) there existsγ > 0 such that for each complete solution1

(x,z) from |(x0,z0)|A ≤ γ, limt+j→∞|xp(t,j)−zp(t,j)|=0.
Finally, for implementation reasons, in the next proposition
we propose a specific but constructive solution to the in-
equality (15).

Proposition 1 (Feasibility):Selectk1, k2 ∈ R such that
A =

[
0 1

−k1 −k2

]
is a Hurwitz matrix, and takeP = [ p1 p2

p2 p3
] ∈

R
2 solution toA

T
P + PA < 0. Then, (15) is satisfied by

P =

[
p1I p2I

p2I p3I

]
, K = −

[
k1I k2I

]
. (18)

IV. L OCAL TRACKING WITH MANY BOUNDARIES

A geographical region defined by a polyhedron with many
boundaries is given by

F = {[ spsv ] ∈ R
4 | ∀k ∈ I, FT

k sp ≤ 1} (19)

where eachFk ∈ R
2 characterizes a boundaryFk = {[ spsv ] ∈

R
4 |FT

k sp = 1}, and I = {1, . . . , N}, N ∈ N, is an
index set. From Section III, we recover the assumption on
the state-space ofX andZ that guarantees the absence of
the “sliding vs impacts” phenomena characterized by (12).
Mathematically, with many boundaries, the corresponding set
of defective points to be excluded is given by

Q1 =
⋃

k∈I

(
{[ spsv ] ∈ R

4 |FT
k sp = 1, FT

k sv= 0}
)

(20)

Another source of nonuniqueness in the behavior ofX and
Z is given by corners points (namely any points ∈ Fk ∩Fj

for k, j ∈ I andk 6= j). Excluding these points is important
for the feasibility of the tracking algorithm. In fact, suppose
thatX andZ impact together the points at the intersection
two boundaries,k andj. Then, nondeterministically,X may
follow the impact dynamics enforced byk, while Z may
follow the one fromj, thus showing that a solution to the
tracking problem cannot be achieved. Mathematically, this
set of points is given by

Q2 =
⋃

i,j∈I

{[ spsv ] ∈ R
4 |FT

i sp = FT
j sp = 1, i 6= j} (21)

Thus, we restrict the trajectories ofZ to the compact set

K ⊂ F \ (Q1 ∪Q2). (22)

1Namely, solutions whose hybrid time domain is unbounded.

The hybrid systemH in (17) can be generalized to
the geographical region (19) by introducing the setDk =
{[ spsv ] ∈ R

4 |FT
k sp = 1, FT

k sv ≥ 0}, based on which, the
flow and jump sets ofX andZ can be defined asCX = F ,
CZ = K, DX = F ∩ {[ xp

xv
] | ∃k ∈ I, x ∈ Dk}, and

DZ = K ∩ {[ zpzv ] | ∃k ∈ I, z ∈ Dk}, whereDX andDZ are
essentially defined by the intersection ofCX and CZ with
the impact points. Thus, with these flow and jump sets, the
hybrid modelH can be defined by the flow dynamics (17a)
and the following jump dynamics:




x+ = M̃(Fk)x+ c̃(Fk) if x ∈ Dk

z+ = z
(x, z)∈Dx×Cz

x+ = x

z+ = M̃(Fk)z + c̃(Fk) if z ∈ Dk

(x, z)∈Cx×Dz.

(23)

Note that the setC = Cx×Cz is now generated by the many
boundary geographical regionF in (19) and by the compact
setK in (22). Moreover, to simplify the notation, we define
the setD = (Dx×Cz) ∪ (Cx×Dz) characterizing the set
of points from which an impact may occur, and we rewrite
the mirroring functionm(·, ·) and the impact matrixM(F )
in the following form

m(Fk, s) =

{
s if k = 0

M̃(Fk)(s− c̃(Fk)) if k ∈ I
(24a)

M(Fk) =

{
I if k = 0
M(Fk) if k ∈ I,

(24b)

and the Lyapunov functionV can now be defined as

V (x, z) = min
k∈{0}∪I

V0(x,m(Fk, z)). (25)

with the closest mirrored target defined by

σ = argmin
k∈{0}∪I

V0(x,m(Fk, z)). (26)

whereσ = 0 denotes the real target. Note thatσ is only
well defined in regions where the minimum in (25) is strict.
One such region is characterized in Item iii) of Lemma 4.1,
below. In analogy with the previous section, the setA can
now be generalized to

A =


 ⋃

k∈{0}∪I

Ak


 ∩ C (27a)

Ak = {(x, z) ∈ R
4 × R

4 |x = m(Fk, z)}, (27b)

and the connections between the Lyapunov functionV in
(25), the setA in (27), and the tracking problem are
presented in the next two lemmas.

Lemma 4.1 (Properties ofV ): GivenV in (25),
i) V (x, z) = 0, ∀(x, z) ∈ A.
ii) V (x, z) > 0, ∀(x, z) ∈ C \ A.
iii) There existsε > 0 s.t.∀(x, z) ∈ (Ak + εB)∩C, σ = k.
iv) There existsε > 0 s.t. V ∈ C1 on (A+ εB) ∩ C.

Lemma 4.2 (Property ofA): If (x, z) ∈ A, thenxp = zp.
From Lemmas 4.1 and 4.2, we can focus on the stabilization
of the setA, using the functionV as a candidate Lyapunov
function. Thus, the control law (16) can be generalized to
the many boundaries case as in the following theorem.



Theorem 2: ConsiderH in (17a), (23). Suppose that a
matrix P =

[
p1I p2I

p2I p3I

]
> 0, p1, p2, p3 ∈ R, and a gain

matrix K ∈ R
2×4 satisfy equation (15) withAcl in (8) and

λ > 0. Then the control law:

u = M(Fσ)h(z)− φ(x) +K(x−m(Fσ , z)), (28)

with M(Fσ) andm(Fσ, z) as in (24), (26) is well defined in
a neighborhood ofA and it locally asymptotically stabilizes
the setA.
Theorem 2 can be established from Lemma 4.1, the invari-
ance principle in [16] and Lemma 4.3 below. Moreover, by
Lemma 4.2, Theorem 2 entails asymptotic convergence of
xp to zp, paralleling Corollary 1 of previous section.

Lemma 4.3: Using the aggregate stateξ = (x, z), denot-
ing byH(ξ) the right-hand side of the flow map(17a)and
byG(ξ) the right-hand side of the the jump map(23), under
the hypothesis of Theorem 2, the control law(28) guarantees
that there existsλ ∈ (0, 1) and ε > 0 sufficiently small such
that

〈∇V (ξ), H(ξ)〉<−λV (ξ) ∀ξ∈((A+εB)∩C) \ A
V (g)≤V (ξ) ∀ξ∈(A+εB)∩D, ∀g∈G(ξ).

(29)

V. SIMULATION EXAMPLES

We consider a billiard with five boundaries defined by

[
F1 F2 F3 F4 F5

]
=

[
0 −1 −1 1

2
3
4

−1 0 1 1 −1

]

and a simple dynamics forZ given by żp = zv, żv = 0.
UsingP andK given by

P =

[
0.4I 0.1I
0.1I 0.2I

]
andK = −

[
10I 11I

]
, (30)

in Figure 4 we show a comparison between the classical
control law (9) and the hybrid control law (28). The two
upper rows of Figure 4 represent trajectories ofX and
Z on the billiard fromz0 = [ 0.8 0.4 1.5 1.25 ]

T and x0 =
[ 0.6 1.5 1.25 ], for simulation timesT = 3.2. Finally, even
though Theorem 2 only guarantees local properties, the good
behavior induced by the proposed approach for large initial
errors is reported in the third row of Figure 4. Note that (28)
is undefined where the minimum of (25) is nonstrict. But
since this is a set of measure zero, this is not an issue for
running this simulation. A regularization of (28) to make it
well defined everywhere inK is carried out in the companion
paper [6], which focuses on global tracking.
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