
An SOS-QE Approach to Nonlinear Gain Analysis

Hiroyuki Ichihara† and Hirokazu Anai‡§

Abstract— A hybrid computational method between sum of
squares (SOS) and quantifier elimination (QE) is discussed for a
problem of nonlinear gain analysis. A computational procedure
is proposed to be applied to nonlinear polynomial systems. The
procedure takes two major parts: the first part is searching a
structure in the gain functions while the second part reveals all
the gain functions in the structure. These tasks are assigned to
the SOS and QE approaches, respectively. In order to find an
accurate system performance, the gain functions are optimized
in the procedure. The proposed analysis procedure is illustrated
for a few systems.

I. INTRODUCTION

Symbolic methods in control engineering have attracted

considerable attention in recent years. In particular, quan-

tifier elimination (QE) has been studied with regard to

its applications in robust control [1], [2], [3] and model

predictive control [4] based on multi-parametric optimization

[5]. As the name suggests, QE methods eliminate quantifiers

in a well-formed formula in the first order theory of real

closed field. A powerful algorithm is cylindrical algebraic

decomposition (CAD)[6]. Since the computational cost of

QE is often high, several investigations have been conducted

for special classes of QE problems.

Nowadays additional effort is still required to remove

heuristic procedures in engineering problems. An approach

resolving this issue is based on the combined use of numer-

ical and symbolic methods. One successful combination, the

method of sum of squares (SOS) [7], [8], has already been

proposed. This method is employed to solve the problems

consisting of polynomial inequalities with universal quanti-

fiers, where it eliminates the quantifiers to reduce the formula

to a semidefinite programming (SDP) problem [9]. As the

success of SOS greatly depends on solving the SDP problem,

it is often categorized as a numerical method. Although both

QE and SOS are tools in real algebraic geometry, SOS loses

some remarkable characteristics in QE, such as exactness in

nonconvex optimization.

In this paper, we consider the problem of computing a

nonlinear gain function [10], [11] for a class of dynam-

ical systems. The notion of input-to-state stability (ISS)

is strongly related to the concept of nonlinear gain. ISS

with nonlinear gain is essential because the stability of

nonlinear systems cannot be simply classified as asymptotic

or exponential stability. For a system, the existence of an ISS-

Lyapunov function with a nonlinear gain function means that

the system has ISS. There exist certain numerical methods
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for checking the Hurwitz stability of linear systems, such as

eigenvalue analysis. Similarly, computational methods that

employ SOS have been proposed for checking the ISS of

polynomial nonlinear systems [12]. It is possible to minimize

a linear gain value, or L2 gain value [9], using SDP. However,

as far as we know, the method of SOS cannot minimize

a nonlinear gain function because such a function includes

multiple parameters that require optimization. In other words,

numerical methods only ensure the existence of a nonlinear

gain function. On the other hand, the QE approach can

potentially perform minimization of such a function provided

that all sets of the gain functions are given. That is, the

relationship between coefficients on each monomial in the

gain functions must be given. To compensate for the short-

coming of the QE approach, i.e., the very long computational

time, it is desirable that a feasible structure of the gain

function is known. The SOS approach is a very effective

way of finding such a feasible structure. This is a key point

of combination of SOS and QE. From this viewpoint, we

have already proposed a combination of SOS and QE [13],

in which the class of the gain functions is restricted to a

form. In this paper, we propose a new analysis procedure

that treats a wider class of the gain functions. In addition,

we provide an application to the ISS small-gain theorem

[14] that ensures global asymptotic stability (GAS) of the

interconnected systems including design parameters.

The rest of the paper is organized as follows: Section II

is devoted to a short introduction of nonlinear gain analysis.

In section III we briefly review two tools in real algebraic

geometry: SOS and QE. A computational method that em-

ploys SOS to find a nonlinear gain function is discussed in

section IV. A method for assembling all the gain functions

through QE is explained in section V. In section VI, a

procedure to obtain a minimum gain function is proposed and

demonstrated. Finally, we conclude the paper and provide

additional remarks in section VII.

Notation: For a vector x ∈ R
n, ‖x‖ represents the Euclidean

norm of x. “◦” represents the composition of maps such

that α1 ◦ α2(r) = α1(α2(r)). For an m × n matrix A of

real elements, the induced norm of A is defined by ‖A‖ =
supx 6=0(‖Ax‖/‖x‖). For a symmetric matrix Q, Q ≻ (�)0
represents positive definite (semidefinite).

Throughout the paper, we use the following comparison

functions:

Definition 1.1: [15] A continuous function α: [0,∞) −→
[0,∞) is said to belong to class K if it is strictly increasing

and α(0) = 0. It is said to belong to class K∞ if α(r) −→ ∞
as r −→ ∞.
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Definition 1.2: [15] A continuous function β: [0,∞) ×
[0,∞) −→ [0,∞) is said to belong to class KL if, for each

fixed s, the mapping β(r, s) belongs to class K with respect

to r and, for fixed r, the mapping β(r, s) is decreasing with

respect to s and β(r, s) −→ 0 as s −→ ∞.

Lemma 1.1: [15] Let α and β be class K∞ functions.

The inverse of α is denoted by α−1. Then α−1 is defined on

[0,∞) and belongs to class K∞, and α ◦ β belongs to class

K∞.

II. NONLINEAR GAIN ANALYSIS

Consider the system

ẋ(t) = f(x(t), w(t)), x(0) = x0, t ≥ 0 (1)

where x ∈ R
n is the state, w ∈ R

p is an exogenous input,

f : R
n×R

p → R
n is a continuously differentiable function.

Suppose that f(0, 0) = 0 and w(t) is a piecewise continuous,

bounded function in t for all t ≥ 0. For the system (1), we

introduce the following concept of stability.

Definition 2.1: [10] The system (1) is said to be input-

to-state stable if there exists a class KL function β and a

class K function γ, called a nonlinear gain function, such

that for any initial state x(0) and any bounded input w(t),
the solution x(t) exists for all t ≥ 0 and satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + γ
(

sup
τ∈[0,t]

‖w(τ)‖
)

. (2)

Definition 2.2: [10] A continuously differentiable V :
R

n → R is called an ISS-Lyapunov function for the system

(1) if there exist class K∞ functions αi, i = 1, 2, class K
functions µ and ρ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ R
n (3)

∂V

∂x
f(x,w) ≤ −µ(‖x‖) ∀‖x‖ ≥ ρ(‖w‖). (4)

From the definition above, one can obtain a nonlinear gain

function γ(r) as α−1
1 ◦ α2 ◦ ρ(r) [10].

Lemma 2.1: [10] The system (1) is input-to-state stable

with γ if and only if there exist a continuously differentiable

function V : R
n → R, class K∞ functions αi, i = 1, 2, 3,

a class K function σ such that (3) and

∂V

∂x
f(x,w) ≤ σ(‖w‖)− α3(‖x‖) (5)

for all (x,w) ∈ R
n×R

p. Then γ(r) = α−1
1 ◦α2◦α

−1
3 ◦k σ(r)

for some k > 1.

If V is a K∞ function, it is possible to choose α1 and α2

such as α1 = α2 in (3). Then one can omit the condition (3)

in Lemma 2.1 to ensure the system ISS.

Corollary 2.1: The system (1) is input-to-state stable

with γ if there exist a continuously differentiable and class

K∞ function V : R
n → R, a class K∞ function α3, a class

K function σ such that (5) for all (x,w) ∈ R
n × R

p. Then

γ(r) = α−1
3 ◦ k σ(r) for some k > 1.

From this point, we will use Corollary 2.1 to discuss

nonlinear gain analysis. In this paper, minimization of the

nonlinear gain function is defined by the following:

γ(r) = min
α3∈K∞,α4∈K

α−1
3 ◦ α4(r) for each r > 0

s.t. (∀x∀w)[(5)]
(6)

Then all the functions γ satisfying γ(r) > γ(r) for each r >
0 are nonlinear gain. In particular, we call γ the minimum

gain function since it represents the minimum function of γ
for each r > 0.

Consider the feedback interconnected system

ẋ1(t) = f1(x1(t), x2(t)) (7)

ẋ2(t) = f2(x1(t), x2(t), w(t)) (8)

where x1 ∈ R
n1 , x2 ∈ R

n2 , f1 : R
n1 × R

n2 → R
n1 and

f2 : R
n1 ×R

n2 ×R
p → R

n2 are continuously differentiable

functions. Suppose that f1(0, 0) = 0 and f2(0, 0, 0) = 0.

Then the following lemma is referred to as the ISS small-

gain theorem.

Lemma 2.2: [14] Let γ1, γ2 ∈ K be nonlinear gain

functions of the system (6) with x2 as input, and the system

(7) with (x1, w) as input, respectively. If the following

relation

γ1 ◦ γ2(r) < r ∀r > 0 (9)

holds, then the interconnected system (6) and (7) is ISS with

respect to state (x1, x2) and input w.

Remark 2.1: If w = 0 in Lemma 2.2, then the origin

(x1, x2) = (0, 0) of the interconnected system (6) and (7) is

0-GAS.

III. TOOLS IN REAL ALGEBRAIC GEOMETRY

In this section, we introduce two computational tools in

real algebraic geometry: One is SOS, which is available for

checking positive semidefiniteness of polynomials through

SDP, and the other one is QE, which can treat first-order

formulas based on CAD algorithms.

A. SOS

Let us consider a polynomial with degree 2d as

p(x) =
∑

β∈B pβx
β

where x ∈ R
n, xβ = xβ1

1 · · ·xβn

n and

B = { β ∈ R
n :

∑

i βi ≤ 2d } .

Now we assume that p(x) is nonnegative (or positive

semidefinite) for all x. A deceptively simple sufficient con-

dition for p(x) to be nonnegative everywhere is given by the

existence of an SOS decomposition:

p(x) =
∑

i q
2
i (x)

where each qi is a polynomial. It is clear that if a given

polynomial p(x) can be written in the form above, then

it is nonnegative for all x. A polynomial that has SOS

decomposition can be rewritten in a quadratic form as s(x) =
z(x)TQz(x) where Q is a semidefinite matrix and z(x) is
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a vector of monomials in x [7], [8]. Here, finding Q that

satisfies p(x) = s(x) for all x is called an SOS problem. A

certification that ensures Q � 0 depends on the feasibility

of an SDP problem such as

∃Q(� 0) s.t. tr(AβQ) = pβ ∀β ∈ B (10)

where Aβ satisfies zzT =
∑

β∈B Aβx
β . If the problem

(10) is feasible, then p(x) is an SOS polynomial and is

thus nonnegative for all x. In some families, nonnegative

polynomials are always SOS ones. The first family is the

case of univariate polynomials (n = 1). The second one is in

quadratic form (d = 1). The last one is in quartic form in two

variables (d = 2, n = 2). The other families of polynomials

admit a gap between non-negativeness and SOS.

In the case where the individual coefficients in a poly-

nomial linearly include some unknown parameters, one can

also employ SDP to find such parameters that make the

polynomial SOS. Consider a polynomial with degree 2d as

p(x; c) =
∑

β∈B pβ(c)x
β

where pβ(c) = pβ(0) +
∑nc

j=1 cjp
(j)
β and c ∈ R

nc is an

unknown vector. By letting p(x; c) = s(x), one can obtain

an SDP problem:

∃Q(� 0)∃c ∈ R
nc s.t. tr(AβQ) = pβ(c) ∀β ∈ B. (11)

There are a few SOS parsers on Matlab, such as SOS-

TOOLS [16] and YALMIP [17] which generate an SDP

problem from an SOS formulation. General SDP solvers such

as SeDuMi [18] and SDPT3 [19] on Matlab can handle

both types of SDP problems (10) and (11). The method of

nonnegativity check through SOS and SDP is an efficient

and convenient tool in control engineering [20].

B. QE

Many mathematical and industrial problems can be natu-

rally translated to formulas consisting of polynomial equa-

tions, inequalities, quantifiers (∀, ∃) and Boolean operators

(∧,∨,¬,→, etc). Such formulas construct sentences in the

first-order theory of real closed fields and are called first-

order formulas. We denote these formulas by fi(X,U),
i = 1, 2, . . . , t, polynomials in X,U over the reals R, where

X = (x1, . . . , xn) ∈ R
n is a set of quantified variables and

U = (u1, . . . , um) ∈ R
m a set of unquantified parameter

variables. Let Fi = fi(X,U) ρi 0 for i = 1, . . . , t where

ρi ∈ {=,≥, >, 6=}. Xj is a block of qj quantified variables

(j = 1, · · · , s) from X such that q1 + · · · + qs = n and

Xk ∩ Xl = ∅ for all k and l (k 6= l; k = 1, . . . , s; l =
1, . . . , s). In general, a first-order formula ξ is described by

ξ = (Q1X1 · · ·
QsXs) τ(F1, . . . , Ft) (12)

where τ(F1, . . . , Ft) is a quantifier-free Boolean formula and

Qj ∈ {∀, ∃}.

QE reduces such a first-order formula to another

equivalent formula (i.e., boolean combination of equa-

tions/inequalities) without quantified variables. If all vari-

ables are quantified, i.e., m = 0, QE decides whether

the given formula (12) is true or false. This is a decision

problem. When there exist some unquantified variables U ,

QE finds a quantifier-free formula ζ(U), which is equivalent

to ξ, describing the regions of admissible U where ζ(U) is

true. Thus the feasible regions are obtained as semi-algebraic

sets. If there is no feasible solution, QE outputs “false”. For

example, a first-order formula ∃x[x2+ax+b ≤ c] is reduced

to an equivalent quantifier-free formula 4c+a2 ≥ 4b by QE.

See [6] for details on QE algorithms. Nowadays there exist

several QE implementations on several computer algebra

systems, such as QEPCAD [21] on SACLIB, REDLOG

[22] on REDUCE, and SyNRAC [3] on Maple. Mathematica

has built-in QE commands. It should be noted that QE

computations are executed based on symbolic computation

and hence all results are exact.

IV. SOS APPROACH

We assume that f in system (1) is a polynomial. To rewrite

the conditions in Corollary 2.1 as numerically solvable ones,

α3 and α4 are required to be even polynomials that belong

to class K∞ and K, respectively. More precisely, univariate

even polynomials strictly increasing in nonnegative region

must belong to class K∞ not class K [12]. Thus we naturally

assume that α4 in Corollary 2.1 belongs to class K∞. The

following is a numerically solvable condition that provides

a nonlinear gain function of system (1).

Lemma 4.1: [12] he system (1) is input-to-state stable

with γ if there exist even polynomials αi ∈ K∞ (i = 3, 4),

a polynomial V (x) ∈ K∞ and an SOS polynomial s0(x,w)
such that

∂V

∂x
f(x,w)− α4(‖w‖) + α3(‖x‖) = −s0(x,w) (13)

for all (x,w) ∈ R
n × R

p. Then γ(r) = α−1
3 ◦ k α4(r) for

some k > 1.

Lemma 4.1 is a convenient tool for searching for an

admissible structure of the nonlinear gain function composed

of α3 and α4. Since it is possible to determine unknown

coefficients in α3 and α4, one can decide whether the

structure is suitable as nonlinear gain functions. If the

corresponding SDP problem is feasible, then the selected

structure is suitable and there exist nonlinear gain functions

in the structure. For example, we can assume the structures

of α3, α4 ∈ K∞ such as

α3(r) = b1r
2 + b2r

4 + · · ·+ bsr
2s

α4(r) = c1r
2 + c2r

4 + · · ·+ ctr
2t (14)

where bi(i = 1, 2, . . . , s) and cj(j = 1, 2, . . . , t) are nonneg-

ative unknown coefficients. In general, the coefficients are

required to satisfy r · dα3(r)/dr ≥ 0 and r · dα4(r)/dr ≥ 0
for all r ∈ R. Such conditions are directly reduced to

SOS conditions [12]. Besides, α3 and α4 cannot have odd

power terms of r because α3(‖x‖) and α4(‖w‖) need to

be polynomial functions for a direct application of the SOS

approach.

Remark 4.1: Lemma 4.1 is available for checking the

existence of a selected structure in polynomial functions.
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Such a structure in polynomial functions is also available

for the QE approach, which can minimize nonlinear gain

functions γ(r) for all r > 0. From an engineering viewpoint,

finding a minimum gain function is an important task.

From Lemmas 2.2 and 4.1, a numerically solvable condi-

tion has been introduced for the interconnected system (6)

and (7).

Lemma 4.2: [12] The interconnected system (6) and (7)

is ISS with input w if there exist even polynomials αij ∈
K∞, i = 3, 4, j = 1, 2, Vj ∈ K∞, j = 1, 2, sum of squares

polynomials s10(x1, x2), s20(x1, x2), s30(r) and s40(r) such

that

∂V1(‖x1‖)

∂x1
f1(x1, x2)− α41(‖x2‖) + α31(‖x1‖)

= −s10(x1, x2) (15)

∂V2(‖x2‖)

∂x2
f3(x1, x2)− α42(‖x1‖) + α32(‖x2‖)

= −s20(x1, x2) (16)

α32(r)− (1 + ε1)α41(r) = s40(r) (17)

α31(r)− (1 + ε2)α42(r) = s50(r) (18)

for all (x1, x2, r) ∈ R
n1 × R

n2 × R where εi > 0, i = 1, 2.

V. QE APPROACH

In the SOS approach, as shown in section IV, the def-

initeness condition (5) in Corollary 2.1 is replaced by a

numerically tractable one (13) in Lemma 4.1 for constructing

a nonlinear gain function. Of course, Lemma 4.1 is useful

to check whether a gain function exists for a given family

of polynomial functions. However, in general, it is hard to

accurately verify nonexistence using the SOS approach due

to the relaxation gap between (5) and (13).

If the algebraic structures of V , f , α3, and α4 are given,

the original condition (5) can be directly dealt with through

QE. This condition is regarded as a QE problem in a

straightforward manner:

(∀x∀w)

[

∂V

∂x
f(x,w)− α4(‖w‖) + α3(‖x‖) ≤ 0

]

. (19)

Performing QE on (19), we are able to exactly check

the existence/nonexistence of a gain function for given

polynomial functions. Furthermore, if feasible solutions to

(19) exist, QE provides all feasible solutions for α3 and α4

(and hence γ). This enables us to find a tight or minimum

gain function.

Let us consider functions α3, α4 ∈ K∞ such as (14)

that include unknown coefficients bi and cj . If we know in

advance that a gain function exists in the structures of these

functions, then we can immediately obtain the set on bi and

cj without obtaining a “false” output on performing QE on

(19). Let φ(b1, . . . , bs, c1, . . . , ct) be the resulting formula

describing the semi-algebraic set on bi and cj . Under this

set, we can obtain all values of α4(r) for r > 0 by solving

a QE problem:

(∃b1 · · · ∃bs∃c1 · · · ∃ct)
[α3(z) = α4(r) ∧ φ(b1, . . . , bs, c1, . . . , ct)] .

(20)

Let ψ(r, z) be the resulting formula defining the set on r and

z. Further let z∗ = z∗(r) be the lower boundary polynomial

of the feasible set given by ψ(r, z); this polynomial is called

a bottom curve on ψ(r, z). Then γ(r) = z∗ is the bottom

curve on ψ(r, z).

Remark 5.1: In fact the QE approach is very powerful,

but unfortunately, computational complexity of QE is (dou-

bly) exponential [6]. In the problems (19) and (20), it is

desirable to not produce “false”on performing QE. If QE

performed on the problem (19) outputs “false,” then we

need to select the structures in α3 and α4 again. That is,

the computational cost is added to the doubly exponential

complexity. On the other hand, for example, the problem

(20) always has a feasible set ψ(r, z) if the problem (19)

produces a set φ(b1, . . . , bs, c1, . . . , ct).

Remark 5.2: In the case where the gain function is a

solution of an algebraic equation of the fifth or higher degree,

in general, it is not possible to describe the gain as an explicit

form, or an algebraic expression.

VI. SOS-QE APPROACH

In this section, we propose a hybrid procedure using SOS

and QE to analyze nonlinear gain functions of the systems.

This procedure is then demonstrated using a system.

The following is the procedure:

Step 1 Select a candidate polynomial Lyapunov function

V ∈ K∞, even polynomials α3, α4 ∈ K∞ where

α3 and α4 include unknown coefficients bi(i =
1, 2, . . . , s) and cj(j = 1, 2, . . . , t), respectively.

Step 2 Solve the SOS problem (13). If it does not have a

feasible solution, then return to Step 1.

Step 3 Solve the QE problem (19) and obtain all the sets

on bi(i = 1, 2, . . . , s) and cj(j = 1, 2, . . . , t), i.e.,

φ(b1, . . . , bs, c1, . . . , ct).
Step 4 Solve the QE problem (20) and obtain all the set

on r and z, i.e., ψ(r, z). Pick up the bottom curve

z∗ = z∗(r) that minimizes z for r(> 0). Then γ(r)
is given by z∗ for the selected structures in α3 and

α4.

Remark 6.1: Information on a specific problem is very

important for reducing computational complexity while per-

forming QE. Since computational time for Step 2 is much

less than that for Step 3, Step 2 is very meaningful.

Remark 6.2: In the case where α3(r) is given, it is

possible to minimize α4(r) for a fixed r in the problem

formulation in the SOS problem (13). For example, we can

consider an SOS optimization problem:

min
c1 ≥ 0, . . . , ct ≥ 0
s0 (is SOS)

α4(r)|r=1 s.t. (∀x∀w) [(13)] (21)

However, problem (21) does not fit our purpose because (21)

minimizes α4(r) only on r = 1 while we need to minimize

α4(r) on each r > 0. In the case where both α3(r) and α4(r)
are unknown, a similar optimization scheme is difficult to

perform by SOS.
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To illustrate the above procedure, we have a few examples.

We use a PC with Intel Core i5-460M CPU (2.53 GHz) and 8
GB memory. SOS problems are computed on Matlab R2010a

with YALMIP(R20101208) and SeDuMi(ver.1.3) while QE

problems are computed on Mathematica 8.

A. Example 1

Consider a polynomial nonlinear system in [15]:

ẋ = −x− 2x3 + (1 + x2)w2.

Now set a candidate Lyapunov function V (x) = x2/2 ∈ K∞,

which is a part of Step 1 in the procedure. The structures of

α3 and α4 are selected as

α3(r) = r2, α4(r) = c1r
2 + c4r

8

where c1 and c4 are nonnegative numbers. Then one can

solve an SOS problem in Step 2 and obtain a feasible

pair (c1, c4) = (1.5255, 1.4578). A computational time for

solving the SDP problem is 0.4 [s]. Here we note that

an optimization of the SOS problem gives us (c1, c4) =
(0.4407, 0.1273) with α4(1) = 0.5680. We will review this

fact at the end of this example. In Step 3, eliminating x
and w in the formula (19), we obtain the set described by

φ(c1, c4) shown in Fig.1 (left upper). A computational time

is 1.1 [s]. One can also see both of the pairs (c1, c4) from

the SOS problems. On the basis of φ(c1, c4), we solve the

QE problem in Step 4, and obtain a feasible set on r and

z, or ψ(r, z), which is shown in Fig.1 (right upper). Finally,

one can find a minimum gain function as

γ(r) = z∗(r)

where z∗ is obtained in Step 4. The left lower in Fig.1 shows

the gain functions from a QE optimal (solid), an SOS optimal

(dotted) at r = 1 and a SOS feasible (dashed). As we have

noted, the SOS optimal agrees with the QE optimal at r =
1. Similarly, in the right lower part, an SOS optimization

(dotted) at r = 2 is indicated. One can see that our final

result minimizes the gain function in all r > 0.

B. Example 2

Consider a polynomial nonlinear system in [15]:

ẋ = −(1 + w)x3 − x5.

In Step 1, we choose a candidate Lyapunov function V (x) =
x2/2 again, and

α3(r) = b3r
6, α4(r) = r2 + c3r

6

where b3 and c3 are nonnegative numbers. In Step 2, we

find a feasible pair (b3, c3) = (0.2379, 0.0443) from an

SOS problem. In a similar way as the previous example, we

obtain the set ψ(r, z) in Step 4. These results are shown in

Fig.2. A result of the gain structure by letting α3(r) = b2r
4

and α4(r) = r2 + c2r
4 is shown in the right lower. In

this example, a remarkable difference between the two gain

structure remains.
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Fig. 1. Sets defined by φ(c1, c4) (left upper) and ψ(r, z) (right upper),
and gain functions (lowers)
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Fig. 2. Sets defined by φ(b3, c3) (left upper), ψ(r, z) (right upper) and a
gain function (left lower). A gain function with other structure (right lower).

C. Example 3

Consider the interconnected system in [23]

ẋ1 =−x1 + x22
ẋ2 =−a1x

3
2 + a2x1x2

where a, b ∈ R. We will reveal a region of (a1, a2) that the

interconnected system is 0-GAS using the hybrid procedure

with Lemmas 2.2 and 4.2. In Step 1, each of the SOS

problems in Lemma 4.2 are solved for a fixed pair (a1, a2) =
(1, 12 ), V1(x1) = x21 and V2(x2) = x22. The resulting gain

functions are

α31(r) = 0.9402r2, α41(r) = 1.2094r4,
α32(r) = 1.4060r4, α42(r) = 0.7328r2.

The x1-subsystem is ISS with input x2 and the nonlinear

gain function is γ1(r) = α−1
31 ◦ α41(r) = 1.1342r2, and
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the x2-subsystem is ISS with input x1 and the nonlinear

gain function is γ2(r) = α−1
32 ◦ α42(r) = 0.8497r

1

2 . Thus

γ1 ◦ γ2(r) = 0.8188r < r and the interconnected system

is 0-GAS. Then we apply Step 2-4 to each subsystems and

obtain the gain functions as follows:

γ1(r) = r2, γ2(r) =

(

a22r
2

−1 + 2a1

)1/4

.

Finally, solving the QE problem

(∀r) [r > 0 ⇒ γ1 ◦ γ2(r) < r] ,

we obtain a set that the interconnected system is 0-GAS as
{

a2 6= 0 ∧ a1 >
1 + a22

2

}

∨

{

a2 = 0 ∧ a1 6=
1

2

}

.

VII. CONCLUSION

The new procedure of computing a nonlinear gain function

has been proposed for nonlinear polynomial systems by a

hybrid use of the SOS and QE approaches. The QE approach

can find all the possible gain functions in a given structure

and can minimize the functions for all magnitude of the

input while the SOS approach gives us a structure of the

function. The new procedure expands a range of application

for nonlinear gain analysis.

APPENDIX

GAIN FUNCTION IN EXAMPLE 1

An explicit form of the gain function γ(r) is

(

256r4 + 9r8

2048
+

663552r8 + 41472r12 + 729r16

55296a(r)
+

3a(r)

2048

)
1

2

where

a(r) =
(

8388608r8 + 1048576r12 + 69632r16

+2304r20 + 27r24 + 4096
(

4194304r16

+1048576r20 + 102400r24 + 4864r28 + 112r32 + r
36
) 1

2

) 1

3

.

GAIN FUNCTION IN EXAMPLE 2

An explicit form of the gain function γ(r) is

1

3
2

3

√
2

(

648r2 + 4901r6

+(−145262358703 + 2422282644
√
3873)

1

3 r
6

−(145262358703 + 2422282644
√
3873)

1

3 r
6

) 1

6

.
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