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Sporadic Event-Based Control using Path Constraints and Mement

Toivo Henningsson

Abstract— Control is traditionally applied using periodic In [2], impulse control of a continuous time (CT) integra-
sensing and actuation. In some applications, it is beneficial tor plant with a white noise disturbance was considered. It
to use instead event based control, to communicate or make \,5s shown that the mean event frequency can be reduced to
a change only when necessary. There are no known general . . . .
closed form solutions to such event based control problems. We g third by US'”G_ a.threshold based event triggering strlategy
consider stationary event-based control problems with mixed instead of periodic events, for the same state variance.
continuous/discrete time dynamics and stochastic disturbances. However, such a control policy iaperiodic the time be-
The system is modelled by a set of path constraints, which are tween two events may be arbitrarily short, making it hard
converted into constraints on trajectories’ moments up to some implement in practice. Several other authors have also

order N; upper and lower bounds on the control objective for . - -
any system that meets the constraints are derived using sum-of investigated aperiodic CT problems, e g [13], [14], [8]. To

squares techniques and convex semidefinite programming. Joint g€t an implementable control law, some authors, e g [4], [3],

optimization of upper bound and controller parameters is non-  [9], [15] have considered event-based control in disciigte t

convex in general; approaches to such controller optimization (DT), with a cost term for each sample with an event.

are investigated, including local optimization using bilinear We are interested in the slightly broader classpéradic

matrix inequalities. Examples show that the bounds are sig- . " .

nificantly tighter than earlier results obtained using quadratic controllers [7], with .a gugrantged Wa't'ng time between any

value functions. two events. After this period ahactive statethe controller
may begin to monitor the plant state continuously, or at some

|. INTRODUCTION sample rate. CT and DT sporadic control is also considered

Digital control is traditionally carried out using periadi " [5], (where sporadic CT is called non-uniform control)
sampling and actuation. Sometimes, however, there is Wder the objective of ultimate boundedness.
bottleneck in the control loop. There may be a fixed cost or I the last decade, moment relaxations (see e g [16]),
a minimum time betweerventssuch as to transmit a state @1d their dual, sum-of-squares (SOS) restrictions (see e g
estimate or change a control signal.Bvent-based contrpl [12], [11]), have gained popularity to approximate nonéine
the decision when to generate an event is taken dynamical ,timal control problems without closed form solutions.
rather than to pick a fixed sample rate a priori. _ ypically, lower bounds on fachievable C(_)st are fou_nd, which
Event-based control can mean many different things. |fProve as the problem size grows with relaxation order.
can be phrased in a stochastic, deterministic, or wors-ca$NiS Paper is an adaptation of such techniques to eventbase
setting, with linear or nonlinear dynamics, in continuous o@Ptimal control problems. By including the controller ireth
discrete time, with the aim to reduce computation, commun[ldel, we can also find and optimize upper bounds on cost.
cation or actuation. In a non-stochastic setting, somecasth ~Oné motivating example that can be (approximately)
predict the next event time in advance, see e g [17], [18]_solved.W|th the methods in this paper is the fol_lowmg
This paper considers systems with linear dynamics arfporadic cpntrol problem: a clgssm linear quadratic (LQ)
stochastic disturbances, and the objective to reduce Cemnﬁjoblem with the added constraints th'at 1) the control digna
nication or actuation. Both continuous time (CT) and ditere IS Z€ro except focontrol eventswhen it may be a (vector)
time (DT) settings will be considered: in fact, trajectsrie Dirac impulse, 2) there is a minimum timaT" between
may switch back and forth between flow (CT) and jumppontrol_events. A fixed cost per control event may be added,
(DT), see Fig. 1. anq a filter on f[he plant input to shape t_he control waveform.
One way to approach the class of problems considered fhJump transition is created by sampling the system for a
this paper is to discretize the system into a Markov chain,
and then solve the optimal control problem using dynamic x
programming [1]; this is applied to single state plants ih [7 Ao
This method has exponential complexity in the number of \
state variables. To deal with more than a few states, we will A
consider instead value functions up to some fixed polynomial i Wﬁvﬂw i/ i

degreeN, which gives polynomial complexity.

This work has been supported by the Swedish Research Cotimeil -
LCCC Linnaeus Center, and the ELLIIT Excellence Center. AT

T. Henningsson is with the Department of Automatic Control . ) . . .
LTH, Lund University, Box 118, SE-221 00 Lund, Sweden. Email:Fig. 1. Example of a mixed flow/jump trajectory. When entering mgu
t oi vo. henni ngsson@ontrol .lth. se (dots), the system jumps to a new state and timet.y = t+AT (squares).
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Fig. 2. General mode switching model: each time the trajectesyds a Fig. 3. Flow-jump mode switching model: When the controller desito
mode, the controller decides to enter either Mode 1, Mode Zeroninate.  exit flow, it must take a jump. After a jump, it may decide either way

Pinitial

time AT after each control event (see Fig. 1), which recast&tochastic differential equation) dynamics
the sporadic control problem into a mode switching control flow T
problem (see Fig. 2). The mode without control may be CT %+ = Azxdt + Buy™dt + dw, E(dwdw™) = Rdt,

or DT (possibly with a time steg: AT). @)

flow — TR™ufow i H i
The paper is outlined as follows: After preliminaries inWNereu”"(t) € Uiow = Rov is the control signalw is
Section Il, the event-based control problem is formulate§ \Wiener Process, (independent of the past trajectory), and

in Section Ill. Path constraints to model the system ar = 0,4, B are model matrices of appropriate dimensions.

described in Section IV, and combined in Section V usind '€ controller may decide to exit the flow mode at any time.
convex optimization to show bounds on cost for any system Entemg thi?ump modeat? = ¢} causes a jump that ends
that meets them; these problems are cast as semidefinite gtb! = fr = tx + AT, AT = 0 and state
grams (SDP:s) in Section VI to facilitate efficient solution e (I)xi]? + Fujlgmp+ wi, wk € N0, Bump),  (2)
For lower bound problems, the degrees of freedom of the _
controller can be left unconstrained; the bound will holdvhere u};™ € Ujym, = R"m is the control signal, the
for any controller, including the optimal. For upper boundGaussian disturbanee; is independent of the past trajectory,
problems, the controller must be included as a constraiand Bymp = 0,®,I" are model matrices of appropriate
Section VII considers approaches to joint optimization oflimensions. The jump timA7 is also a model parameter.
controller parameters and upper bounds, which is in gen- Remark 1:For brevity, we describe only the case with one
eral non-convex. Results are presented in Section VIII arftbw and one jump mode. The switching model of Fig. 3 is

conclusions are given in Section IX. appropriate in this case, since it disallows consecutivw flo
The source code for the toolbox used to produce thearts; we will still use Fig. 2 in calculations for brevityh&
numerical results in this paper is available online [6]. methods in this paper apply also in the case of two jump

modes, possibly with different time stepgsrl’;.
The expected cost over trajectorigg.. is a sum of
For matrices4, B, let A = B denote thatd— B is positive integrals over each flow interval and a term for each jump:
semidefinite. Given tha’ = R™: Let V(X') be a space
of test functions (typically polynomialsy : X — R. For
fyg€V(X), let f > g denote pointwise inequalityf(z) —
g(x) >0,V € X. Let V,(X) C V(X) be the convex cone
of (pointwise) positive functiond” > 0,V € V(X). where the index setk,, and part intervalg}, are given by
Let Vn (X) be the space of (multivariate) polynomials over - o _hin ou
X of degree< N. Let ¥y (X) C Vy(X) be the convex K = {k € Kimy =m}, Ti = [t 681,
cone of sum-of-squares polynomials of degreeV, i e the the extended state in flow and jump respectively by
convex closure oV /5 (X)-Viy/2(X). Given a basig)(z) for 2(t) in
Vy2(X), itis well known thath € V(&) is alsoc Yy (X) 2p(t) = ( ey ’ ) € Ziow, 2k = ( ju’;;]p> € Zjump,
iff there is a matrixA > 0 such that\(z) = ¥ (z)T Ay (z). ug ™ (t) Wk
Z, = X X Uy, and the cost functions,, € V,(Z,,).

_ _ Remark 2: The functioneqow(z) is the costper time unit
Consider a system that can switch between twodes in flow mode, whilecjump() is the costper jump

m € M = {flow,jump}, with different dynamics for the  The controller consists of two parts:
statex € X = R"=. A trajectory (or path) consists oparts « A switching lawé(z) to choose moden = flow when

ke K ={1,2,3,...}, each within one moden; € M. 6(x) > 0, and moden — jump otherwise.
The controller may switch modes freely between parts, S€€ . Modal control lawsw... — Fl(@),m € M

Fig. 2. The trajectory begins at time= 0,¢ = t}! = tinitial
and stater = =} = Zinitial-
Entering theflow modeat timet = I and stater;, (1) = —_ . 1.
i . ' J=R = lim sup — Jace, 4
z}f', the stater evolves untilt = ¢Q", z;, (13") = 29", by the (Jacc) s P tspentjacc 4)

Il. PRELIMINARIES

Jacc = E Z /Cflow (Zk (t))dt + Z Cjump(Zk) ; (3)

ke Khiow T keK:Jump

Il1. PROBLEM FORMULATION

The control objective is to minimize theverage cost



where the trajectory duratiofyyentis given by The same can be done for event measures, §/) =
0,VV € V(Zjump) if f(zump) = 0 for all jumps.

— R t_ i . . . :
tspent= tfinal — linitial = Z e =ty ®) Now consider the inequality constraint thétzqiow) > 0
kek when in flow mode. Then als@(zfiow) A(2fiow) > 0 for any
IV. PATH CONSTRAINTS nonnegative function\, as is the path integral
We will now list a number of path constraints to model the w(fA) >0 YA € Vi (Ziiow).

considered system. In order to show bounds on path integrals _ _
such as the cost (3) in the next section, nonnegative palfi€ constraintf(z) =1 > 0 apparently holds in any mode,
integrals are derived from the constraints. We first intaedu and will be used since it establishes positivity of the path

a compact notation for path integrals using measures. ~ measures.

A. Path measures C. Control laws

Define theoccupation measure andjump event measure ~ Control laws can be expressed as path constraints; deter-
@, with argumentsf € V(Ziow), f € V(Zjump) respectively: ministic ones usually as pointwise ones. Examples:
« A switching law such thaf(z) > 0 in flow andf(z) <
u(f) = EZ/f(zk(t))dt, () =B flz). 0 in jump.
kekagy T k€ Kpump o A control law ujump = fiump() is equivalent to the
constraint thay (zjump) = tjump— fiump(z) = 0 in jumps.
A random switching law, causing Poisson jumps in
flow with a state-dependent intensity such thgp(x)
jumps are expected péfow(z) time in flow, where
Njump, tlow € V+(X) Then

Given a functionf(z) of the extended state = (z,u™),
u(f) can be thought of as an accumulator that integrates'
f(2)dt along the parts of the trajectory in flow, apdf) as
one that adds ug(z) for each jump.
Using i and ¢, the accumulated cost (3) and trajectory

duration (5) can be expressed more compactly as 1(0n4ump) — ©(Btfiow) = 0, VO e V(X).  (9)
Jace = u(ciow) + P(cump);  (6) This is not a pointwise constraint since the control law
is random, but it holds in expectation, which is what
tspent= Z/dt + Z AT = p(1) + p(AT), (7) we need.

ke Kiiow T k€ Kjump . )
D. Dynamics constraints

wherel in u(1) means the constant functigf{z) = 1, and D . . h h .
in the same way for(AT). ynamics con_stramts express how the trajectory may
To describe mode switching such as in Figs. 2 and 3, W%volve from one mstsimt to another.' . .
define, for the initiation and termination events, measures . Mpde _swnchmg.The m_ode s_W|tch|ng dynamlc_:s of t_he
model in Fig. 2 are contained in the center point. Since

@initial (f) = E f (xinitial ), einal(f) = E f(final), each trajectory initiation and mode exit event is pairechwit

exactly one termination or mode entry event, with the state

x preserved across transitions, the switching constraint

ear(f) = Ekzlc f(xg"), m € M, dir € {in, out}. Dinitial + ‘Pga\tN + Sojgqu — (@hinal + SDifLOW + wgzmp) =0 (10)

em

Note that the jump event measupeand jump entry measure holds, where the argumerit’ € V(X) to each measure
jum

oM™P are not the same, singeis defined over the extended has bgen suppressed for brevity. For .the m'ode_ switching
in iu dynamics of Fig. 3 we have two switching points; they are

) jump
State Zjump, and Pin - OVer the stater only. However, they modelled in the same way by pairing inflow and outflow,
coincide forujmp-independent test functions:
flow

. L + ijp _ ! + L) — 07

p(V) = Gi™(V), WV € V(X). ®) P o jﬁﬁ'; )
, ] ) Pout + i — (Pin * + Phinat) = 0,
Having defined the path measures, we will now use them to

formulate path constraints and nonnegative path integrals aga|n.W|th the common argument € V(X) in either
equation suppressed. We see that the sum of these two

B. Pointwise path constraints equations is (10), thus (11) is a stronger constraint th@jh (1
The simplest form of path constraints express feasible 2) Flow dynamics:Consider the flow dynamics (1). Given

regions of the (extended) state space. (Such algebraic eq@a(twice differentiable) function” < V(X), the expected

tions can be used for differential-algebraic equation (PAEChange inV(zx) by the d_Ynamms, conditioned on the ex-

systems modelling.) Consider the constraint tiaow) = 0 tended state, is (using Ib's Lemma)

when the trajectory is in flow mode, for some given function E(dV]2) = BE(deT\VV (2) + 1tr(E(dedzT V2V

f(2). Then alsof (zfiow)V (z10w) = 0 for any functionV € (@Vl2) (da)VV(2) + 4 ( (dedz™) (m))

V(Zfon), @s is the path integral ~ (A2 + BW)TVV () + 1tr(RV?V () ) dt

M(fv> =0, vV € V(ZHOW)- = (Aﬁowv)(z)dt;

and, accumulating mode entry and exit events, measures

11)



this defines thédackwards flow dynamics operatot;,,, a where we have used (16) andy > 0. Collecting terms
Kolmogorov backwards operator. Equating the expectationsside i, and ¢, this condition is in turn implied by
of the left and right hand sides over the time spent in flow ciow + AowV = o + Aiow

ives theflow dynamics constraint o ’ 17
’ ’ Gump + MV —V = IAT + Ny

0=E 3 [ ((AV)(e)dt = dV) = plAjouV) [v] for someAow € Vi (Ztow)s Aump € Vi (Ziump)-

k€ Ko 1+ o o o B. Lower bound with controller
= 1(AfiowV) + @in" (V) = eout (V) vV V(X)(iZ) To add a switching law such th&(z) > 0 in flow, and
3) Jump dynamics:Consider the jump dynamics (2). —0(z) 2 0in jump, we use
Given a functionV € V(X), the expected value df (z°%) w(0vow) — @(0vump) > 0, Vvm, € Vi (Z,,). (18)
after a jump, conditioned on = (z,u) before the jump, is The control lawujump = fump() is incorporated by adding
E(V(x(’“t) z) = E(V((Im +Tu+ w)’z) e(gW) =0, YW € V(Zump),
= (¢ x V) (Px + Tu), to the left hand side of (15), wherg(zjump) = Ujump —
= (H*'V)(2), fiump(). With these control laws, (17) is strengthened into
where the probability density is Gaussianv A(0, Pump); ciow + AfiowV = J + AMow + Oviow, (19)

this defines thébackwards single jump operatdi*. Sum- Gump + H'V =V + gW = JAT + Ajump — OVjump-
ming over all events gives themp dynamics constraint ¢ ypper bound with controller

E Z V(" =E Z(’H*V)(zk) To show the upper bound < .J, we want to show that
k€ Kjump k€ Kjump (13) Jace+ @final(v) - Sﬁinitial(v) < jtspent

jump _ *
= our (V) = ¢(HV), vV e V(). We proceed as before, but now all inequality terms have to

V. BOUNDS ONCOST BY CONVEX OPTIMIZATION be introduced with opposite sign. With controller constts,i
To show bounds/ < J < .J on the average cost (4) the conditions (19) are turned into
of a system, we will show positivity of path integrals such ciow + AfionV =J — Mow — Wiiow, 20
asl = jacc — Jlspen ANA 1 = Jispent— jaco by €Xpressing gy y L ow = FAT - Ao + Otiump: (20)

them as a sum of nonnegative path integrals. In practice, itvi/ hat the bound diti b .
is sufficient to show that e see that the bound conditions above are convex, since

they are linear with convex constraints oi,,, }, {v,, }. Thus
I+ initiat (V) — final(V) > 0, (14)  maximization of J subject to (17) or (19) is a convex

for some value functionV € V(&) such thatgna (V) problem, as is minimization of subject to (20).

is uniformly bounded from below agspent — oo. This VI. PRACTICAL OPTIMIZATION

boundedness can be established in many ways: To get problems that can be solved by a convex program-
« For a lower bound, it may be sufficient that the boundning solver, we must choose some finite basis for the test
holds for solutions with bounded momentsigfa; then  functionsV, {\,..}, {v,»} and W. We will use polynomials
wiinal(V) will be bounded as well, for polynomidl. up to some degreeéV of trajectory moments. A sum-of
o zfina Will have bounded moments if the flow regionsquares restriction yields semidefinite programs (SDP:s).
{z € X;0(x) > 0} is bounded and the jump dynamics We let the terms in (17), (19), and (20) be polynomials
(2) are exponentially stable. of degree< N. Since it is in general hard to determine the
e wiinal(V') is uniformly bounded from below i is. global positivity of a polynomial, we us&y C Vy 4 to
assure positivity; this can be expressed as a linear matrix
inequality (LMI). The optimal bound can only improve with
increasing/V, as a solution to the bounds with lowé¥ is
Jace+ @iinal(V') — @initial (V') > Jtspent (15) still valid with higherN. ,
Making sure that no term in (17), (19), and (20) has higher

Note that the sign o¥/ has been chosen opposite from (14)degree tharV, we can optimize over € R or J € R, and
Using first (10), and then (8), (12) and (13), we see that Ve Vn(X) N e Zi(Z )
N ) m N m ),

@final(v) B @initiaI(V) Um € EN—dch(Z’?m); w S VN—dcgg(Zjump)~

A. Lower bound
To show the lower bound < .J, we want to show that

_ "l fl jump jump
=eout (V) =@ (V) +¢our (V) —¢@in (V) (18) e conditions (20) still give an SDP if we fix,, and ¥/,
=p(Afow V) + p(H*V) — (V) and include instead as optimization variables
The inequality (15) is then implied by 0 € VN —maspe i degim (X)s 9 € G C Vn_gegw (2),
Jace + i(Afow V) + @(H*V) — (V) where the spac€ is chosen to give a desirable form for the

=Jtspentt+ (Afiow) + ©(Ajump) = Jtspens  Am € V4(Z1),  ujump controller, e g linear feedback.



VIlI. CONTROLLEROPTIMIZATION B. Single parameter sweep: Poisson controller

Now that we can model a System and derive upper and We will now describe a case when glObaI Optimization
lower boundsJ < J < .J on the average cosf, how can can be performed by scanning over a single real variable.
we optimize for good controllers? We would like to prescrib€consider the upper bound problem with constraints (20), no
a form for the switching law and modal controllers sucHnodal control lawu,, (i e gW = 0), N = 2 and quadratic
asfd € Vn,(X),{fm € Vu,(Zm)}mem, and then find the thresholdd € V,(X) to pe optimized. Sincéegv,, < N —
controller parameters that give the lowest cost. degy = 0, the polynomialsv,,, are constants, e g,, € R.

Since the actual cosf is unknown, we have to content The problem can thus be solved globally by sweeping the
with minimizing an upper bound instead. Unfortunately, atio #iow : “ump (@ cOmmon scaling can be accommodated
joint optimization of upper bound and controller is genigral in ¢). This is the procedure outlined in [3] for the case of
non-convex because of the product terms between control@0 jump modes with the sama7.
parameters and dual variables that appear in controller con Sincedeg vy, = 0, the upper bound/ optimized in this
straints, such a8uow in (20). formulation can be achieved byRpisson controllera ran-

These product terms make the controller optimization intg0m switching controlier with state independent switching
a bilinear matrix inequality (BMI) problem; we can still ratio! Still, th_e derived thresholé may realize a better cost
optimize locally given an initial guess. The formulatios@l than the Poisson controller, and can be used as an initial
allows various structural constraints on the controllechsu 9Uess for local optimization.
as limited polynomial degrees of and {,,}, or sparsity  [3] considers also the case with modal control lgwhp =
constraints, e g limiting the set of states that a contratalig —Z{- This can be accommodated in our formulation by
may depend on. solving the lower bound problem with Poisson switching

The controller optimization problem becomes convex igonstraint, since the solution turns out to be exact¥or 2

we fix enough decision variables so that no product terni8 this case.
with free variables remain. It is then possible to do global VIIl. RESULTS
optimization by gridding over remaining variables. By mak-
ing the problem simple, with low relaxation ord& and
few constraints, few parameters have to be scanned. dx = udt + dw, BE(dw?) = dt, (22)
We next give some results re_latmg t|ghtne§s of the UPPGherew is a Wiener Process. The control inpuis a train
bound J and problem complexity, and consider especially , . . . .
o ~of Dirac pulses with minimum time between theh¥" =1,
the case when global optimization can be done by scanning

over a single real parameter.

Consider an integrator process (with state X = R)

Tlevents
u(t) = Z wid(t —t;), tip1 —t; > AT,
A. Mixing controllers i=1

Consider a deterministic switching controller modelled b)yve letu; = —a(t; —0) to |mme_d|atgly reset the state at any
control eventt;. The cost function is

O(x) >0, inflow, —6(x)>0, injump, (21) . )
Jacc = / -T(t) dt + pnevents
T

and a controller stochastically mixing time in flow:jump as _ _ _ _
thow(2) : njump(). By section IV-C, the positive path integral whereT is the interval of time spent in the system. We want

given by the former is to find an event triggering strategy to minimide= R (jacc),
the average cost agpent= |7'| — oco.
1(0viow) — @(Ovjump) > 0, V{vim € Vi (Zm) bmem- To achieve the minimum inter-event tim&7", the jump

This | v th ¢ 9) if identi __ mode is constructed as an immediate reset o0, followed
is is exactly the same term as (9), if we identifym, = by the dynamics (22) sampled for tinZe7". The flow mode

Uflow tilow = Vjump. 1he bound derived from the determlnlst|cis just (22) with control inputs = 0.

switching constraint (21) can thus be achieved by a stochas-Figure 4 shows the optimal average cdsts a function of

tically mixing controller with niump = Vfow tfiow = Vump!  oyeng cosip (calculated in [7] for this problem), the cost of
.S'ch we e_xpect the optimal S.W'tChmg law to be determi periodic control with optimal period > AT, and lower and
Istic, th'? gives a hint of hO_W tight the upper bound can b pper bounds, which fit quite tightly around the optimum.
as function of the polynomial ordeleg v, < N —degf. 0" 50er houndfy_, was found by BMI optimization
The result does not hold in general if we introduce mor%sing the solver PENBMI [10]. The curvéy—e, fam

constraints for the deterministic switching law, such as calculated with the same thresholds, show th;tjtheyélére in

95023? — 0, esﬁﬂfw >0, Op; <0, fact almost optimal. The cost of optimal Pc.)iss.o.n Sampling

lies far above the other bounds, almost coinciding with the

wherefdpl% = 0 holds only in the mixed flow/jump setting. cost of periodic control. (In fact, they both choose pefodi
These tighter constraints have been used to produce the uppampling withh = AT when p < 0.5) The upper bound
bounds in the results, except for when the equivalence tby—g, Opoissonshows that the thresholds from Poisson control
random switching has been exploited. are considerably better than the bound.
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are significantly tighter than previous results using qaadr
value functions; they also clearly demonstrate that event-
based control is superior to periodic control in the examsple

Interesting directions for future work include further eas
studies and extension to other kinds of stochastic hybrid
control problems, improved controller optimization and nu
merical conditioning.
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Fig. 4. Cost/ as a function of event cogptfor the integrator with/AT" = 1.
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Fig. 5. CostJ as a function of event cogt for the double integrator with (6]
AT = 1. Thresholds for upper bounds are from Poisson control. 7]
Now consider a double integrator process (with state (8]
X =R?)
dri = xodt, dry = udt + dw, E(dw?) = dt, [9]

with immediate reset tac = 0 at events, minimum time [10]
between themA7’, and the cost function (11]

Jace = /T 371<t)2dt + PNevents
Figure 5 shows upper and lower bounds for the cbsis a (12]
function of event cosp. All upper bounds were found using
thresholds from Poisson control. We see that Poisson dontf3]
and periodic control are comparable, but that the Poisson
thresholds perform distinctly better. Still, the gap betwe [14)
upper and lower bounds suggests that there is room to realize

a lower cost with better thresholds. [15]

IX. CONCLUSIONS ANDFUTURE WORK

We have modelled a broad class of event based optima#!
control problems using path constraints, and shown how to
derive interval bounds on the control objective from thesga7)
using convex semidefinite programming. Joint optimization
of upper bound and controller parameters is non-convex i@s]
general; approaches to it using global and local optintnati
have been investigated. The examples show that the bounds
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