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Abstract. We consider the problem of stochastic bandits, with the goal of max-
imizing a reward while satisfying pathwise constraints. The motivation for this
problem comes from cognitive radio networks, in which agents need to choose
between different transmission profiles to maximize throughput under certain op-
erational constraints such as limited average power. Stochastic bandits serve as a
natural model for an unknown, stationary environment. We propose an algorithm,
based on a steering approach, and analyze its regret with respect to the optimal
stationary policy that knows the statistics of the different arms.

1 Introduction

In this paper we introduce a new approach to the problem of stochastic bandits with
pathwise constraints, inspired by the field of cognitive radio networks.

Cognitive Radio (CR) [11] problems consist of multi-user communication networks,
occupied by primary and secondary users. Primary users have precedence over sec-
ondary users in use of network resources. Thus, secondary users must identify and ex-
ploit available resources. Through their interaction with the network, secondary users,
or Cognitive Agents (CA), characterize resources and choose transmission profiles.

In [5], the Multi-Armed Bandit (MAB) framework is proposed as a model for CR
problems. MABs have been widely studied in the context of balancing exploration and
exploitation in sequential decision problems [4], in which an agent repeatedly chooses a
single arm from a set of arms whose characteristics are unknown, and receives a certain
reward based on every choice. Over time, the agent characterizes the different arms’
performance in order to make well-informed decisions (exploration) while maximizing
some function of the reward (exploitation). The MAB setting fits the problem of CR
quite naturally: secondary users may be viewed as playing a MAB whose arms are the
available transmission profiles. The problem of identifying and choosing the best arm
when playing a MAB has been addressed in a series of papers [6, 1, 3, 2], using the
concept of index based selection. With each time step, a number is assigned to each of
the bandit’s arms, reflecting the profitability of choosing it. Choosing the arm with the
maximal index yields logarithmic regret with respect to always choosing the optimal
arm. A simple, optimal, algorithm, which uses an upper confidence bound (UCB) for
calculating the aforementioned index, is proposed in [3]. We borrow ideas from this
algorithm and incorporate them into our proposed solution.

An important aspect of the CR problem, is that chosen transmission profiles must
meet operational constraints, such as maximal power consumption. We suggest apply-
ing the formalism of constrained MABs to incorporate constraints into this setting. A
framework for enforcing constraints in the context of online learning is proposed in



[10], in the form of a stochastic game in which a penalty is incurred, in addition to the
acquired reward. Unlike the average reward the agent seeks to maximize, the average
penalty ought to converge to a certain set that reflects the constraints. Taking average
values is a natural choice for the CR problem since the choices CAs make are valid for
short periods of time and averages converge quickly enough to serve as reliable perfor-
mance measures. Since the algorithm proposed in [10] is computationally inefficient,
we propose a different solution with improved convergence rates by combining the
framework of MABs with the concept of steering policies, introduced in [8, 7, 12, 9].

The remainder of this paper is structured as follows. Section 2 includes a detailed
formulation of the problem and states its optimal solution. Section 3 introduces an al-
gorithm for achieving the optimal solution and theoretical results concerning it. Section
4 displays results of simulations and Section 5 concludes our work.

2 Formulation and Optimal Solution

We model the CR problem as a MAB problem with a finite time horizon and a finite
number of arms, in which every arm represents a transmission profile. For simplicity, we
deal with the case of a scalar reward and a single scalar constraint. At every time step,
t, the agent chooses an arm, k ∈ {1..K}, according to a mixed policy, π = (p1, . . . , pK),
that assigns probabilities to the different arms. As a result, an instantaneous reward,
rt , is received and an instantaneous penalty, ct , is incurred. These are the agent’s only
source of knowledge. The reward and penalty are drawn from distributions unknown to
the agent. We assume stationary Gaussian distributions:

rt ∼ N (µr (k) ,σ r (k))

ct ∼ N (µc (k) ,σ c (k)) .

The agent seeks to maximize the acquired reward while minimizing the incurred penalty.
This can be expressed as an optimization problem of the form

max
π
{r̂T} s.t. ĉT ∈ C . (1)

The optimal solution to problem (1), π∗ = (p∗1 . . . , p∗K), depends on the characteristics
of the different arms. We now introduce the concept of domination.

Definition 1. An arm k is dominated by an arm j if µr (k)< µr ( j) and µc (k)≥ µc ( j).

Clearly, an arm k which is dominated by one of the other arms cannot participate in the
optimal solution, i.e. p∗k = 0. Therefore, the optimal solution is obtained by applying
a mixed policy over non-dominated arms. Specifically, if a single arm dominates all
others, then the optimal policy involves this arm alone. We refer to this case as the
degenerate case. Assuming a single, scalar penalty constraint, the condition ĉt ∈ C can
be restated as ĉt ≤C0, where C0 denotes the maximal average penalty allowed. Fig. 1
illustrates the cases discussed.
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Fig. 1: (a) non-degenerate scenario; (b) a scenario with a single dominating arm (k1).
The ellipses represent distribution variances and the optimal solution is drawn in red.

Proposition 2. In the 2-dimensional, non-degenerate case, a stationary solution of op-
timization problem (1) is

(c∗,r∗) =
(

C0, max
k1∈S1,k2∈S2

{αµ
r (k1)+(1−α)µ

r (k2)}
)
,

where S1 and S2 are sets defined by

S1 = {k ∈ {1 . . .K} : µ
c (k)>C0} , S2 = {k ∈ {1 . . .K} : µ

c (k)≤C0} .

The parameter α = α (k1,k2) for each pair of arms k1 ∈ S1, k2 ∈ S2 is deterministic
and is calculated based on knowledge of distribution parameters:

αµ
c (k1)+(1−α)µ

c (k2) =C0, α =
C0−µc (k2)

µc (k1)−µc (k2)
.

The proof of Proposition 2 is trivial. Before defining our objective, we define constraint
satisfaction:

Definition 3. A policy π is Probabilistically Constraint Satisfying (PCS) if there exist
f (t) and g(t) such that

P
{
[ĉt −C0]

+ < f (t)
}
≥ 1−g(t) ,

where f (t)→ 0,g(t)→ 0 as t→ ∞.

Next, we define a performance measure for the reward. Our definition is based on
the classical notion of regret that compares the expected reward obtained by a applying
a certain policy to the reward that could have been obtained by applying an optimal
stationary policy with hindsight. In order to reflect the specific nature of the constrained
problem, we use an adapted definition of the regret and restrict ourselves only to policies
that are PCS.

Definition 4. The expected regret for applying a certain PCS policy π when playing a
constrained MAB with K arms is defined by

Rt , µ
r (p∗) t−

t

∑
τ=1

rτ ,

where µ (p∗) is the expected reward of an optimal stationary PCS policy.

Our objective is to propose a policy that is PCS and minimizes this regret. We now
turn to our algorithm and analyze its performance compared to the optimal solution.



3 Proposed Algorithm

In this section we suggest a steering-based approach, that attempts to reach a certain
goal by adapting to changing conditions. Our policy steers the average penalty, ĉt , into
the set C , ensuring constraint satisfaction. It also attempts to maximize the average re-
ward, r̂t . Satisfying the constraint is achieved by predicting the average penalty after
the next step, ĉp

t+1, based on arm characteristics and the average penalty incurred so far.
Prediction is made using an augmented form of the penalty, incorporating a version of
the UCB algorithm introduced in [3]. Once the subset of constraint-satisfying arms has
been determined, an arm is selected based on an augmented form of the reward. We as-
sume Gaussian reward and penalty distributions, and implement the UCB1-NORMAL
algorithm [3]. The proposed algorithm is designed for the 2-dimensional case, in which
the reward and penalty are both scalar. The extension to more constraints is natural.

Algorithm 1 A steering policy incorporating UCB
1: loop
2: if one of the arms has been sampled less than d8log te times then
3: Sample it, or if more than one such arm - sample arm which has been sampled least.
4: else
5: Calculate augmented penalty and reward:

6: µ̄c
t (k)← µ̃c

t (k)−4

√
qc

t (k)−nt (k)(µ̃c
t (k))

2

nt (k)−1
ln(t−1)

nt (k)

7: µ̄r
t (k)← µ̃r

t (k)+4

√
qr

t (k)−nt (k)(µ̃r
t (k))

2

nt (k)−1
ln(t−1)

nt (k)

8: Calculate projected average penalty for next step: ĉp
t+1 (k)← (µ̄c

t (k)+ tĉt )/t +1

9: Feasible arms are those for which ĉp
t+1 (k)≤C0; choose an arm using Algorithm 2

10: end if
11: Receive reward rt and penalty ct , calculate average reward r̂t and penalty ĉt
12: Update empirical means, µ̃r

t (k) , µ̃
c
t (k) and sums of square rewards qr

t (k) ,q
c
t (k)

13: end loop
14: Note: nt (k) is the number of times arm k was played up till time t

Our convergence results hold during almost all stages, except for an initial explo-
ration period and stages in which forced exploration is dictated by the UCB approach:
T =

{
t > K d8log te∩T C

jump

}
, where Tjump = {t : d8log te< d8log(t + i)e , 1≤ i≤ K}.

We now state and prove the main results of this paper.

Theorem 5. For the problem of a K-armed bandit with normally distributed penalties
and rewards, the steering policy described in Algorithm 1 is PCS for all t ∈T , with

f (t) =
1
t

[
|C0|+ |µ|+δ +

√
2σ2

]
g(t) = 3t−3/2 +

1
2

1

1− e−δ 2/(2σ2)
t−3δ 2/(2σ2),

where µ,σ are the distribution parameters of one of the arms and δ > 0 is a parameter.



Algorithm 2 A procedure for optimal arm selection

1: Input: Set of feasible arms - St ; vectors µ̃c
t , µ̄

c
t , µ̄

r
t ; C0

2: if St = { /0} then
3: Play arm which minimizes µ̄c

t (k).
4: else
5: Establish set of non-dominated arms, Nt , according to Definition 1.
6: Find best match for each arm in Nt for which µ̄c

t (k)≤C0:
Best matches are arms for which µ̄c

t ( j)>C0 that minimize the slope of the line connecting
arms k and j in the reward-penalty plane:

j = argmin
i
{(µ̃c

t (i)− µ̃
c
t (k))/(µ̄r

t (i)− µ̄
r
t (k))}

7: Find intersections with constraint, r∗t (k), for all pairs. For single arms, take µ̄r
t ( j).

8: Choose pair with maximal r∗t (k); play feasible arm with highest reward.
9: end if

Our proof is based on the fact that for all t ∈T , the proposed algorithm chooses the
next arm to be played from a set of feasible arms, whose projected augmented penalty
meets the constraint. Explicitly, the condition ∀t ∈T is

µ̄c
t (k)+ tĉt

t +1
≤C0, . (2)

We derive an upper bound on the convergence rate of the average penalty, ĉt , to the
optimal penalty, c∗ =C0. We begin with a result that appears as a conjecture in [3].

Lemma 6. Let X be a χ2 random variable with K ≥ 2 degrees of freedom. Then

P{X ≥ 4K} ≤ e−
K+1

2 .

Proof. We derive a Chernoff bound for X . For any α > 0 and t > 0,

P{X ≥ αK}= P
{

etX ≥ eαKt}≤ E
[
etX
]

eαKt =
(1−2t)−K/2

eαKt ,

where we use the fact that E
[
etX
]
= (1−2t)−K/2. The expression is minimized when

t = α−1
2α

; substituting this and then substituting α = 4 we have

P{X ≥ 4K} ≤ 4K/2e−3K/2 ≤ e
1
2 K ln4−K+ 1

2 e−
K+1

2 .

Since the first factor is smaller than one for every K ≥ 2 our proof is complete.

We now proceed to prove Theorem 5.

Proof. Our proof consists of three stages. First, we state a feasibility condition in terms
of penalty. Next, we establish a bound on the convergence rate of the average penalty to
the optimal penalty, by separately treating the confidence bound and the empirical mean.



Finally, we calculate an exact expression for a parametric bound on the convergence
rate. The degenerate case is treated separately at the end of this section.

Stage 1 - feasibility condition: The next arm to be played must fulfill the condition

µ̄c
t (k)+ tĉt

t +1
≤C0 ⇐⇒ ĉt −C0 ≤

C0− µ̄c
t (k)

t
. (3)

Using the definition of µ̄c
t (k) which appears in Algorithm 1,

ĉt −C0 ≤
1
t

C0− µ̃
c
t (k)+4

√
qc

t (k)−nt (k)(µ̃c
t (k))

2

nt (k)−1
ln(t)
nt (k)

 .

Stage 2 - confidence bound convergence: As shown in [13], given nt (k), the ran-
dom variable

Xt =
1

(σ c (k))2

(
qc

t (k)−nt (k)(µ̃c
t (k))

2
)

is χ2-distributed with nt (k)−1 degrees of freedom. Thus, using Lemma 6, we have that

P{Xt ≥ 4(nt (k)−1)}=
∞

∑
n=d8log te

P [Xt ≥ 4(nt (k)−1)|nt (k) = n]P{nt (k) = n}

≤
∞

∑
n=d8log te

e−n/2 ≤ 3t−3/2,

where we use the fact that nt (k)≥d8log te≥ 3ln t by definition of the UCB1-NORMAL
algorithm. Thus, for every feasible arm, with probability greater than 1−3t−3/2,

ĉt −C0 ≤
1
t

(
C0− µ̃

c
t (k)+4

√
4
(
σ c

k

)2 ln t
nt (k)

)
.

Using the lower bound on nt (k) once again, with probability greater than 1−3t−3/2,

ĉt −C0 ≤
1
t

(
C0− µ̃

c
t (k)+

√
2(σ c (k))2

)
. (4)

Stage 3 - empirical mean convergence: Using the fact that, given nt (k), µ̃c
t (k) ∼

N
(

µc (k) ,σ c (k)/
√

nt (k)
)

, we have for any ε > 0

P{µ̃c
t (k)≥ µ

c (k)+ ε}=
∞

∑
n=d8log te

P [ µ̃c
t (k)≥ µ

c (k)+ ε|nt (k) = n]P{nt (k) = n}

≤ 1
2

∞

∑
n=d8log te

e
− nε2

2(σc(k))2

≤ 1
2

1

1− e−ε2/(2(σc(k))2)
t−3ε2/(2(σ c(k))2).



Thus, for any δ > 0, we have that

C0− µ̃
c
t (k)≤ |C0|+ |µc (k)|+δ ,

with probability which is greater than

1− 1
2

1

1− e−δ 2/(2(σc(k))2)
t−3δ 2/(2(σ c(k))2).

Incorporating this into (4) and using the union bound yields

ĉt −C0 ≤
1
t

(
|C0|+ |µc (k)|+δ +

√
2(σ c (k))2

)
, (5)

with a probability of at least

1−3t−3/2− 1
2

1

1− e−δ 2/(2(σc(k))2)
t−3δ 2/(2(σ c(k))2).

Finally, we maximize over k in order to reflect the worst possible choice in terms of
penalty. Such an event may occur, since the choice between feasible arms is made ac-
cording to the reward. For the arm which maximizes the right hand side of (5) we denote
µc (k) , µ and σ c (k) , σ . Thus, the convergence bound for the penalty of Algorithm
1 for any δ > 0 is

ĉt −C0 ≤
1
t

[
|C0|+ |µ|+δ +

√
2σ2

]
,

with probability

1−3t−3/2− 1
2

1

1− e−δ 2/(2σ2)
t−3ε2/(2σ2).

Therefore, in the terms of Definition 3, we have

f (t) =
1
t

[
|C0|+ |µ|+δ +

√
2σ2

]
, g(t) = 3t−3/2 +

1
2

1

1− e−δ 2/(2σ2)
t−3ε2/(2σ2).

Theorem 7. The expected reward regret for running Algorithm 1 on K machines with
normally distributed rewards and penalties, defined in Definition 4, is bounded for all
t ∈T :

Rt ≤ 8ln t
K

∑
k=1

∆
r (k)+

K̃

∑
j=1

∆
r (p, j)

[
1+

5π2

3
+

(
256

((
σ r (k1)

∆k1

)2

+

(
σ r (k2)

∆k2

)2
))

ln t

]
,

where K̃ is the number of pairs of non-dominated arms, ∆ r (k) , µr (p∗)− µr (k),
∆ r (p, j) , µr (p∗)− µr (p,k), µr (p∗) is the expected reward of the optimal combi-
nation of arms, µr (p,k) is the expected reward of the k’th pair and k1 and k2 are the
arms which make up the k’th pair.



For our proof we assume the non-degenerate scenario, in which the optimal reward
is obtained by choosing a combination of exactly two arms. We treat the degenerate
scenario immediately afterwards. Before proceeding, we restate Conjecture 1 from [3].

Conjecture 1. Let X be a Student’s t-distributed random variable with s degrees of
freedom. Then, for all 0≤ a≤

√
2(s+1),

P{X ≥ a} ≤ e−a2/4.

We now prove Theorem 7.

Proof. We define a MAB whose arms represent pairs of arms of the original bandit.
Next we bound the expected regret in the reward sense. Since we have already proved
convergence of the average penalty to the optimal penalty, once we converge to the op-
timal pair of arms, the correct balance between them (see Proposition 2) is guaranteed.

Stage 1: Definition of pairs-MAB We define a new MAB, whose arms represent
pairs of arms of the original bandit. In general, such a bandit has 1

2 K (K−1) arms, but
the efficiency of the pairing process is greatly improved by Algorithm 2. Every arm is
assigned an index reflecting its empirical mean reward with an upper confidence bound.
The penalty of all arms (i.e., pairs) is c(p,k) = c∗ =C0. Denoting the reward confidence
bound of a single arm by br (k), the reward index of each pair of arms is

µ̄
r (p,k) = α (µ̃r (k1)+br (k1))+(1−α)(µ̃r (k2)+br (k2)), µ̃

r (p,k)+br (p,k) ,

where br (p,k) = αbr (k1)+(1−α)br (k2) is the confidence bound of the k’th pair and
µ̃r (p,k) = αµ̃r (k1)+(1−α) µ̃r (k2) its empirical mean reward.

Stage 2: Bounding the expected regret The expected reward regret is

Rt , µ
r (p∗) t−

T

∑
τ=1

rτ

= ∑
k:µr(p,k)<µr(p∗)

(µr (p∗)−µ
r (p,k))E [nt (p,k)]+

K

∑
k=1

(µr (p∗)−µ
r (k))E [nt (k)],

“∗” indicating the optimal pair. We bound the number of times every suboptimal pair of
arms is sampled, nt (p,k), and the number of times every single arm is sampled, nt (k).

We examine br
t,s (p,k), the reward confidence bound for the k’th pair at time t, after

this pair has been sampled s times. We denote by br
t,s (p∗) the same term for the optimal

pair, and follow the proof of Theorem 1 of [3]. Defining the event of pair k being chosen
as {It = p(k)} and using the notation τ0 = 1+ d8log te, we have for some l ≥ d8log te

nt (p,k) = d8log te+
t

∑
τ=τ0

1{Iτ = p(k)}

≤ l +
t

∑
τ=τ0

1{Iτ = p(k) ,nτ−1 (p,k)≥ l}

≤ l +
t

∑
τ=τ0

1
{

µ̃
r
nτ−1

(p,k∗)+br
τ−1,nτ−1

(p,k∗)≤ µ̃
r
nτ−1

(p,k)+br
τ−1,nτ−1

(p,k)
}

1{nτ−1 (p,k)≥ l} .



Comparing the worst case of the optimal arm with the best case of the sub-optimal arm,

nt (p,k)≤ l +
t

∑
τ=τ0

1
{

min
0<s<τ

[
µ̃

r
s (p,k∗)+br

τ−1,s (p,k∗)
]
≤ max

l<sk<τ

[
µ̃

r
sk
(p,k)+br

τ−1,sk
(p,k)

]}
≤ l +

∞

∑
τ=1

τ−1

∑
s=1

τ−1

∑
sk=l

1
{

µ̃
r
s (p,k∗)+br

τ,s (p,k∗)≤ µ̃
r
sk
(p,k)+br

τ,sk
(p,k)

}
.

Denoting

S ,
{

µ̃
r
s (p∗)+br

τ,s (p∗)≤ µ̃
r
sk
(p,k)+br

τ,sk
(p,k)

}
,

A ,
{

µ̃
r
s (p∗)≤ µ

r (p∗)−br
τ,s (p∗)

}
,

B ,
{

µ̃
r
sk
(p,k)≥ µ

r (p,k)+br
τ,sk

(p,k)
}
,

C ,
{

µ
r (p∗)≤ µ

r (p,k)+2br
τ,sk

(p,k)
}
,

we have that S⊆ A∪B∪C.
Breaking up the optimal pair into two arms, we note that A⊆ A1∪A2, where

A1 ,
{

µ̃
r
s1
(k∗1)≤ µ

r (k∗1)−br
τ,s1

(k∗1)
}

A2 ,
{

µ̃
r
s2
(k∗2)≤ µ

r (k∗2)−br
τ,s2

(k∗2)
}
,

and k∗1 and k∗2 are the arms which make up the optimal pair, p∗. We bound the proba-
bilities of events A1 and A2 by following the proof of Theorem 4 in [3]. For any single

arm k, the random variable
(
µ̃r

sk
(k)−µr (k)

)
/

√(
qr

sk
− sk

(
µ̃r

sk
(k)
)2
)
/(sk (sk−1)) has

a Student’s t-distribution with sk−1 degrees of freedom [13]. Combining this with Con-
jecture 1 using s = sk−1 and a = 4lnτ , we have for arm k∗1, for example

P
{

µ̃
r
s1
(k∗1)≤ µ

r (k∗1)−br
τ,s1

(k∗1)
}
= P


µ̃r

s1
(k∗1)−µr (k∗1)√(

qr
s1
− s1

(
µ̃r

s1

(
k∗1
))2
)
/(s1 (s1−1))

≤ 4
√

lnτ


≤ τ

−4.

(6)

Thus, the probability of event A is bounded by applying the union bound:

P{A} ≤ P{A1}+P{A2} ≤ 2τ
−4.

Similarly for event B, we have

P{B} ≤ P{B1}+P{B2} ≤ 2τ
−4.

Finally, we address event C, which can also be rewritten as C ⊆C1∪C2, where

C1 ,
{

µ
r (k∗1)≤ µ

r (k1)+2br
τ,s1

(k1)
}

C2 ,
{

µ
r (k∗2)≤ µ

r (k2)+2br
τ,s2

(k2)
}
.



We examine C1, for example.

P [C1|s1 = s] = P
[
(µr (k∗1)−µ

r (k1))
2 < 4

(
br

τ,s (k1)
)2
∣∣∣s1 = s

]
.

Denoting ∆k1 , µr (k∗1)−µr (k1) and using the explicit expression for br
τ,s (k1) yields

P [C1|s1 = s] = P

[
qr

s (k1)− s(µ̃r
s (k1))

2

(σ r (k1))
2 > (s−1)

∆ 2
k1

(σ r (k1))
2

s
64ln t

∣∣∣∣∣s1 = s

]
,

which by using Lemma 6 is bounded for s≥ 256
(
σ r (k1)/∆k1

)2 lnτ:

P [C1|s1 = s]≤ P

[
qr

s (k1)− s(µ̃r
s (k1))

2

(σ r (k1))
2 > 4(s−1)

∣∣∣∣∣s1 = s

]
≤ e−s/2.

Denoting m1 , 256
(
σ r (k1)/∆k1

)2, we calculate P{C1}:

P{C1}=
∞

∑
s=m1 lnτ

P [C1|s1 = s]P{s1 = s} ≤
∞

∑
s=m1 lnτ

e−s/2 ≤ 3τ
−m1/2.

The bound for P{C2} is similar, and thus we have that

P{C} ≤ P{C1}+P{C2} ≤ 3τ
−m1/2 +3τ

−m2/2.

Using the bounds for events A,B,C we have that

P{S} ≤ P{A}+P{B}+P{C} ≤ 4τ
−4 +3τ

−m1/2 +3τ
−m2/2.

Thus, the expected number of times a suboptimal pair of arms is sampled is bounded

E [nt (p,k)]≤
⌈
mp ln t

⌉
+

∞

∑
τ=1

τ

∑
s=1

τ

∑
si=l

(
4τ
−4 +6τ

−mp/2
)
,

where mp = max{8,min{m1,m2}}. Since mp ≥ 8, we have

E [nt (p,k)]≤

(
8+256

((
σ r (k1)

∆k1

)2

+

(
σ r (k2)

∆k2

)2
))

ln t +
5π2

3
+1.

This expression bounds the mean number of times pairs of non-dominated arms are
sampled. All arms are sampled at least d8ln te times, making the bound for the expected
reward-regret

Rt ≤ 8ln t
K

∑
k=1

∆
r (k)+

K̃

∑
j=1

∆
r (p, j)

[
1+

5π2

3
+

(
256

((
σ r (k1)

∆k1

)2

+

(
σ r (k2)

∆k2

)2
))

ln t

]
,

where K̃ is the number of pairs of non-dominated arms. ∆ r (k) , µr (p∗)−µr (k), and
∆ r (p, j), µr (p∗)−µr (p,k).



Remark: In the degenerate case, in which there is a single dominating arm, the
optimal solution is to sample it alone. Thus, (c∗,r∗) = (µc (k∗) ,µr (k∗)). Algorithm 1
always treats the selection of the next arm to be played in a pairwise manner; a single
dominating arm is paired with itself, and the expected reward regret is bounded as stated
in Theorem 7. The penalty aspect, however, is a bit different. The structure of Algorithm
1 allows exploration, based on confidence bounds, as long as the penalty constraint is
met (in our case, as long as ĉt ≤C0). Therefore, the average penalty incurred converges
to the constraint C0 linearly (as shown in Theorem 5) and then continues to converge
towards the optimal penalty, µc (k∗), at a logarithmic rate which is the convergence rate
of the procedure for optimal arm selection, bounded in Theorem 7.

4 Simulations

We demonstrate our results using computer simulations of a CR problem. In our sce-
nario, the CA repeatedly has to choose one of 40 possible transmission profiles that have
unknown Gaussian reward and penalty distributions. The CA interacts with the system,
implementing Algorithm 1. For reference, we implement two algorithms: an ideal one
that applies an optimal stationary (OS) policy, based on full knowledge of arm charac-
teristics, and another that applies a certainty equivalence (CE) approach, updating its
estimate of the solution based on the empirical means of the reward and penalty.

The results, averaged over 100 repetitions, are presented in Fig. 2. Fig. 2a displays
the problem layout in the reward-penalty plane. The ellipses represent arm distributions,
with their mean values and variances. The thickness of ellipse contours represents the
number of times an arm was sampled, and the optimal solution and the average perfor-
mance of our algorithm are annotated. Fig. 2b displays the convergence of the average
penalty to the optimal penalty, together with the bound derived in Theorem 5 and with
the reference policies described above. The times during which exploration overrides
the penalty constraint, defined by t 6∈ T , are annotated by arrows.We also display the
convergence of the average of the worst 5% of the runs, where the advantage of the
steering policy is clear. Finally, we present the convergence of the average reward to
the optimal value. We compare our steering algorithm to the optimal mixed policy, to
the certainty equivalence policy and to the theoretical bound derived in Theorem 7. As
expected, we pay for the steering policy’s strict adherence to the constraint in terms of
reward convergence. However, reward convergence is identical in the average and worst
case scenarios, unlike that of the certainty equivalence approach.

5 Conclusions and Future Work

We introduced a formulation of the CR problem using stochastic MABs with pathwise
constraints. In order to solve this problem, we proposed a steering policy which results
in convergence of the average reward and penalty to their optimal values.

Future directions include examining the proposed formulation from a multiple agent
point of view, in order to understand issues of cooperation and competition in this set-
ting. We also plan to examine the issue of bandits with correlated arms, in which the
distributions of sub-groups of arms are not independent. These may provide a realistic
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Fig. 2: Simulation results

model for closely related transmission profiles. Finally, we hope to be able to apply our
framework to real-world data. An extension of our work to the case of bounded reward
and penalty distributions, using the UCB1 algorithm [3], is straightforward.
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