
Reinforcement Learning with Reference Tracking Control
in Continuous State Spaces

Joseph Hall, Carl Edward Rasmussen and Jan Maciejowski

Abstract— The contribution described in this paper is an
algorithm for learning nonlinear, reference tracking, control
policies given no prior knowledge of the dynamical system
and limited interaction with the system through the learning
process. Concepts from the field of reinforcement learning,
Bayesian statistics and classical control have been brought
together in the formulation of this algorithm which can be
viewed as a form of indirect self tuning regulator. On the task
of reference tracking using a simulated inverted pendulum it
was shown to yield generally improved performance on the best
controller derived from the standard linear quadratic method
using only 30 s of total interaction with the system. Finally,
the algorithm was shown to work on the simulated double
pendulum proving its ability to solve nontrivial control tasks.

I. INTRODUCTION

Reinforcement learning is a framework by which a control
policy can be found for a system with unknown dynamics.
However, there is no formal method for incorporating known
information about the system into such algorithms. Such a
method would be useful in the case of using an unknown
system to track a known reference trajectory (or one gen-
erated according to a known stochastic process). It is this
problem that forms the motivation for this paper.

The fundamental elements of the (fully observable) rein-
forcement learning problem are shown in Figure 1. The agent
applies actions (inputs) u ∈ A to an unknown, or partially
unknown, environment at every timestep. This causes a
change in the state x ∈ S of the environment. The agent
applies actions based on a policy π : S → A and the state
changes according to the transition dynamics f : S×A → S .
At each timestep a stage cost c : S × A → R is generated
which defines the objectives of the agent in its environment.
The goal of the agent is to find a policy π∗ that minimises
the expected (possibly discounted) future sum of stage costs.

There are two approaches to solving the reinforcement
learning problem: model-based, where a model of the system
dynamics is trained through data obtained through interaction
and a policy is found via internal simulation; or model-free,
where a policy is learned directly from system interaction.
Model-free methods, such as Q-learning [10] have received
much attention in the literature because convergence to an
optimal policy can be proven. However, such methods often
require many thousands of trials before finding a good policy.

This work was supported by the EPSRC
J. Hall and J. Maciejowski are with the Control Group, Department

of Engineering, Cambridge University, UK jah215@cam.ac.uk,
jmm@eng.cam.ac.uk

C. Rasmussen is with the Machine Learning Group, Computational and
Biological Learning Laboratory, Department of Engineering, Cambridge
University, UK cer54@eng.cam.ac.uk

Agent

Environment

action
uk

state
xk+1

cost
ck+1

Fig. 1. The reinforcement learning framework of an agent interacting with
its environment (adapted from [9]). The agent applies an action u at time
k. It can then observe the resulting state xk+1 of the environment and the
associated cost ck+1 (which may be a function of the next action uk+1 as
well as the state xk+1).

Model-based methods make efficient use of interaction data
by “summarising” the experience in the internal model. The
problem is that of model-bias: the policy may be optimal
with respect to the learned model but inadequate on the
actual system. This problem was addressed by the algorithm
proposed by [7] where a distribution over dynamics models
is defined using a probabilistic modelling technique known
as Gaussian processes. Furthermore, unlike the vast majority
of reinforcement learning literature, it deals naturally with
continuous state and input spaces.

The algorithm uses data to train a Gaussian process model
of the dynamics under a Bayesian framework. The rein-
forcement learning problem is then solved by optimisation
and internal simulation by propagation of the uncertainty.
The inclusion of model uncertainty in the predictions has
resulted in unprecedented learning speed-ups over competing
algorithms. For example, the inverted pendulum swing-up
and balance task was solved with only 17 s of interaction
compared to 125 s achieved by [6] or 16, 000 s by [4]. Recent
work has demonstrated the capability of the algorithm to
solve the extremely challenging control problem of balancing
a robotic unicycle in a fixed location in simulation.

However, this algorithm lacked the capability to perform
learning of a reference tracking policy, given access to a
preview of the future reference trajectory. The work of
this paper seeks to address this by incorporating a model
of the reference signal generator into the learning process.
The proposed update to the algorithm was inspired by the
canonical approach to optimal tracking control of linear
systems given in [2]. The new algorithm can then be viewed
as a form of indirect self tuning regulator (with offline
parameter updates) where the identification stage is achieved
using Gaussian processes and control design by direct policy

search using gradient descent methods.
The rest of the paper is laid out as follows. Section II

outlines the theory of Gaussian processes for the modelling
of dynamical systems and describes the canonical linear
quadratic approach to reference tracking. An explanation
of the updated learning algorithm for reference tracking in
continuous state-spaces is given in Section III. Section IV
contains simulation results from application of the algorithm
to the inverted pendulum problem. Finally, the conclusions
are summarised in Section V.

II. BACKGROUND THEORY

A. Gaussian Processes for Modelling of Dynamical Systems

Gaussian Process (GP) models can be used to learn the
dynamic behaviour of arbitrary nonlinear systems described
as follows

xk+1 = f(xk,uk) + wk, (1)

with state x ∈ Rn, input u ∈ Rm and Gaussian noise term
w ∼ N (0,Σw).

To introduce the general concept of training and prediction
with a Gaussian process model, the learning of a noisy
static map y = h(x) + ε, where ε is Gaussian distributed
white noise, shall be considered. A GP can be viewed
as an extension of the multivariate Gaussian distribution
to infinitely long vectors, or functions. Formally, GPs are
defined by [8] as a collection of random variables, any finite
number of which have a joint Gaussian distribution. This can
be expressed as

h(x) ∼ GP
(
m(x), k(x,x′)

)
(2)

where h(·) is the random process, m(·) is the mean function,
often set to zero, and k(·, ·) is the covariance function. It is
important to note that the input into the random process is
the state x, not time. The parameters defining k(x,x′) are
contained in the vector θ. A common choice of covariance
function is the squared exponential

k(xi,xj) = α2 exp
(
− 1

2 (xi − xj)>Λ−1(xi − xj)
)

(3)

plus a noise term δijσ
2
ε where Λ = diag(λ2

1 . . . λ
2
n) and xi,

xj are two arbitrary points in the state space. In this case
the hyperparameter vector is θ = [λ1 . . . λn, α, σε]>.

Before proceeding, the covariance matrix K(X,X) ∈
Rd×d, or simply K, will be defined as the matrix with
elements Kij := k(xi,xj). Similarly, the vector k(x) :=
k(X,x) ∈ Rd has elements ki = k(xi,x) and the scalar
k(x) := k(x,x).

1) Training: Given a set of training data D = {X,y} of
input vectors X = [x1 . . .xd]> ∈ Rd×n and the correspond-
ing observed data y = [y1 . . . yd]>, the problem is to find
the posterior distribution over the space of functions. From
Bayes’ rule it is known that

p(h|y, X,θ) =
p(y|h,X,θ)
p(y|X,θ)

p(h|θ), (4)

where p(y|X,θ) =
∫
p(y|h,X,θ)p(h|θ)dh with h ∼ GP .

This can be evaluated analytically since the prior is Gaussian

−2 0 2
−5

−4

−3

−2

−1

0

1

2

3

4

Input Distribution

 G
au

ss
ia

n
Pr

oc
es

s

0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

4

 O
ut

pu
t D

ist
rib

ut
io

n

Fig. 2. Illustration of the exact moment matching scheme for propagation
of uncertainty through a Gaussian process model. The left hand plot depicts
the unnormalised input distribution and the GP model where the black
crosses denote training data D and the shaded region in the left hand plot
shows the 95% confidence region. The right hand plot shows the Gaussian
approximation for the output distribution and an estimate of the output
distribution obtained by simple Monte Carlo sampling.

h|θ ∼ N (0,K) and the likelihood is a factorized Gaussian
y|h,θ, X ∼ N (h|θ, σ2

ε I) because of the assumption of
independent noise terms. In a fully Bayesian framework, the
posterior p(h|y, X) would be obtained by integrating out the
effect of the hyperparameters θ. This would require compu-
tationally intensive sampling-based methods. Alternatively,
a point estimate θ̂ can be obtained through maximisation of
the log-marginal likelihood p(y|X,θ) which is given by

log p(y|X,θ) = − 1
2y>(K+σ2

ε)−1y− 1
2 log |K|− n

2 log 2π.
(5)

This is in general a non-convex problem therefore a local
maximum can be found using standard gradient ascent meth-
ods, in particular the method of conjugate gradients will be
used. It is this maximization of the log-marginal likelihood
that constitutes “training” of the GP hyperparameters.

2) Prediction for Deterministic Inputs: Once the Gaussian
process has been trained it can be used to make predictions as
follows. The joint distribution of the observed target values
and the function value at a single deterministic test input x∗

under the prior can be expressed as[
y
h∗

]
∼ N

(
0,
[
K + σ2

ε I k(x∗)
k(x∗)> k(x∗)

])
. (6)

The conditional distribution given by p(h∗|X,y,x∗) =
N (m(x∗), v(x∗)) can then be found using the standard
identity for a Gaussian conditional distribution which gives
the following solution for prediction at x∗

m(x∗) = k(x∗)>(K + σ2
ε)−1y, (7)

v(x∗) = k(x∗)− k(x∗)>(K + σ2
ε)−1k(x∗). (8)

The mean can be viewed as a linear combination of d
kernel functions, each one centred on a training point. If

a multivariable mapping is now considered where y ∈ RE ,
then E independently trained GP models are used to describe
the system. This is done rather than training a single multi-
variable GP because it is much less computationally intensive
to train independent models. The hyperparameter vector is
then extended to θ =

[
θ(1)> . . .θ(E)>]> and the y vector

becomes a matrix in Rd×E . So the multivariate distribution
is given by N (m(x∗),v(x∗)) where v(x∗) ∈ RE×E is a
diagonal matrix because of the independence assumption.

3) Prediction for Uncertain Inputs: If the test input is
distributed according to x∗ ∼ N (µ,Σ) then, in general,
the output distribution of the GP will not be Gaussian. An
illustration of this concept is shown in Figure 2. However,
the mean and variance can be evaluated analytically therefore
the output distribution can be approximated by a Gaussian
using exact moment matching. The method for achieving this
can be found in [5]. It is also possible to evaluate the term
given by cov[x∗]−1cov[x∗y>] analytically, the importance of
which is outlined in Section II-B.

4) Modelling a Dynamical System: The tools developed
so far allow for a discrete time dynamic system of the form
given in (1) to be modelled. This can be done using training
data of the form

X =

[[
xk1
uk1

]
. . .

[
xkd

ukd

]]>
∈ Rd×(n+m), (9)

y =
[
xk1+1 . . .xkd+1

]>
∈ Rd×n. (10)

This concludes the description of how Gaussian processes
can be used to model nonlinear dynamical systems and
propagate uncertainty in the predictions.

B. Conditional Independence

Within the framework of the proposed algorithm it was of-
ten necessary to calculate the cross-covariance between two
conditionally independent variables. Consider two variables
a and c that are conditionally independent given variable
b. This is denoted as a ⊥⊥ c|b. It can be shown that the
following identity is true for Gaussian distributed variables

a ⊥⊥ c|b⇒ cov[a, c] = cov[a,b]cov[b]−1cov[b, c]. (11)

Often the term cov[b]−1cov[b, c] can be evaluated ana-
lytically, therefore the inversion of the potentially singular
matrix cov[b] can be avoided. This leads to numerically
stable computations.

C. Linear Quadratic Tracking Control

In this section, the LQ approach to tracking control out-
lined in Chapter 3 of [2] is reviewed. Consider the reference
tracking control of a stochastic, discrete-time, Linear Time-
Invariant (LTI) system given by

xk+1 = Axk +Buk + wk, (12)

with state, input and noise terms as defined in (1).
The LQ tracking problem is an extension to the LQR

problem by penalising state deviations from some reference

Policy
π(xtr

k)
System

f(xk,uk) + wk

z−1I

uk
xk

xr
k

xk+1

Fig. 3. Block diagram displaying a system controlled according to a policy
π(·) which has access to future reference trajectory information xr. The
term z−1 indicates a one-step delay.

trajectory rk. The policy also has access to the values of the
reference trajectory for Hr timesteps in the future xr

k, where
xr
k ∈ RnHr

contains the stacked future trajectory information
[r>k . . . r

>
k+Hr−1]>. The controller setup is depicted in Fig-

ure 3. The finite horizon cost function is defined as follows

V (H,x0) =
H−1∑
k=0

Exk

[
(xk − rk)>Q(xk − rk) + u>k Ruk

]
+ ExH

[
(xH − rH)>PH(xH − rH)

]
. (13)

Recognising that rk is externally prescribed and that the pol-
icy will have access to the values of the reference trajectory
Hr steps into the future, an artificial state-space model may
be defined as

xr
k+1 = Arxr

k +Brnk, rk = Crxr
k (14)

where nk ∼ N (0,Σn). In the following Σn shall be set to 1.
If it is assumed that the reference trajectory is generated by
the following white noise driven, linear filtering system

rk+1 = Afrk +Bfnk (15)

with specified initial condition r0, then the state-space ma-
trices are given by the following

Ar =

[
0nHr×Hr

I(n−1)Hr[
0Hr×(n−2)Hr Af

]]
,

Br =
[
0(n−1)Hr×Hr

Bf

]
, Cr =

[
IHr 0Hr×(n−1)Hr

]
where 0p×q is the p by q matrix of zeros. This formulation
can characterise a wide range of reference signals. Two
examples are shown in Figure 4 of second-order filtered
white noise and exponentially decaying sinusoids of a given
frequency. In the sinusoid example Bf = 0 but randomness
arises by allowing a distribution over starting state r0.

The tracking problem may now be recast as a standard
LQR problem by defining an augmented state vector xtr :=
[x>,xr>]> ∈ Rn(Hr+1) and associated state-space equation

xtr
k+1 =

[
A 0
0 Ar

]
xtr
k +

[
B
0

]
uk +

[
I 0
0 Br

] [
wk

nk

]
. (16)

This leads to xk − rk =
[
I −Cr

]
xtr
k and therefore a finite

horizon LQR problem with Qtr :=
[
I −Cr

]>
Q
[
I −Cr

]
and P tr

H :=
[
I −Cr

]>
PH
[
I −Cr

]
. In general, this

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

R
ef

er
en

ce
 S

ig
na

l

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

R
ef

er
en

ce
 S

ig
na

l

Fig. 4. Illustration of the type of trajectories that can be modelled by the
state space equation (15). The left hand plot depicts second-order filtered
white noise. The right hand plot depicts a deterministic decaying sinuosoid
model of a specified frequency with a Gaussian distribution over the starting
state r0. The solid black lines denote the mean, the shaded area is the 95%
confidence region and the dashed lines are sample trajectories.

leads to a linear time-varying control law K tr
H−k−1 which

is undesirable in practice. However, applying K = K tr
H−1 as

a time-invariant control law yields the associated receding
horizon policy.

III. THE ALGORITHM

The goal of the proposed algorithm is to learn a time-
invariant parameterised control policy u = π(xtr) by solving
a finite horizon optimisation problem equivalent to the one
in Section II-C. This policy can be viewed as an approx-
imation to the optimal time-varying solution. It may have
any structure provided that the first and second moments of
the output distribution can be calculated analytically as well
as the input-output covariance, given a Gaussian distribution
over the augmented state xtr. The policy parameters shall be
gathered under the variable ψ.

There are three layers to the algorithm:
• Learn the transition dynamics of the system.
• Evaluate the (approximate) expected long-term cost of

following some policy π.
• Improve the policy by finding the optimal policy π∗ in

the parameterized set defined by ψ.
The learned transition dynamics model is used as the basis
of a standard optimisation problem over policy parameters.
Once the optimiser has converged the new policy is applied
to the system and the dynamics model is updated based on
this new information. This process is repeated until the policy
parameters have converged. A more detailed breakdown is
as follows.

A. Learn Dynamics

The first step of the process is to generate a data set D by
applying an arbitrary policy to the system. This data set is
then used to train a Gaussian process model of the transition
dynamics. After each optimisation of the policy a trajectory
is sampled from the reference class and the system is run

with the new policy and this sampled reference. The data
generated from this test run is then used to update the learned
GP model and the hyperparameters are re-trained.

B. Policy Evaluation

Policy evaluation was carried out in an analogous manner
to the LQ tracking method outlined in Section II-C. The
aim is to learn policy parameters of a given feedback policy
structure that perform well over a given class of reference
trajectories given by the linear state space system (15).

1) Policy Structure: The policy structure that was investi-
gated in this paper was a quadratic controller. This is defined
by augmenting the state with the pairwise product of each
state as follows

u = π̃(xtr) = [K,L]
[
xtr

ztr

]
(17)

where ztr ∈ R0.5q(q+1), q = (Hr + 1)n contains all pairwise
products xtr

i x
tr
j , i, j ∈ {1 . . . q} and L ∈ Rm×0.5q(q+1). This

is a richer class of control structure than the standard linear
mapping but includes it as a special case by setting L = 0.
The parameter set is then defined by ψ = {K,L}.

In order to ensure the algorithm respected the system
input constraints the output of the policy was squashed
through a sine to give a bounded policy output π(xtr) =
umax sin

(
π̃(xtr)

)
. This operation allows analytic evaluation

of the mean and variance of the control input given a
Gaussian state distribution xtr ∼ N .

2) Cost Function: Since the policy is bounded through
the sine it was not necessary to penalise the input action,
therefore the following cost function was used to evaluate
performance

V ψ(H,x0) =
H∑
k=0

Extr
k

[
c
(
xtr
k, Q

tr)] . (18)

The stage cost c(·, ·) was given by the saturating quadratic
c(a, T) = 1 − exp

(
−a>Ta

)
instead of the standard

quadratic cost. This stage cost was chosen rather than the
quadratic since it was shown in [3] that it is more conducive
to the learning process because it encodes the notion of being
“far away” from the target state while not caring exactly how
far. Furthermore, it shares with the quadratic cost the useful
property that Ea[c(a, ·)] can be evaluated analytically given
a ∼ N .

Evaluating this cost function for a given setting of the
policy parameters ψ involves propagating the approximated
Gaussian distribution over the augmented state at the current
timestep, p(xtr

k) to the distribution at the next timestep
p(xtr

k+1). This was achieved through the following three
steps:
• Determine p(uk) using the parameterised policy with

input p(xtr
k) where uncertainty propagation depends on

the specific policy structure.
• Determine p(xk+1) using the Gaussian process transi-

tion dynamics model with input p(xk,uk) and propa-
gating the uncertainty using results from Section II-A.3.

xk

uk

xr
k

xk+1

uk+1

xr
k+1

xk+2

uk+2

xr
k+2

.

Fig. 5. Graphical model representation of the propagation of uncertainty
over current state, reference state and input p(xtr

k,uk) to the distribution
at the following timestep p(xtr

k+1,uk+1) etc given the two stochastic
processes: dynamics and reference.

• Determine p(xr
k+1) using the linear state space model

(14) with input p(xr
k) and propagating the uncertainty

using standard Kalman filtering equations.
The cross covariance terms that are not evaluated explicitly
in these steps are found using the conditional independence
method outlined in Section II-B since xk+1 ⊥⊥ xr

k|(xk,uk)
and xr

k+1 ⊥⊥ (xk,uk)|xr
k. These conditional independence

relationships can be confirmed by the graphical model (see
Chapter 8 of [1] for an introduction) in Figure 5.

C. Policy Improvement

Using this method of evaluating the policy parameters ψ,
policy improvement can be achieved by optimisation. The
aim is to find the parameters that satisfy

ψ∗ = argmin
ψ

V ψ(H,x0) (19)

for a given dynamics model. Since all distributions are
(approximate) Gaussians the derivatives of V ψ(H,x0) with
respect to ψ can be evaluated analytically. Taking p(xtr

k) ∼
N (µk,Σk), the derivatives are given by

dV ψ(H,x0)
dψ

=
H∑
k=1

[(
∂

∂µk
Extr

k
[c(·, ·)]

)
dµk
dψ

+
(

∂

∂Σk
Extr

k
[c(·, ·)]

)
dΣk

dψ

]
. (20)

The mean and covariance derivatives at each timestep are
calculated using the recursive rule

dαk
dψ

=
∂αk
∂µk−1

dµk−1

dψ
+

∂αk
∂Σk−1

dΣk−1

dψ
+
∂αk
∂ψ

, (21)

where α ∈ {µ,Σ}. The availability of these derivatives
means that optimisation can be achieved using standard
gradient descent methods.

IV. SIMULATIONS

A. Inverted Pendulum

1) Setup: The algorithm was applied to the inverted
pendulum problem as shown in the Figure 6. The state of
this system is defined as the cart position x, cart velocity ẋ,

θ

l

x

θ1

θ2

l1

l2

x

Fig. 6. The pendulum and the double pendulum tracking scenarios. The
black cross indicates the reference point and the dotted line shows the
Euclidian distance from this point to the tip of the pendulum.

pole position θ and pole velocity θ̇ giving x = [x, ẋ, θ, θ̇]>.
The input u is simply the lateral force applied to the cart u.
The nonlinear equations of motion are given by

(M +m)ẍ+ 1
2Mlθ̈ cos θ − 1

2Mlθ̇2 sin θ = u− bẋ (22)

2lθ̈ + 3ẍ cos θ + 3g sin θ = 0 (23)

where the following physical constants were set (as used by
[7]) M = 0.5 kg the mass of the cart, m = 0.5 kg the mass
of the pole, b = 0.1 N s m−1 the friction between cart and
track, l = 0.6 m the length of the pole and J = 0.06 kg m2

the moment of inertia around the tip of the pole. The control
input u was constrained to the range u ∈ [−umax, umax] =
[−10, 10] N and was implemented as a zero-order hold with
discrete timestep length ∆t = 0.15 s. The prediction horizon
was set as H = 3 s and the state weighting matrix Q was
defined so as to penalise the approximate squared Euclidean
distance from the tip of the pendulum to the reference point.

The reference trajectory was defined as a change in the x-
position of the cart with the pendulum upright. The class of
reference was chosen to be first order filtered white noise
with parameters a = 0.98, Af = a, Bf = l

√
1− a2.

These parameters were chosen so that the limiting standard
deviation of the reference was equal to the length of the
pendulum l, as this is an appropriate length scale.

The Gaussian process model of the transition dynamics
was initialised using 6 s of training data generated from
interaction with the system by applying random inputs
drawn from a uniform distribution. The learning process was
stopped after 8 iterations of the algorithm by which time the
policy parameters had normally converged. This is a total
interaction time of 30 s.

2) Results: Policies were trained for timestep horizons
Hr ∈ {1 . . . 7} with a discrete timestep length of ∆t =
0.15 s. The learned controllers were then run on 200 sample
trajectories of 3 s in length drawn from the stochastic system
and the average stage cost was calculated for each. These
were compared with a controller derived using a discrete
linearised form of the system dynamics and the receding
horizon LQ controller outlined in Section II-C. When applied
online, the output was saturated at umax in order to obtain a
fair comparison. Setting the input weighting to R = 5×10−4

gave the best results. The results are displayed in Figure 7.

0 1 2 3 4 5 6
0.1

0.15

0.2

0.25

0.3

Reference Preview Horizon (Hr − 1)

Av
er

ag
e

St
ag

e
C

os
t

Fig. 7. The average one-step cost for different policies evaluated over 200
sample reference trajectories of 3 s each. The solid line depicts the results
for the LQ controller, the dash-dot line depicts the learned linear policy
(L = 0) and the dashed line depicts the learned quadratic policy.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

x
Po

si
tio

n

Fig. 8. The x-position of the cart for the double pendulum as it tracks a
sinusoidal trajectory (thick solid) using an LQ derived policy (dashed) and
a learned quadratic policy (solid).

It can be observed from Figure 7 that both the linear
and the quadratic learned policies yield improved or com-
parable performance to the LQ controller. This is probably
due to the fact that the algorithm has taken into account
the nonlinear dynamics of the system and has adopted a
principled treatment of input constraints. The inclusion of
the quadratic terms in this case has given, essentially, no
further improvement on the linear policy, since the system
has been operating mainly in the linear regime.

B. Double Inverted Pendulum

1) Setup: The algorithm was then run on the double
inverted pendulum tracking problem as shown in Figure 6.
The equations of motion for this system can be found in
Appendix B of the thesis [3]. The parameters of this system
were set to be the same as in the single pendulum case except
with the addition of a pendulum of the same length and
weight attached to the end of the first one l1 = l2 = l. The
sampling time was reduced to ∆t = 0.05 s. The prediction
horizon was set as H = 5 s and the state weighting matrix
Q was again defined to penalise approximately the squared
Euclidean distance from the tip of the second pendulum to
the reference point as shown in Figure 6.

The algorithm was trained for tracking sine waves with

frequency of 0.8 rad s−1, amplitude distributed according to
a ∼ N (0, l) and access to the position and rate of change
of the sine wave (since this fully characterises the sinusoid
there is no need for further future information).

2) Results: It was found that the the algorithm could not
find a stabilising solution using the linear policy but within
a few iterations could find one using the quadratic structure.
The learned policy was then compared with a policy derived
from the standard LQ method as demonstrated in Figure 8.
In this case the learned policy is able to achieve the task but
is not able to match the performance of the LQ policy.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

The contribution of this paper has been to present a
new algorithm for learning reference tracking controllers
given no prior knowledge of the dynamical system and
limited interaction through the learning process. Concepts
from the field of reinforcement learning, Bayesian statistics
and classical control have been brought together to create
this algorithm. On the task of reference tracking using the
inverted pendulum it was shown to yield generally improved
performance on the best controller derived from the standard
linear quadratic method using only 30 s of total interaction
with the system. Finally, the algorithm was shown to work
on the double pendulum proving the ability to solve highly
nontrivial tasks.

B. Future Work
As it stands, the algorithm learns the dynamics of a system

and assumes a given linear model for the reference dynamics.
However, the framework is applicable to the inclusion of a
nonlinear reference model and to learning both the dynamics
of the system and a nonlinear reference model. In the future
we plan to show application of this.

REFERENCES

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[2] R. R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control:
The Thinking Man’s GPC. Prentice Hall International Series in
Systems and Control Engineering. Prentice Hall, 1990.

[3] M. P. Deisenroth. Efficient Reinforcement Learning using Gaussian
Processes. PhD thesis, Cambridge University, November 24 2009.

[4] K. Doya. Reinforcement learning in continuous time and space. Neural
Computation, 12(1):219–245, 2000.

[5] J. Quiñonerno-Candela, A. Girard, J. Larsen, and C. E. Rasmussen.
Propagation of uncertainty in Bayesian kernel models - Application
to multiple-step ahead forecasting. In In Proceedings of the IEEE
Conference on Acoustics, Speech, and Signal Processing (ICASSP03),
volume 2, pages 701–704, Hong Kong, April 2003.

[6] T. Raiko and M. Tornio. Variation Bayesian learning of nonlinear hid-
den state-space models for model predictive control. Neurocomputing,
72(16–18):3704–3712, October 2009.

[7] C. E. Rasmussen and M. P. Deisenroth. Probabilistic inference for fast
learning in control. In Recent Advances in Reinforcement Learning:
8th European Workshop, pages 229–242, Berlin, Germany, November
2008. Springer.

[8] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, Cambridge, MA, 2006.

[9] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, Cambridge, MA, 1998.

[10] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
University of Cambridge, Cambridge, UK, 1989.

