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Abstract—In this paper, we consider the problem of state
estimation through observations possibly corrupted with both
bad data and additive observation noises. A mixedℓ1 and ℓ2

convex programming is used to separate both sparse bad data
and additive noises from the observations. Through using the
almost Euclidean property for a linear subspace, we derive a
new performance bound for the state estimation error under
sparse bad data and additive observation noises. Our main
contribution is to provide sharp bounds on the almost Euclidean
property of a linear subspace, using the “escape-through-a-mesh”
theorem from geometric functional analysis. We also propose and
numerically evaluate an iterative convex programming approach
to performing bad data detections in nonlinear electrical power
networks problems.

I. I NTRODUCTION

In this paper, we study the problem of state estimation
under both bad data and observation noise. In state estimation
problems, the observations may be corrupted with abnormally
large measurement errors, called bad data, in addition to the
usual additive observation noise. More specifically, suppose we
want to estate the statex described by anm-dimensional real-
numbered vector, and we maken measurements, then these
measurements can be written as ann-dimensional vectory,
which is related to the state vector through the measurement
equation

y = h(x) + v + e, (I.1)

whereh(x) is a nonlinear function relating the measurement
vector to the state vector, andv is the vector of measurement
noise, ande is the vector of bad data imposed on the
measurement. In this paper, we assume thatv is an m-
dimensional vector with i.i.d. zero mean Gaussian elements
of varianceσ2. We also assume thate is a vector with only
k nonzero entries, and the nonzero entries can take arbitrary
real-numbered values, reflecting the nature of bad data.

It is well known that Least Square (LS) method can be used
to suppress the effect of observation noise on state estimations.
In LS method, we try to find a vectorx minimizing

‖y − h(x)‖2. (I.2)

However, the LS method generally only works well when there
are no bad datae corrupting the observationy.

In this paper, a mixed leastℓ1 norm and least square convex
programming is used to simultaneously detect bad data and
subtract additive noises from the observations. In our theoret-
ical analysis of the decoding performance, we assumeh(x) is
a linear transformationHx with H as ann×m matrix with
i.i.d. standard zero mean Gaussian entries. Through using the
almost Euclidean property for the linear subspace generated by

H , we derive a new performance bound for the state estimation
error under sparse bad data and additive observation noises. In
our analysis, using the “escape-through-a-mesh” theorem from
geometric functional analysis [5], we are able to significantly
improve on the bounds for the almost Euclidean property
of a linear subspace, which may be interesting in a more
general mathematical setting. Compared with earlier analysis
on the same optimization problem in [11], the analysis is new
using the almost Euclidean property rather than the restricted
isometry conditions used in [11], and we are able to give
explicit bounds on the error performance, which is sharper
than the analysis using the restricted isometry conditionsin
[11].

Inspired by bad data detection methods for linear systems,
we further propose an iterative convex programming approach
to perform combined bad data detection and denoising in
nonlinear electrical power networks. The static state of an
electric power network can be described by the vector of bus
voltage magnitudes and angles in power networks. However,
in smart grid power networks, the measurement of these
quantities can be corrupted due to errors in the sensors, com-
munication errors in transmitting the measurement results, and
adversarial compromises of the meters. So the state estimation
of power networks needs to detect, identify, and eliminate
large measurement errors [1], [2], [3]. Since the probability
of large measurement errors occurring is very small, it is
reasonable to assume that bad data are only present in a small
fraction of the available meter measurements results. So bad
data detection in power networks can be viewed as a sparse
error detection problem, which shares similar mathematical
structures as sparse recoveries problem in compressive sensing
[4], [11]. However, this problem in power networks has several
unique properties when compared with ordinary sparse error
detection problem [4]. In fact,h(x) in (I.1) is a nonlinear
mapping instead of a linear mapping in [11]. Our iterative
convex programming based algorithms work is shown by
numerical examples working well in this nonlinear setting.
Compared with [12], which proposed to applyℓ1 minimization
in bad data detection in power networks, our approach offers
a better decoding error performance when both bad data and
additive observation noises are present. [13][14] considered
state estimations under malicious data attacks, and formulated
the problem of state estimation under malicious attacks as a
hypothesis testing problem by assuming a prior probability
distribution on the statex. In contrast, our approach does not
rely on any prior information on the signalx itself, and the
performance bounds hold for arbitrary statex.

The rest of this paper is organized as follows. In Section
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II, we introduce the convex programming to perform joint
bad data detection and denoising, and derive the performance
bound on the decoding error based on the almost Euclidean
property of linear subspaces. In Section III, a sharp bound on
the almost Euclidean property is given through the “escape-
through-mesh” theorem. In Section IV, we will present explicit
bounds on the decoding error. In Section V, we introduce our
algorithm to perform bad data detection in nonlinear systems,
and present simulation results of its performance in power
networks.

II. BAD DATA DETECTION FORL INEAR SYSTEMS

In this section, we will introduce a convex programming
formulation to do bad data detection in a linear systems, and
give a characterization of its decoding error performance.In a
linear system, then×1 observation vector isy = Hx+e+v,
wherex is them × 1 signal vector (m < n), e is a sparse
error vector withk nonzero elements,v is a noise vector with
‖v‖2 ≤ ǫ. In what follows, we denote the part of any vector
w over any index setK ′ aswK′ .

We solve the following optimization problem involving
optimization variablesx∗ and z, and we then estimate the
statex to be x̂, which is the optimizing value forx∗.

min
x
∗,z

‖y −Hx∗ − z‖1,
subject to ‖z‖2 ≤ ǫ. (II.1)

We are now ready to give the main theorem which bounds the
decoding error performance of (II.1).

Theorem 2.1: Let y, H , x, e andv are specified as above.
Suppose that the minimum nonzero singular value ofH is
σmin. Let C be a real number larger than1, and suppose that
every vectorw in the subspace generated by the matrixH
satisfiesC‖wK‖1 ≤ ‖wK‖1 for any subsetK ⊆ {1, 2, ..., n}
with cardinality |K| ≤ k, wherek is an integer, andK =
{1, 2, ..., n} \K. We also assume the subspace generated by
H satisfies thealmost Euclidean property for a constantα ≤ 1,
namely

α
√
n‖w‖2 ≤ ‖w‖1

holds for everyw in the subspace generated byH
Then the solution̂x satisfies

‖x− x̂‖2 ≤ 2(C + 1)

σminα(C − 1)
ǫ. (II.2)

Proof: Suppose that one optimal solution set to (II.1) is
(x̂, ẑ). Since‖z‖2 ≤ ǫ, we have‖ẑ‖1 ≤ √

n‖ẑ‖2 ≤ √
nǫ.

Sincex∗ = x and z = v is a feasible solution for (II.1),
then

‖y −Hx̂− ẑ‖1
= ‖H(x− x̂) + e+ v − ẑ‖1
≤ ‖H(x− x) + e+ v − v‖1
= ‖e‖1.

Applying the triangle inequality to‖H(x−x̂)+e+v− ẑ‖1,

we further obtain

‖H(x− x̂) + e‖1 − ‖v‖1 − ‖ẑ‖1 ≤ ‖e‖1.
DenotingH(x − x̂) asw, becausee is supported on a set

K with cardinality |K| ≤ k, by the triangle inequality forℓ1
norm again,

‖e‖1 − ‖wK‖1 + ‖wK‖1 − ‖v‖1 − ‖ẑ‖1 ≤ ‖e‖1.
So we have

− ‖wK‖1 + ‖wK‖1 ≤ ‖ẑ‖1 + ‖v‖1 ≤ 2
√
nǫ (II.3)

With C‖wK‖1 ≤ ‖wK‖1, we know

C − 1

C + 1
‖w‖1 ≤ −‖wK‖1 + ‖wK‖1.

Combining this with (II.3), we obtain

C − 1

C + 1
‖w‖1 ≤ 2

√
nǫ.

By the almost Euclidean propertyα
√
n‖w‖2 ≤ ‖w‖1, it

follows:

‖w‖2 ≤
2(C + 1)

α(C − 1)
ǫ. (II.4)

By the definition of singular values,

σmin‖x− x̂‖2 ≤ ‖H(x− x̂)‖2 = ‖w‖2, (II.5)

so combining (II.4), we get

‖x− x̂‖2 ≤
2(C + 1)

σminα(C − 1)
ǫ.

Note that when there are no sparse errors present, the
decoding error bound satisfies‖x − x̂‖2 ≤ 1

σmin
ǫ, Theorem

2.1 shows that the decoding error of (II.1) is oblivious to
the presence of bad data, no matter how large in amplitude
these bad data can be. This phenomenon also observed in
[11] by using the restricted isometry condition for compressive
sensing.

We remark that, for giveny and givenǫ, by strong lagrange
duality theory, the solution̂x to (II.1) will correspond to
the solution tox in the following problem (II.6) for some
Lagrange duality variableλ ≥ 0. As ǫ ≥ 0 increases, the
correspondingλ that produces the same solution tox will
correspondingly decrease.

min
x,z

‖y−Hx− z‖1 + λ‖z‖2. (II.6)

In fact, whenλ → ∞, (II.6) approaches

min
x

‖y −Hx‖1,

and whenλ → 0, (II.6) approaches

min
x

‖y −Hx‖2.

Thus, (II.6) can be viewed as a weighed version ofℓ1
minimization andℓ2 minimization (or equivalently the LS
method). We will later use numerical experiments to show



that in order to recover a sparse vector from measurements
with both noise and errors, this weighted version outperforms
both ℓ1 minimization and the LS method.

In the next two sections, we will aim at explicitly computing
2(C+1)

σminα(C−1) ×
√
n, which will denote̟ later in this paper. The

appearance of the
√
n factor is to compensate for the energy

scaling of large random matrices and its meaning will be clear
in later context. Next, we will compute explicitly the almost
Euclidean property constantα.

III. B OUNDING THE ALMOST EUCLIDEAN PROPERTY

In this section, we would like to give a quantitative bound
on the almost Euclidean property constantα such that with
high probability (with respect to the measure for the subspace
generated by the randomH), α

√
n‖w‖2 ≤ ‖w‖1 holds for

every vectorw from the subspace generated byH . Here we
assume that each element ofH is generated from the standard
Gaussian distributionN(0, 1). So the subspace generated by
H is a uniformly distributed(n −m)-dimensional subspaces
from the high dimensional geometry.

To ensure that the subspace generated fromH satisfies the
almost Euclidean property withα > 0, we must have the
event that the subspace generated byH does not intersect
the set{w ∈ Sn−1|‖w‖1 < α

√
n‖w‖2}, whereSn−1 is the

Euclidean sphere inRn. To evaluate the probability that this
event happens, we will need the following “escape-through-
mesh” theorem.

Theorem 3.1: [5] Let S be a subset of the unit Euclidean
sphereSn−1 in Rn. Let Y be a randomm-dimensional
subspace ofRn, distributed uniformly in the Grassmanian with
respect to the Haar measure. Letw(S) = E(sup

w∈S(h
Tw)),

whereh is a random column vector inRn with i.i.d. N(0, 1)
components. Assume thatw(S) < (

√
n−m− 1

2
√
n−m

). Then

P (Y
⋂

S = ∅) > 1− 3.5e−
(
√

n−m− 1
2
√

n−m
)−w(S)

18 .

From Theorem 3.1, we can use the following programming
to get an estimate of the upper bound ofw(h, S). Because the
set {w ∈ Sn−1|‖w‖1 < α

√
n‖w‖2} is symmetric, without

loss of generality, we assume that the elements ofh follow
i.i.d. half-normal distributions, namely the distribution for the
absolute value of a standard zero mean Gaussian random
variables. Withhi denoting thei-th element ofh, this is
equivalent to

max

n
∑

i=1

hiyi (III.1)

subject to y0 ≥ 0, 1 ≤ i ≤ n (III.2)
n
∑

i=1

yi ≤ α
√
n (III.3)

n
∑

i=1

y2i = 1. (III.4)

Following the method from [7], we use the Lagrange duality

to find an upper bound for the objective function of (III.1).

min
u1≥0,u2≥0,λ≥0

max
w

hTw − u1(

n
∑

i=1

w2
i − 1) (III.5)

−u2(

n
∑

i=1

wi − α
√
n) +

n
∑

i=1

λiwi, (III.6)

whereλ is a vector(λ1, λ2, ..., λn).
First, we maximize (III.6) overwi, i = 1, 2, ..., n for fixed

u1, u2 and λ. By making the derivatives to be zero, the
minimizing wi is given by

wi =
hi + λi − u2

2u1
, 1 ≤ i ≤ n

Plugging this back, we get

hTw − u1(

n
∑

i=1

w2
i − 1) (III.7)

−u2(

n
∑

i=1

wi − α
√
n) +

n
∑

i=1

λiwi (III.8)

=

∑n
i=1 (−u2 + λi + hi)

2

4u1
+ u1 + α

√
nu2. (III.9)

Next, we minimize (III.9) overu1 ≥ 0. It is not hard to see
the minimizingu∗

1 is

u∗
1 =

√

∑n
i=1 (−u2 + λi + hi)2

2
,

and the corresponding minimized value is
√

√

√

√

n
∑

i=1

(−u2 + λi + hi)2 + α
√
nu2. (III.10)

Then, we minimize (III.10) overλ ≥ 0. Givenh andu2 ≥
0, it is easy to see that the minimizingλ is

λi =

{

u2 − hi if hi ≤ u2;
0 otherwise,

and the corresponding minimized value is
√

∑

1≤i≤n:hi<u2

(u2 − hi)2 + α
√
nu2. (III.11)

Now if we take anyu2 ≥ 0, (III.11) serves as an upper
bound for (III.6). Since

√· is a concave function, by Jensen’s
inequality, we have for any givenu2 ≥ 0,

E(sup
w∈S

(hTw)) ≤
√

E{
∑

1≤i≤n:hi<u2

(u2 − hi)2}+ α
√
nu2.

(III.12)
Sinceh has i.i.d. half-normal components, the righthand side
of (III.12) equals to

(

√

(u2
2 + 1)erfc(u2/

√
2)−

√

2/πu2e−u2
2/2 + αu2)

√
n,

(III.13)
where erfc is the error function.

One can check that (III.13) is convex inu2. Given α, we
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minimize (III.13) overu2 ≥ 0 and let g(α)
√
n denote the

minimum value. Then from (III.12) and (III.13) we know

w(S) = E(sup
w∈S

(hTw)) ≤ g(α)
√
n. (III.14)

Given δ = m
n , we pick the largestα∗ such thatg(α∗) <√

1− δ. Then asn goes to infinity, it holds that

w(S) ≤ g(α∗)
√
n < (

√
n−m− 1

2
√
n−m

). (III.15)

Then from Theorem 3.1, with high probability‖w‖1 ≥
α∗√n‖w‖2 holds for every vectorw in the subspace gen-
erated byH . We numerically calculate howα∗ changes over
δ and plot the curve in Fig. 1. For example, whenδ = 0.5,
α∗ = 0.332, thus ‖w‖1 ≥ 0.332

√
n‖w‖2 for all w in the

subspace generated byH .
Note that whenmn = 1

2 , we getα = 0.332. That is much
larger than the knownα used in [15], which is approximately
0.07 (see Equation (12) in [15]). When applied to the sparse
recovery problem considered in [15], we will be able to
recover any vector with no more than0.0289n = 0.0578m
nonzero elements, which are20 times more than the 1

384m
bound in [15].

IV. EVALUATING THE ROBUST ERROR CORRECTION

BOUND

If the elements in the measurement matrixH are i.i.d. as
the unit real Gaussian random variablesN(0, 1), following
upon the work of Marchenko and Pastur [10], Geman[8] and
Silverstein [9] proved that form/n = δ, as n → ∞, the
smallest nonzero singular value

1√
n
σmin → 1−

√
δ

almost surely asn → ∞.
Now that we have already explicitly boundedα andσmin,

we now proceed to characterizeC. It turns out that our
earlier result on the almost Euclidean property can be used
to computedC.

Theorem 4.1: Suppose ann-dimensional vectorw satisfies
‖w‖1 ≥ α

√
n‖w‖2. Then if for some setK ⊆ {1, 2, ..., n}

with cardinality |K| = k ≤ n,

‖wK‖1
‖w‖1

= β,

thenβ must be a number satisfying

β2

k
+

(1− β)2

n− k
≤ 1

α2n

Proof: Without loss of generality, we let‖w‖1 = 1. Then
by the Cauchy-Schwarz inequality,

‖w‖22 = ‖wK‖22 + ‖wK‖22
≥ (

‖wK‖1√
k

)2 + (
‖wK‖1√
n− k

)2

= (
β2

k
+

(1 − β)2

n− k
)‖w‖21.

At the same time, by the almost Euclidean property,

α2n‖w‖22 ≤ ‖w‖21,
so we must have

β2

k
+

(1− β)2

n− k
≤ 1

α2n

Corollary 4.2: If a nonzeron-dimensional vectorw satis-
fies ‖w‖1 ≥ α

√
n‖w‖2, and for any setK ⊆ {1, 2, ..., n}

with cardinality |K| = k ≤ n, if C‖wK‖1 = ‖wK‖1 for
some numberC ≥ 1, then

k

n
≥ (B + 1− C2)−

√

(B + 1− C2)2 − 4B

2B
, (IV.1)

whereB = (C+1)2

α2 .

Proof: If C‖wK‖1 ≥ ‖wK‖1, we have

‖wK‖1
‖w‖1

=
1

C + 1
.

So by Theorem 4.1,β = 1
C+1 satisfies

β2

k
+

(1− β)2

n− k
≤ 1

α2n
.

This is equivalent to

1
k
n

+
C2

1− k
n

≤ (C + 1)2

α2

Solving this inequality forkn , we get (IV.1).

So for a sparsityk
n , this corollary can be used to find

C such that ‖wK‖1

‖w‖1
= 1

C+1 . Combining these results on
computingσmin, α and C, we can then compute the bound

2(C+1)
σminα(C−1)

√
n = ̟ in Theorem 2.1. For example, when

δ = m
n = 1

2 , we plot the bound̟ as a function ofkn in
Fig. 2
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V. NUMERICAL RESULTS

Experiment 1: We first consider recovering a signal vector
from Gaussian measurements. We generate the measurement
matrixHn×m with i.i.d. N(0, 1) entries and a vectorx′ ∈ Rm

with i.i.d Gaussian entries. Letx = x′/‖x′‖2 be the signal
vector. Letm = 60 andn = 150. We first consider the recover
performance when the number of erroneous measurements is
fixed. We randomly choose twelve measurements and flip the
signs of these measurements. For each measurement, we also
independently add a Gaussian noise fromN(0, σ2). For a
given σ, we apply (II.6) to estimatex using λ from 0 to
13, and pick the bestλ∗ with which the estimation error is
minimized. For eachσ, the result is averaged over fifty runs.
Fig. 3 shows the curve ofλ∗ againstσ. When the number
of measurements with bad data is fixed,λ∗ decreases as the
noise level increases.

We next fix the noise level and consider the estimation
performance when the number of erroneous measurements
changes. Each measurement has a Gaussian noise indepen-
dently drawn fromN(0, 0.52). Let ρ denote the percentage
of erroneous measurements. Givenρ, we randomly choose
ρn measurements, and each such measurement is added with
a Gaussian error independently drawn fromN(0, 52). The
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Fig. 4: λ∗ versusρ for Gaussian measurements

estimation result is averaged over fifty runs. Fig. 4 shows how
the estimation error changes asρ increases for differentλ.
λ = 8 has the best performance in this setup compared with
a large valueλ = 15 and a small valueλ = 0.05.

Experiment 2: We also consider estimating the state of the
power system from available measurements and known system
configuration. The state variables are the voltage magnitudes
and the voltage angles at each bus. The measurements can
be the real and reactive power injections at each bus, and the
real and reactive power flows on the lines. All the measure-
ments are corrupted with noise, and a small fraction of the
measurements contains errors. We would like to estimate the
state variables from the corrupted measurements.

The relationship between the measurements and the state
variables for ak′-bus system can be stated as follows [12]:

Pi =

k′
∑

j=1

EiEjYij cos(θij + δi − δj), (V.1)

Qi =

k′
∑

j=1

EiEjYij sin(θij + δi − δj), (V.2)

Pij = EiEjYij cos(θij + δi − δj)

−E2
i Yij cos θij + E2

i Ysi cos θsi i 6= j, (V.3)

Qij = EiEjYij sin(θij + δi − δj)

−E2
i Yij sin θij + E2

i Ysi sin θsi i 6= j, (V.4)

wherePi andQi are the real and reactive power injection at
busi respectively,Pij andQij are the real and reactive power
flow from busi to busj, Ei andδi are the voltage magnitude
and angle at busi. Yij and θij are the magnitude and phase
angle of admittance from busi to busj, Ysi and θsi are the
magnitude and angle of the shunt admittance of line at busi.
Given a power system, allYij , θij , Ysi andθsi are known.

For ak′-bus system, we treat one bus as the reference bus
and set the voltage angle at the reference bus to be zero. There
arem = 2k′ − 1 state variables with the firstk′ variables for



Fig. 5: IEEE 30-bus test system

the bus voltage magnitudesEi and the restk′ − 1 variables
for the bus voltage anglesθi. Let x ∈ Rm denote the state
variables and lety ∈ Rn denote then measurements of the
real and reactive power injection and power flow. Letv ∈ Rn

denote the noise ande ∈ Rn denote the sparse error vector.
Then we can write the equations in a compact form,

y = h(x) + v + e, (V.5)

whereh(·) denotesn nonlinear functions defined in (V.1) to
(V.4).

An estimate of the state variables,x̂, can be obtained by
solving the following minimization problem,

min
x,z

‖y− h(x) − z‖1 + λ‖z‖2, (V.6)

wherex̂ is the optimal solutionx. λ > 0 is a fixed parameter.
Whenλ → ∞, (V.6) approaches

min
x

‖y − h(x)‖1, (V.7)

and whenλ → 0, (V.6) approaches

min
x

‖y − h(x)‖2. (V.8)

Sinceh is nonlinear, we linearize the equations and apply
an iterative procedure to obtain a solution. We start with the
initial statex0 wherex0

i = 1 for all i ∈ {1, ..., n}, andx0
i = 0

for all i ∈ {n+1, ..., 2n− 1}. In thekth iteration, let∆yk =
y−h(xk−1), then we solve the following convex optimization
problem,

min
∆x,z

‖∆yk −H∆x− z‖1 + λ‖z‖2, (V.9)

whereHn×m is the Jacobian matrix ofh evaluated atxk−1.
Let ∆xk denote the optimal solution∆x to (V.9), then the
state estimation is updated by

xk = xk−1 +∆xk. (V.10)

We repeat the process until∆xk → 0.
We evaluate the performance on the IEEE 30-bus test

system. Fig. 5 shows the structure of the test system. Then the
state vector contains fifty-nine variables. We take one hundred
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measurement including the real and reactive power injection
at each bus and some of the real and reactive power flows on
the lines. We first consider how the estimation performance
changes as the noise level increases when the erroneous
measurements are fixed. The errors of the measurements are
simulated by inverting the sign of the real power injection at
bus 2, bus 3, bus 5, bus 26 and bus 30, and inverting the sign of
the reactive power injection at bus 30. Each measurement also
contains a Gaussian noise independently drawn fromN(0, σ2).
For a fixed noise levelσ, we solve (V.6) by the iterative
procedure using differentλ (from 0.5 to 12). The estimation
performance is measured by‖x∗ − x̂‖2, wherex∗ is the true
state variable and̂x is our estimation. For a fixedσ, we choose
theλ∗ to be the one with which‖x∗− x̂‖2 is minimal among
all theλ’s we consider. The result is averaged over fifty runs.
Fig. 6 shows howλ∗ changes asσ increases from 0 to 0.2.
When the noise level is low, i.e. the measurements basically
only contain errors, then the estimation performance is better
when we use a largerλ. When the noise level is high, a smaller
λ leads to a better performance.

We also study how the estimation performance changes
as the number of erroneous measurements increases. Each
of the one hundred measurements contains random Gaussian
noise independently drawn fromN(0, 0.052). Let ρ denote the
percentage of erroneous measurements with bad data. For fixed
ρ, we randomly choose the setT of erroneous measurements
with cardinality |T | = ρm. Each erroneous measurement
contains an additional Gaussian error independently drawn
from N(0, 0.72). We than calculate the solution̂x of (V.6) and
the estimation error‖x∗−x̂‖2. Fig. 7 shows how the estimation
error changes asρ increases. The results are averaged over fifty
runs. Whenλ is small (λ = 0.5), (V.6) approaches (V.7), and
the estimation error is relatively large ifρ is small, i.e. the
measurements basically contain only noise. Whenλ is large
(λ = 12), (V.6) approaches (V.8), and the estimation error
is relatively large ifρ is large, i.e. the measurements contains
errors besides noise. In contrast, if we chooseλ to be 7 in this
case, the estimation error is relatively small for allρ among
the three choices ofλ.
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Fig. 7: The estimation error versusρ

VI. CONCLUSION

In this paper, we study state estimation through observations
corrupted with both bad data and additive observation noises.
A mixed ℓ1 and ℓ2 convex programming is used to separate
both sparse bad data and additive noises from the observations.
We used the almost Euclidean property of a linear subspace to
provide sharp bounds on this convex programming based state
estimation method. We also give sharp bounds for the almost
Euclidean property of a linear subspace using the “escape-
through-a-mesh” theorem from geometric functional analysis
[5]. We then propose an iterative convex programming based
methods to perform state estimation with bad data detectionin
the nonlinear electrical power network problems. Simulation
results confirm the effectiveness of the algorithms in denoising
and detecting bad data at the same time.
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