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Abstract—In this paper, we consider the problem of state H,we derive a new performance bound for the state estimation
estimation through observations possibly corrupted with mth  error under sparse bad data and additive observation ndises
bad data and additive observation noises. A mixed/; and /5 our analysis, using the “escape-through-a-mesh” theorem f

convex programming is used to separate both sparse bad data g . et L
and additive noises from the observations. Through using ta 98OMetric functional analysisl[5], we are able to signifigan

almost Euclidean property for a linear subspace, we derive a improve on the bounds for the almost Euclidean property
new performance bound for the state estimation error under of a linear subspace, which may be interesting in a more
sparse bad data and additive observation noises. Our main general mathematical setting. Compared with earlier aigly

contribution is to provide sharp bounds on the almost Euclicean on the same optimization problem [0 [11], the analysis is new

property of a linear subspace, using the “escape-through-mesh” . . .
theorem from geometric functional analysis. We also propas and using the almost Euclidean property rather than the résttic

numerically evaluate an iterative convex programming appoach isome_try conditions used iri_[L1], and we are ab!e to give
to performing bad data detections in nonlinear electrical pwer explicit bounds on the error performance, which is sharper

networks problems. than the analysis using the restricted isometry conditions
[11].
. INTRODUCTION Inspired by bad data detection methods for linear systems,

In this paper, we study the problem of state estimatioMe further propose an iterative convex p_rogramming apmoa_c
under both bad data and observation noise. In state estimafi® perform combined bad data detection and denoising in
problems, the observations may be corrupted with abnoymd"onllnear electrical power networks. The static state of an
large measurement errors, called bad data, in additioneo fectric power network can be described by the vector of bus
usual additive observation noise. More specifically, sisepoe yoltage magnltudes and angles in power networks. However,
want to estate the statedescribed by am-dimensional real- in smart grid power networks, the measurement of these
numbered vector, and we makemeasurements, then theséluantities can be corrupted due to errors in the sensors; com
measurements can be written as radimensional vectoy, munication errors in transmitting the measurement resaittd

which is related to the state vector through the measurem@gi/érsarial compromises of the meters. So the state esiimat
equation of power networks needs to detect, identify, and eliminate

y=h(x)+v+e, (1.1) large measurement errots| [1]. [2]. [3]. Sipce the probapili_
of large measurement errors occurring is very small, it is
whereh(x) is a nonlinear function relating the measuremengasonable to assume that bad data are only present in a small
vector to the state vector, andis the vector of measurementfraction of the available meter measurements results. $o ba
noise, ande is the vector of bad data imposed on thata detection in power networks can be viewed as a sparse
measurement. In this paper, we assume thals an m- error detection problem, which shares similar mathemiatica
dimensional vector with i.i.d. zero mean Gaussian eleme@;tﬁuctures as sparse recoveries prob|em in Compressigmgen
of variances®. We also assume thatis a vector with only [4], [11]. However, this problem in power networks has saver
k nonzero entries, and the nonzero entries can take arbitrgﬁ{que properties when compared with ordinary sparse error
real-numbered values, reflecting the nature of bad data. detection problem[]4]. In facth(x) in (D) is a nonlinear
Itis well known that Least Square (LS) method can be usegapping instead of a linear mapping in_[11]. Our iterative
to suppress the effect of observation noise on state esbinsat convex programming based a|gorithm5 work is shown by
In LS method, we try to find a vectot minimizing numerical examples working well in this nonlinear setting.
Compared with([12], which proposed to apglyminimization
ly — h(x)]l2- (12) .
in bad data detection in power networks, our approach offers
However, the LS method generally only works well when ther® better decoding error performance when both bad data and
are no bad date corrupting the observatiog. additive observation noises are present. [13][14] comeile
In this paper, a mixed leagt norm and least square convexstate estimations under malicious data attacks, and faell
programming is used to simultaneously detect bad data ahe problem of state estimation under malicious attacks as a
subtract additive noises from the observations. In ourrétteo hypothesis testing problem by assuming a prior probability
ical analysis of the decoding performance, we assufxg is distribution on the state. In contrast, our approach does not
a linear transformatiod/x with H as ann x m matrix with rely on any prior information on the signal itself, and the
i.i.d. standard zero mean Gaussian entries. Through ukig performance bounds hold for arbitrary state
almost Euclidean property for the linear subspace gertttate  The rest of this paper is organized as follows. In Section


http://arxiv.org/abs/1105.0442v1

M we introduce the convex programming to perform jointve further obtain
bad data detection and denoising, and derive the perforenanc
bound on the decoding error based on the almost Euclidean
property of linear subspaces. In Section I, a sharp bound o Denoting H (x — X) asw, because: is supported on a set

the almost Euclidean property is given through the “escapg- with cardinality|K| < k, by the triangle inequality fof;
through-mesh” theorem. In Sectibn] 1V, we will present esipli norm again,

bounds on the decoding error. In Sectioh V, we introduce our

[H(x = %) +ellr = IVl = [zl <[l

algorithm to perform bad data detection in nonlinear system lelly = W lly + [[wglls = [Ivll = [|z]ls < llef]x.
and present simulation results of its performance in powergg, e have
networks.

—llwl + Iwgll < 12l + IVl <2vne  (11.3)

Il. BAD DATA DETECTION FORLINEAR SYSTEMS )
With Cllwk|1 < [|wzl1, we know

In this section, we will introduce a convex programming

formulation to do bad data detection in a linear systems, and EHWM < —|willi + [[wgli-
give a characterization of its decoding error performaite C+1

linear system, the x 1 observation vector ig = Hx+e+v, Combining this with [(TL.B), we obtain
wherex is the m x 1 signal vector f» < n), e is a sparse C -1

error vector withk nonzero elements; is a noise vector with C+1 [wlli < 2v/ne.

[[v]2 < e. In what follows, we denote the part of any vector ) )
w over any index sek”’ asw . By the almost Euclidean property,/n|w|s < ||w]1, it

We solve the following optimization problem involvinng"OWS: 2(C +1)
optimization variables<* and z, and we then estimate the [wll2 < aC=1)° (1.4)

statex to bex, which is the optimizing value fox*. o )
By the definition of singular values,

min  [ly = Hx" — zl|x, ) )
X ominflx — X[z < [H(x = X)[]2 = [[wll2, ~ (II.5)
subjectto  ||z|]2 <e. (1.1)

so combining[(T.4), we get
We are now ready to give the main theorem which bounds the

decoding error performance d¢f (11.1). Ix — s < 2(C+1) .
Theorem 2.1: Lety, H, x, e andv are specified as above. omina(C — 1)
Suppose that the minimum nonzero singular valueHofis u

omin- Let C be a real number larger thdn and suppose that Note that when there are no sparse errors present, the
every vectorw in the subspace generated by the mattix decoding error bound satisfigisc — x||> < --¢, Theorem
satisfiesC||lw||1 < [[w|1 for any subsety C {1,2,...,n} [2.J shows that the decoding error ¢f (].1) is oblivious to
with cardinality |[K| < k, wherek is an integer, and{ = the presence of bad data, no matter how large in amplitude
{1,2,...,n}\ K. We also assume the subspace generated thgse bad data can be. This phenomenon also observed in
H satisfies th@lmost Euclidean property for a constant < 1, [11] by using the restricted isometry condition for comsies
namely sensing.

avn||wllz < ||wl We remark that, for gively and givere, by strong lagrange
duality theory, the solutionk to ([LI) will correspond to
the solution tox in the following problem [(IT.6) for some
Lagrange duality variable. > 0. As ¢ > 0 increases, the
corresponding\ that produces the same solution owill
correspondingly decrease.

holds for everyw in the subspace generated By
Then the solutiork satisfies
2(C+1)

7{}_“”@(0 — 1)6' (1.2)

[x = x|z <

Proof: Suppose that one optimal solution set[fo {Il.1) is s ly = Hx =zl + Allz]>. (11.6)

(%,2). Since||z||2 < ¢, we have||z||; < /n||z]l2 < /ne.
Sincex* = x andz = v is a feasible solution fo_(ITI1),
then min - [ly — Hx||1,

In fact, when\ — oo, (IL6) approaches

ly — Hx — 2| and when\ — 0, (IL6) approaches
|H(x—%)+e+v—2|
|Hx—x)+e+v—v]

= e[l

min [y — Hx||z2.
X

IN

Thus, [I[6) can be viewed as a weighed version (of
minimization and/, minimization (or equivalently the LS
Applying the triangle inequality t§ H (z —x)+e+v—2|/;, method). We will later use numerical experiments to show



that in order to recover a sparse vector from measuremetatdind an upper bound for the objective function lof (1l1.1).
with both noise and errors, this weighted version outpenfor

both ¢; minimization and the LS method. min maxhTw — ul(z w? — 1) (111.5)
In the next two sections, we will aim at explicitly computing u120u2 20,220 w i=1

% x /n, which will denotew later in this paper. The " n

agbearance of the¢/n factor is to compensate for the energy _“2(2 wi —av/n) + z; Aitwi, (11.6)

scaling of large random matrices and its meaning will berclea

in later context. Next, we will compute explicitly the almoswhere\ is a vector(\y, Az, ..., Ap).

Euclidean property constant First, we maximize[{IIL.B) overlw;, i = 1,2, ...,n for fixed
u1, up and \. By making the derivatives to be zero, the

[1l. BOUNDING THE ALMOST EUCLIDEAN PROPERTY minimizing w; is given by

In this section, we would like to give a quantitative bound w; = W,l <i<n
on the almost Euclidean property constansuch that with ) ) !
high probability (with respect to the measure for the subepa P1ugging this back, we get
generated by the randoifl), a/n||w|2 < ||w|1 holds for n
every vectorw from the subspace generated Hy Here we h'w — m(Z wi —1) (1n.7)
assume that each elementéfis generated from the standard i=1
Gaussian distributionV (0, 1). So the subspace generated by . .
H is a uniformly distributedn — m)-dimensional subspaces _ug(; wi — ay/n) + ; Aiws (In.8)

from the high dimensional geometry.

To ensure that the subspace generated ffdrsatisfies the
almost Euclidean property witlv > 0, we must have the
event that the subspace generated Abydoes not intersect ~Next, we minimize[(lIL.9) overn; > 0. It is not hard to see
the set{w € S" !||w||; < ay/n||w|2}, whereS™! is the the minimizinguj is
Euclidean sphere iR™. To evaluate the probability that this T : 3
event happens, we will need the following “escape-through- u = Vaiz (A 4 hi) ,
mesh” theorem. . . _2 )

Theorem 3.1: [5] Let S be a subset of the unit EucIideanand the corresponding minimized value is
sphere S”~! in R". Let Y be a randomm-dimensional n
subspace oR", distributed uniformly in the Grassmanian with Z (—ug + i + hi)? + av/nus. (111.10)
respect to the Haar measure. LefS) = E(supy,cg(h?w)), i=1
whereh is a random column vector iR™ with i.i.d. N(0,1)

. Z?:l (—uz + N + hi)2

+ w1 + a/nus. (111.9)
4U1

Then, we minimize[(TI.ID) oveA > 0. Givenh anduy >

— _ 1
components. Assume thal(S) < (vn —m —5o2=). Then  4n easy to see that the minimizingis
(Vn=m— g —)—w(s) .
P(Y()S=0)>1-35¢ . W[z b i <
' 0 otherwise

From Theoreni 3]1, we can use the following programming ) . i
to get an estimate of the upper boundugt, S). Because the and the corresponding minimized value is
set{w € S"7!|w|1 < ayv/n|w|z2} is symmetric, without
loss of generality, we assume that the elementh dbllow Z
i.i.d. half-normal distributions, namely the distributidor the
absolute value of a standard zero mean Gaussian randoow if we take anyus, > 0, (IIL.II) serves as an upper
variables. Withh; denoting thei-th element ofh, this is bound for [IIL.8). Since,/- is a concave function, by Jensen’s

1<i<n:h; <us

equivalent to inequality, we have for any givem, > 0,
max Y hiyi (1)  E(sup(h’w) < [B{ Y (u2 — )} + av/nus.
i=1 wes 1<i<nih; <us
subjectto  yp >0,1<i<n (111.2) (111.12)
n Sinceh has i.i.d. half-normal components, the righthand side
> yi<ayvn (.3)  of (LI equals to
i=1
", (3 + Derfa(uz/V2) — v/2 muze=4/2 + aua) Vi,
doyi=1 (I11.4) (I11.13)
i=1

where erfc is the error function.
Following the method froni]7], we use the Lagrange duality One can check thal {II1.13) is convex inp. Given o, we



with cardinality |[K| = k < n,

then 8 must be a number satisfying

: B2 (1-p)? _ 1
5] [ <
k + n—k — a?n
Proof: Without loss of generality, we ldtw||; = 1. Then
by the Cauchy-Schwarz inequality,
0 02 04 / 06 08 1 ||W||§ = HWK”g + ||W?||§
m/n
. - (HWK||1)2 (”Wle)Q
Fig. 1: o* overm/n = NG —
S Cap e T
minimize [[ILI3) overus > 0 and letg(a)/n denote the k
minimum value. Then fron{(Il.12) and (Il.13) we know At the same time, by the almost Euclidean property,
_ T
w(S) = E(stg(h w)) < g(a)v/n. (111.14) o*n|lwl3 < ||lwl?,
Given 6 = 2, we pick the largest* such thatg(a*) < SO Wwe must have
V1 —0. Then asn goes to infinity, it holds that B2 n (1-p)? o
1 k n—k — a’n
S) < g(a* < —-—m— ———). .15
w(S) < g(a")Vin < (V= = gomx).  (I115) .
Then from Theoren{_3l1, with high probabilityw]|; > Corollary 4.2: If a nonzeron-dimensional vectow satis-
o*y/n||lw||z holds for every vectow in the subspace gen-fies [[w|[1 > ay/n|w]2, and for any setk’ C {1,2,...,n}
erated byH. We numerically calculate how* changes over with cardinality |[K| = k < n, if C|lwxk|1 = [[wg]1 for
5 and plot the curve in Fid]1. For example, whér= 0.5, some number’ > 1, then
a* = 0.332, thus||w|y > 0.332y/n||w||2 for all w in the L B 2 2
+1-C*)—+/(B+1-C?)?2—-4B
subspace generated H/ - > ( ) \/2(3 ) , (V1)
Note that when™ = 2, we geta = 0.332. That is much " )
larger than the known used in [15], which is approximately where B = (0;1) .
0.07 (see Equation (12) in_[15]). When applied to the sparse Proof: If C' > llw—Il1. we have
recovery problem considered in_|15], we will be able to ' Iwiclh 2 gl
recover any vector with no more than0289n = 0.0578m lwgly 1
nonzero elements, which ag® times more than thei;m Hle C+1
bound in [15]. So by Theoren 4113 = c+1 satisfies
V. EVALUATING THE ROBUST ERRORCORRECTION
B> (1-p) 1
BouND - + - < ——.
If the elements in the measurement matfixare i.i.d. as "o "
the unit real Gaussian random variabl®%0, 1), following This is equivalent to
upon the work of Marchenko and Pasturl[10], Gernan[8] and 1 o2 (C+1)2
Silverstein [9] proved that form/n = §, asn — oo, the -+ = < 5
smallest nonzero singular value o -4 a
%Umin S 1=+ Solving this inequality for%, we get [TV.1).
[ |

almost surely as — oo.

Now that we have already explicitly boundedand omin, So for a sparsity—, this corollary can be used to find

we now proceed to characteriz€. It turns out that our C such that ”rK”Hl = o1 Combining these results on
earlier result on the almost Euclidean property can be us%QInCpUtlngUmm, o and C, we can then compute the bound
to computedC. Wg)l)\/ﬁ = w in Theorem[2Z1. For example, when

Theorem 4.1: Suppose am-dimensional vectow satisfies § = &=t = % we plot the boundw as a function ofg in

[lwll1 > a+/n||w|2. Then if for some sek’ C {1,2,....,n} Fig.[2
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estimation result is averaged over fifty runs. [Elg. 4 shows ho
the estimation error changes pasincreases for differeni.

A = 8 has the best performance in this setup compared with
a large value\ = 15 and a small value\ = 0.05.

Experiment 2: We also consider estimating the state of the
power system from available measurements and known system
configuration. The state variables are the voltage magestud
and the voltage angles at each bus. The measurements can
be the real and reactive power injections at each bus, and the
real and reactive power flows on the lines. All the measure-
ments are corrupted with noise, and a small fraction of the
measurements contains errors. We would like to estimate the
state variables from the corrupted measurements.

The relationship between the measurements and the state
variables for ak’-bus system can be stated as follows| [12]:

0 0.5 1 15 2 25 3
a

Fig. 3: \* versuso for Gaussian measurements

k/
V. NUMERICAL RESULTS

P, = Z EiEj}/ij COS(@U +; — 5j), (Vl)
Experiment 1: We first consider recovering a signal vector j=1
from Gaussian measurements. We generate the measurement
matrix H™*™ with i.i.d. N(0,1) entries and a vectot’ € R™ K
with i.i.d Gaussian entries. Let = x’/||x'||» be the signal Qi = ZEiEjYij sin(6;; + 6; — 6;), (V.2)
vector. Letm = 60 andn = 150. We first consider the recover j=1
performance when the number of erroneous measurements is
fixed. We randomly choose twelve measurements and flip the Pij = EiE;Yi;cos(0i; + 6; — 65)
signs of these measurements. For each measurement, we also —EfYZ-j cosB;; + E?Y,cosby i # j, (V.3)
independently add a Gaussian noise fraw0,02). For a
given o, we apply [IL6) to estimatex using A from O to Qij = EiE;Yijsin(0;j + 06 —9;)
13, and pick the besk* with which the estimation error is CE2Y;sin6y; + BV, sinfy i #j, (V.4)

minimized. For eaclr, the result is averaged over fifty runs.
Fig. [3 shows the curve ok* againstc. When the number where P, andQ; are the real and reactive power injection at
of measurements with bad data is fixed, decreases as thebus: respectivelyP;; and@;; are the real and reactive power
noise level increases. flow from busi to busj, E; andd; are the voltage magnitude
We next fix the noise level and consider the estimaticand angle at bus. Y;; and§;; are the magnitude and phase
performance when the number of erroneous measuremeangle of admittance from busto busj, Y,; andd,; are the
changes. Each measurement has a Gaussian noise indep@gnitude and angle of the shunt admittance of line atibus
dently drawn fromN(0,0.52). Let p denote the percentageGiven a power system, al;;, 0;;, Ys; andf,; are known.
of erroneous measurements. Givenwe randomly choose For ak’-bus system, we treat one bus as the reference bus
pn measurements, and each such measurement is added wiitth set the voltage angle at the reference bus to be zerce Ther
a Gaussian error independently drawn fra(0,52). The arem = 2k’ — 1 state variables with the firgt’ variables for
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the bus voltage magnitudds; and the rest&’ — 1 variables

for the bus voltage angle®. Let x € R™ denote the state measurement including the real and reactive power injectio
variables and ley € R™ denote then measurements of theat each bus and some of the real and reactive power flows on
real and reactive power injection and power flow. ket R™ the lines. We first consider how the estimation performance
denote the noise and € R™ denote the sparse error vectorchanges as the noise level increases when the erroneous
Then we can write the equations in a compact form, measurements are fixed. The errors of the measurements are
simulated by inverting the sign of the real power injectidn a

y=hx)+v+te, (V:5) bus 2, bus 3, bus 5, bus 26 and bus 30, and inverting the sign of
whereh(-) denotesn nonlinear functions defined i (V.1) tothe reactive power injection at bus 30. Each measurememt als
V2). contains a Gaussian noise independently drawn i, o).
An estimate of the state variables, can be obtained by For a fixed noise leveb, we solve [V.6) by the iterative
solving the following minimization problem, procedure using different (from 0.5 to 12). The estimation
. performance is measured fjx* — x||2, wherex* is the true
min |y — 2(x) — zll1 + Allz]2; (V.6)  state variable angt is our estimation. For a fixed, we choose

the \* to be the one with whicljx* — x||2 is minimal among
all the \'s we consider. The result is averaged over fifty runs.
Fig. [ shows how\* changes a% increases from 0 to 0.2.

wherex is the optimal solutiorx. A > 0 is a fixed parameter.
When \ — oo, (V.6) approaches

min |y — h(x)|1, (v.7) When the _noise level is low, i.e._ the_ measurements pasically
x only contain errors, then the estimation performance igebet
and when\ — 0, (\.6) approaches when we use a larger. When the noise level is high, a smaller

A leads to a better performance.

We also study how the estimation performance changes
Sinceh is nonlinear, we linearize the equations and appfs the number of erroneous measurements increases. Each

an iterative procedure to obtain a solution. We start with tiPf the one hundred measurements contains random Gaussian

initial statex” wherex) = 1 forall i € {1,...,n}, andz? = 0 noise independently drawn frofd (0, 0.052). Let p denote the

min iy = hGo)z (v8)

foralli € {n+1,...,2n—1}. In the kth iteration, letAy* = percentage of erroneous measurements with bad data. Fabr fixe
y —h(x*1), then we solve the following convex optimizatiorw, We randomly choose the sétof erroneous measurements
problem, with cardinality |T| = pm. Each erroneous measurement
. . contains an additional Gaussian error independently drawn
o [AY" — HAx — z[1 + Al|z]|2, (V:9)  from N(0,0.72). We than calculate the solutignof (V6) and

)

o ) ) - the estimation errgfx*—x||2. Fig.[4 shows how the estimation
where /"™ is the Jacobian matrix of evaluated ak"™ .  error changes gsincreases. The results are averaged over fifty

state estimation is updated by the estimation error is relatively large jf is small, i.e. the
xF — xF1 & Axk. (V.10) measurements basically contain only noise. Wheisllarge

(A = 12), (V.6) approached (M8), and the estimation error

We repeat the process untiix” — 0. is relatively large ifp is large, i.e. the measurements contains

We evaluate the performance on the IEEE 30-bus te=mtrors besides noise. In contrast, if we choage be 7 in this
system. Figl.b shows the structure of the test system. Then tase, the estimation error is relatively small for alamong
state vector contains fifty-nine variables. We take one heohd the three choices of.
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VI. CONCLUSION

In this paper, we study state estimation through obsemstio
corrupted with both bad data and additive observation 8oise
A mixed ¢; and /> convex programming is used to separate
both sparse bad data and additive noises from the obsarsatio
We used the almost Euclidean property of a linear subspace to
provide sharp bounds on this convex programming based state
estimation method. We also give sharp bounds for the almost
Euclidean property of a linear subspace using the “escape-
through-a-mesh” theorem from geometric functional arialys
[5]. We then propose an iterative convex programming based
methods to perform state estimation with bad data deteation
the nonlinear electrical power network problems. Simaolati
results confirm the effectiveness of the algorithms in deingi
and detecting bad data at the same time.
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