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Oil Reservoir Production Optimization using Optimal Control

Carsten Völcker, John Bagterp Jørgensen and Erling Halfdan Stenby

Abstract—Practical oil reservoir management in-
volves solution of large-scale constrained optimal con-
trol problems. In this paper we present a numerical
method for solution of large-scale constrained optimal
control problems. The method is a single-shooting
method that computes the gradients using the ad-
joint method. We use an Explicit Singly Diagonally
Implicit Runge-Kutta (ESDIRK) method for the in-
tegration and a quasi-Newton Sequential Quadratic
Programming (SQP) algorithm for the constrained
optimization. We use this algorithm in a numerical
case study to optimize the production of oil from
an oil reservoir using water flooding and smart well
technology. Compared to the uncontrolled case, the
optimal operation increases the Net Present Value of
the oil field by 10%.

I. Introduction

Petroleum reservoirs are subsurface formations of
porous rocks with hydrocarbons trapped in the pores.
Initially, the reservoir pressure may be sufficiently large
to push the fluids to the production facilities. However,
as the fluids are produced the pressure declines and
production reduces over time. When the natural pressure
becomes insufficient, the pressure must be maintained
artificially by injection of water. Conventional technolo-
gies for recovery leaves more than 50% of the oil in the
reservoir. Wells with adjustable downhole flow control
devices coupled with modern control technology offer
the potential to increase the oil recovery significantly.
[1] introduces optimal control of smart wells. In these
applications, downhole sensor equipment and remotely
controlled valves are used in combination with large-scale
subsurface flow models and gradient based optimization
methods in a Nonlinear Model Predictive Control frame-
work to increase the production and economic value
of an oil reservoir [2]–[6]. Wether the objective is to
maximize recovery or some financial measure like Net
Present Value, the increased production is achieved by
manipulation of the well rates and bottom-hole pressures
of the injection and production wells. The optimal water
injection rates and production well bottom-hole pressures
are computed by solution of a large-scale constrained
optimal control problem.
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Fig. 1. Schematic view of horizontal wells in the water flooding
problem [1].

In this paper, we focus on maximizing the economical
value of an oil field and describe the gradient based
method to compute the optimal control strategy. An Ex-
plicit Singly Diagonally Implicit Runge-Kutta (ESDIRK)
method with an adaptive step size control is used for
computationally efficient solution of the model [7], [8].
The gradients are computed by the adjoint method [9].
The adjoint equations associated with the integration
scheme are solved by integrating backwards in time.
The necessary information for the adjoint computation
is computed and stored during the forward solution of
the model. The backward adjoint computation assembles
this information to compute the gradients [9], [10]. We
demonstrate the optimal control strategy using a 2-
dimensional water-flooding example as illustrated in Fig.
1.

The paper is organized as follows. Section II briefly
introduces the two phase flow model. Section III states
the general constrained optimal control problem using
a novel representation of the system dynamics. The
numerical methods for the constrained optimal control
problem are described in Section IV. Section V describes
specific details related to the objective function and the
constraints for the water flooding production optimiza-
tion problem. Section VI describes a numerical case study
illustrating the method. Conlcusions are presented in
Section VII.

II. Two-Phase Flow Model

In this section we briefly state the governing equations
of an oil reservoir model. We consider isothermal two-
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phase flow of oil and water in a porous media. We
assume complete immiscibility of the reservoir fluids,
zero capillary pressure and we neglect gravity effects.
Let P = P (t, r) be the pressure in the reservoir and
S = S(t, r) be the saturation of water, as function of time
t ≥ 0 and position r ∈ Ω ⊂ R3 with Ω being the domain
of the reservoir. Let Cw = Cw(P, S) and Co = Co(P, S)
be the mass concentrations of water and oil, respectively.
Then the mass balances for water and oil in the reservoir
are expressed by

∂

∂t
Cw= −∇ · Fw +Qw (1a)

∂

∂t
Co = −∇ · Fo +Qo (1b)

Fw = Fw(P, S) and Fo = Fo(P, S) are the fluxes of water
and oil through the porous media. The source/sink terms
of water and oil are denoted Qw = Qw(P, S) and Qo =
Qo(P, S). They describe the flow rate of water from the
injection wells into the reservoir and the flow rates of oil
and water from the reservoir into the production wells.
[11]–[13] provide more detailed descriptions of the model.

III. Continuous-Time Optimal Control

Process models are based on conservation of mass,
energy and momentum. It is desirable to preserve such
properties upon numerical integration in time. Such
problems related to flow in porous media can be rep-
resented by the system of differential equations [13]

d

dt
g(x(t)) = f(x(t), u(t)) (2)

with the initial condition x(t0) = x0. The left-hand side
g(x(t)) are the properties conserved, x(t) are the system
states, u(t) are the manipulated variables, while the
right-hand side f(x(t), u(t)) has the usual interpretation.
Considering (2) we formulate the water flooding problem
as a continuous time Bolza problem

min
[x(t),u(t)]

tf
t0

∫ tf

t0

J(t, x(t), u(t))dt (3a)

s.t.
d

dt
g(x(t)) = f(x(t), u(t)), x(t0) = x0 (3b)

umin ≤ u(t) ≤ umax (3c)

− u∆
min ≤

d

dt
u(t) ≤ u∆

max (3d)

The algorithm developed for solution of this problem
is suitable for production optimization of oil reservoirs.
We use a zero-order-hold parameterization for u(t). This
implies that the constraints (3d) should be interpreted
as the movement constraints (6d).

IV. Numerical Methods

In this section, we describe a single-shooting algorithm
for solution of (3). An ESDIRK method is used for the
integration, the gradients are computed using the adjoint
method, and the constrained optimization is performed
using a quasi-Newton SQP method.

To convert the infinite-dimensional problem (3) into
a numerically tractable finite-dimensional problem, we
divide the temporal domain [t0, tf ] into K control steps
and each control step into Nk time steps for the inte-
gration of the differential equations. We then define a
set of control step indices Ki = {i, i + 1, . . . ,K − 1}
and a set of time step indices Nk = {0, 1, . . . , Nk − 1}
for all k ∈ K0. The number of control steps is known
in advance due to the zero-order-hold parametrization
of the manipulated variables. A control step k ∈ K0

is defined as an interval between the times tnk=0 and
tnk=Nk

. Note that tn0=0 = t0 and tnK−1=NK−1 = tf .
For a given control interval k, the number of time steps
are not known in advance as we use an adaptive step
length controller in the numerical integrator [7], [8]. This
indexing of the control steps and the time steps are
illustrated in Fig. 2.

Using the ESDIRK12 scheme for temporal dis-
cretization of (2), we can compute the trajectory
{{xnk+1}Nk−1

nk=0 }
K−1
k=0 as the solution of the system of

difference equations [13]

g(xnk+1) = g(xnk
)− f(xnk+1, uk)hnk

(4)

in which x(tnk
) = xnk

and u(tnk
) = uk for nk ∈ Nk and

k ∈ K0. For notational convenience we define the residual
function

Rnk+1(xnk+1, xnk
, uk) =

g(xnk+1)− g(xnk
)− f(xnk+1, uk)hnk

= 0
(5)

for nk ∈ Nk and k ∈ K0. The continuous-time optimal
control problem (3) can be formulated as the following
discrete-time optimal control problem

min
{{xnk+1}

Nk−1
nk=0 ,uk}K−1

k=0

K−1∑
k=0

Nk−1∑
nk=0

Jnk
(xnk

, uk) (6a)

s.t. Rnk+1(xnk+1, xnk
, uk) = 0 (6b)

umin ≤ uk ≤ umax (6c)

− u∆
min ≤ ∆uk ≤ u∆

max (6d)

where ∆uk = uk − uk−1 and

Jnk
(xnk

, uk) =
∫ tnk+1

tnk

J(x(t), uk)dt, nk ∈ Nk, k ∈ K0

(7)

A. Single-Shooting Optimization
The discrete-time optimal control problem (6) can be

solved using single-shooting, multiple-shooting, and the
simultaneous method. Reservoir models are large-scale
and the number of states are easily in the order of
magnitude of 105 − 106 for realistic problems.

To keep the dimension of the optimization problem
small and to be able to use adaptive temporal step
size, we use the single-shooting method in this paper. In
the single-shooting method, the manipulated variables,
u, are fixed at each iteration and used to solve the
difference equations (6b) numerically. Knowledge of the
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Fig. 2. The zero order hold parametrization and the relation between the control steps and the time steps. For a given time step tnk in
a given control step k the optimal control problem can be described by the system states xnk and the control settings uk.

initial state, x0, the manipulated variables, {uk}K−1
k=0 , and

the requirement that the systems dynamics are satisfied
determines the states {{xnk+1}Nk−1

nk=0 }
K−1
k=0 . In practical

computations, the system constraints (6b) are satisfied
by solving (5), i.e. by doing a system simulation. In this
way, a single-shooting method for (6) can be stated as
the optimization problem

min
{uk}K−1

k=0

ψ({uk}K−1
k=0 , x0) (8a)

s.t. umin ≤ uk ≤ umax (8b)

− u∆
min ≤ ∆uk ≤ u∆

max (8c)

with the objective function

ψ({uk}K−1
k=0 , x0) ={

K−1∑
k=0

Nk−1∑
nk=0

Jnk
(xnk

, uk) :

Rnk+1(xnk+1, xnk
, uk) = 0, nk ∈ Nk, k ∈ K0

} (9)

B. Sequential Quadratic Programming

We solve the reduced problem (8) using sequential
quadratic programming (SQP) with line-search and mod-
ified BFGS approximations, B, of the Hessian of the
Lagrangian [14]. In each iteration, we solve the convex
quadratic program

min
∆u

1
2
∆uTB∆u+∇uψ

T ∆u (10a)

s.t. ∇uc(u)T ∆u ≥ −c(u) (10b)

in which u = [u0, u1, . . . , uK−1]T . The optimal solution
of (10), ∆u = {∆uk}K−1

k=0 , combined with a line-search
method based on Powell’s exact penalty function are used
to determine the next iterate

u(i+1) = u(i) + α∆u(i) (11)

α is the line search parameter.

C. Gradient Computation by the Adjoint Method

In computing the search direction, i.e. solving (10),
we must compute the gradient ∇uk

ψ. The system states
in dynamic optimization problems are dependent on the

control variables, in the sense that any past change of
the control variables has an influence on all subsequent
system states. Consequently, the gradient information of
(9) is not directly accessible. The necessary information
for computing ∇uk

ψ is obtained during the simulation
step at each optimization iteration in the single-shooting
approach. The adjoint method uses this information
efficiently to compute the gradients.

Assume that the current iterate, u(i), satisfies the input
constraints (8b-8c). The adjoint method can be derived
using parts of the first order necessary conditions and the
Lagrangian [9]

L({{xnk+1}Nk−1
nk=0 , uk, {λnk+1}Nk−1

nk=0 }
K−1
k=0 ) =

K−1∑
k=0

Nk−1∑
nk=0

[Jnk
(xnk

, uk)−

λT
nk+1Rnk+1(xnk+1, xnk

, uk) ]

(12)

When the Lagrange multipliers (adjoint variables)
{{λnk+1}Nk−1

nk=0 }
K−1
k=0 and the state variables

{{xnk+1}Nk−1
nk=0 }

K−1
k=0 satisfy certain parts of the KKT

conditions, we have

ψ({uk}K−1
k=0 ) ={

L({{xnk+1}Nk−1
nk=0 , uk, {λnk+1}Nk−1

nk=0 }
K−1
k=0 ) :

Rnk+1(xnk+1, xnk
, uk) = 0, nk ∈ Nk, k ∈ K0

} (13)

such that we can compute the sensitivity ∇uk
ψ as the

sensitivity ∇uk
L. The KKT condition corresponding to

the state derivative of (12) yields

∇xnk
L =∇xnk

Jnk
(xnk

, uk)−
∇xnk

Rnk+1(xnk+1, xnk
, uk)λnk+1−

∇xnk
Rnk

(xnk
, xnk−1, uk)λnk

= 0
(14)

for nk ∈ Nk and k ∈ K0. Substituting the definition of
the residuals (5) into (14) and taking derivatives gives[

∇xnk
g(xnk

)−∇xnk
f(xnk

, uk)hnk−1

]
λnk

=

∇xnk
Jnk

(xnk
, uk) +∇xnk

g(xnk
)λnk+1

(15)

from which we can compute the adjoint variables λnk

marching backwards. The Lagrange multiplier at the
final time is λNK−1 = 0 since the cost-to-go function is
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zero. λNK−1 = 0 is used to initialize the backward march
for computation of the adjoint variables λnk

. Special
attention must be given when computing λNk−1 at the
transition between uk−1 and uk for k ∈ K1. This is
because the first term and the second term on the right-
hand side in (14) both belong to control step uk, while
the third term belongs to control step uk−1.

The partial derivatives of (12) with respect to the
manipulated variables are

∇uk
L =∇uk

L+∇uk
Jnk

(xnk
, uk)−

∇uk
Rnk+1(xnk+1, xk, uk)λnk+1

(16)

for k ∈ K0. Using (5) and ψ = L we arrive at the
following expression for ∇uk

ψ

∇uk
ψ = ∇uk

L =∇uk
L+∇uk

Jnk
(xnk

, uk)+
∇uk

f(xnk+1, uk)hnk
λnk+1

(17)

for k ∈ K0. Consequently, the gradients ∇uψ may be
computed using (17) in combination with solution of the
adjoint equations (15) marching backwards.

V. Water Flooding Production Optimization

The objective of oil reservoir management is to maxi-
mize the economic value of the oil reservoir. Essentially,
we want to produce as much oil as possible while keeping
the operational cost at a minimum. We do this by
maximizing the Net Present Value (NPV). Consequently
the stage cost J(t) = J(t, x(t), u(t)) in (3) becomes

J(t) = −e−dt

 ∑
j∈Npro

(ropQo,j(t)− rwpQw,j(t))

−
∑

j∈Ninj

rwiQw,j(t)

 (18)

The factor e−dt accounts for the time value of capital.
The terms contributing to J(t) are the value of the
produced oil, the cost of separating water from the
produced oil, and the cost of water injection. rop is the
oil price, rwp is the water separation cost, and rwi is
the water injection cost. Qo,j(t) is the oil production
and Qw,j(t) is the water production at production wells,
j ∈ Npro, at time t. Qw,j(t) is water injection rate as the
water injectors, j ∈ Ninj . d is the continuous discount
rate (cost of capital per unit time).

For water flooding using multiple injectors and pro-
ducers, the well rates and pressures are adjusted by
the optimal control problem (3) such that the NPV is
maximized [1], [5].

The inequality constraints in (3) are bound constraints
(3c) and rate-of-movement constraints (3d). The bound
constraints corresponds to constraints on the water injec-
tion rates at the injectors and the bottom hole pressures
(BHPs) at the production wells. The lower bounds on the
water injection rates are zero, while the upper bound is
computed such that no more than PVmax pore volumes

TABLE I

Reservoir properties.

Symbol Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (at 1 atm) 800 kg/m3

ρw Water density (at 1 atm) 1000 kg/m3

co Oil compressibility 10−5 Pa−1

cw Water compressibility 10−5 Pa−1

µo Oil viscosity (dynamic) 1 cP
µw Water viscosity (dynamic) 1 cP
Sor Residual oil saturation 0.15 -
Swc Connate water saturation 0.20 -
kro,wc End-point rel. perm., oil 0.8 -
krw,or End-point rel. perm., water 0.6 -
no Corey exponent, oil 2.0 -
nw Corey exponent, water 1.5 -
Pinit Initial reservoir pressure 200 atm
Sinit Initial water saturation 0.3 -

of water are injected over the time horizon considered,
[t0, tf ]. These bound constraints implies that we will
implicitly satisfy

0 ≤
K−1∑
k=0

Nk−1∑
nk=0

Ninj∑
j=1

Qwi
nk,jhnk

≤ PVmax (19)

The reservoir fluids are trapped inside the pores of a
porous medium. The total void space of a reservoir is de-
fined by the fraction (the porosity) of the porous medium
that is not occupied by rock. Ideally we would replace
and thus produce all the reservoir fluids by injecting
one PV of water into the reservoir. The BHP’s in the
production wells are restricted to be lower than the initial
pressure of the reservoir. The lower bound of the BHP’s
is chosen such that the pressure in the well is high enough
to push the produced fluids to the production facilities.
The rate-of-change constraints of both the injection rates
and BHP’s are chosen such that the controller is able to
change e.g. the injection rate from maximum to minimum
within a predefined number of control steps.

VI. Numerical Case Study

In this section, we apply our algorithm for the con-
strained optimal control problem (3) to maximize the Net
Present Value of a horizontal 2D reservoir using water
flooding and smart well technology. The permeability
field of the reservoir is illustrated in Fig. 3 [1]. The
reservoir dimensions are 450 × 450 × 10 m and it is
discretized into 45 × 45 × 1 grid blocks. One horizontal
injector (white squares at x = 5 m) and one horizontal
producer (white circles at x = 445 m) are divided into
45 segments each. With this setup each grid block that
is penetrated by a well represents a well segment. Table
I lists the geological and fluid properties of the reservoir.
The economical data are listed in Table II [2] [5]. The
discount rate is zero, d = 0 [4]. Table III provides the
constraints of the injection rates and the BHP’s as well
as the maximum allowed number of PV’s to be injected
over the period of production.
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Fig. 3. Permeability field (mDa) with two high permeable streaks,
45 injector segments (white squares at x = 5 m) and 45 producer
segments (white circles at x = 445 m) ( [1]).

TABLE II

Economic data.

Symbol Description Value Unit
rop Oil price 283,0 $/m3

rwp Cost of water separation 31,5 $/m3

rwi Cost of water injection 5,0 $/m3

d Discount rate 0 -

We apply two different production strategies. In the
first approach, we use fixed injection rates and fixed
BHP’s. In this case, 2 PV’s are injected over a period
of 728 days (2 years). In the second approach, we apply
optimized well rates and pressures that we update every
28 days (4 weeks). This strategy leads to 1.00 PV injected
over the optimal production period of 374 days. Fig. 4(a)
illustrates the injected pore volumes as function of time.
Fig. 4(b) illustrates that the recovery factor (produced oil
related to the initial mass of oil in the reservoir) and the
water cut (produced oil related to the total mass of pro-
duced reservoir fluids) as function of time. Fig. 5 shows
the NPV as function of the time in which we develop
the reservoir. Without control, the optimal development
period is 484 days. In the case with optimized water
injections and BHPs, the optimal development period
is 374 days. NPV increases by approximately 10% by

TABLE III

Controller settings.

Symbol Description Value Unit
Qwi

min Min. injection rate 0 m3/day
Qwi

max Max. injection rate 50 m3/day
BHPmin Min. BHP in producers 150 atm
BHPmax Max. BHP in producers 200 atm
∆Qwi

min Max. rate of change -3.85 m3/day
∆Qwi

max Max. rate of change 3.85 m3/day
∆BHPmin Max. rate of change -3.85 atm
∆BHPmax Max. rate of change 3.85 atm
PVmax Max. PV’s allowed 4 -
T period of production 728 days
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Fig. 5. NPV over 728 days of production. Red curve: Fixed
injection rates and BHP’s. Blue curve: Optimized injection rates
and BHP’s.

adjusting the water injections and BHPs compared to the
uncontrolled case with a development period of 484 days.
The recovery factor corresponding to optimal operation
in the controlled case is 65%. In the uncontrolled case,
the optimal recovery factor is 63%. The corresponding
optimal water cuts are 62% in the controlled case and
72% in the uncontrolled case. Thus, the 10% increase
in NPV for the controlled case is due to 2% increased
oil recovery, a 10% decrease in produced water, and a
reduction in injected water from 1.33 PV to 1.00 PV.

Fig. 7 illustrates the optimal water injection rates and
the optimal BHPs for the controlled case. The water
injection rates are increased in the injectors located
at regions with low permeabilities. Similarly, the water
injection rates are decreased for the injectors located in
areas with high permeability. The BHPs are adjusted
such that the back pressures are increased at locations
with high water breakthrough. Fig. 8 illustrates the
corresponding oil saturations of the reservoir at time 50,
125, 200, 374 days for the optimally controlled case. Fig.
6 shows the oil saturations for the uncontrolled case after
484 days of production.

VII. Conclusion

We have implemented a numerical method for solution
of large-scale constrained optimal control problems (3).
The implementation uses a novel formulation of the
system dynamics that is relevant to describe flow in
porous media. We use Explicit Singly Diagonally Implicit
Runge-Kutta (ESDIRK) methods for the integration
along with adaptive temporal step sizes. The optimiza-
tion is based on single-shooting, the SQP optimization
algorithm with line-search and BFGS approximations of
the Hessian, and the adjoint method for computation of
the gradients.

We use this algorithm to maximize the Net Present
Value of an oil reservoir case study. In this case study,
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Fig. 4. Production data over 728 days of production. Red: Fixed injection rates and BHP’s. Blue: Optimized injection rates and BHP’s.
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Fig. 7. Injection rates and BHP’s over 728 days of production, updated each 28 days. The injectors and producers are depicted in Figure
3.

we use water flooding to produce the oil. The developed
large-scale constrained optimal control algorithm com-
putes the optimal profiles of water injection rates and
the bottom hole pressures. Compared to the uncontrolled
case, the Net Present Value in the controlled case in-
creases by 10%. This figure demonstrates a significant
economic potential of applying smart well technology
along with constrained optimal control in oil reservoir
management.
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(a) 0.14 PV injected after 50 days.
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(b) 0.41 PV injected after 125 days.
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(c) 0.64 PV injected after 200 days.
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(d) 1.00 PV injected after 374 days.

Fig. 8. Oil saturations after 50, 125, 200 and 374 days of production using optimized injection rates and BHP’s.
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Fig. 6. Oil saturation 484 days of production using fixed injection
rates and BHP’s.
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