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Abstract— This paper studies the effect of power scheduling
and line impedances on the damping of a power network. We
relate the damping of a network with the algebraic connectivity
of a state dependent Laplacian. Via implicit function theorem,
we further characterize its dependence on network parameters.
This allows us to derive several updating directions that can
locally improve the damping. The analysis also provides some
interesting insight. For example, improving connectivity, by
adding lines for instance, may not be beneficial in terms of
damping.

I. INTRODUCTION

The stability of electrical power networks is one of the
major concerns of every utility company. When a blackout
occurs, the economic impact can be valued from hundreds
of millions to several billion dollars [11]. Therefore, it is
important to make sure that the operating point of the
network is as good as possible. One suitable measure of what
“good” means is the value of the rate of convergence, i.e. the
damping, of the network.

Several models with different levels of details have been
proposed to study the dynamical behaviors of power net-
works. In general, these models are classified into two main
categories: network reduction models and network preserving
models; see [3] for a fairly complete review of them. As the
names suggest, only the later preserves the real topology
of the network and can be used to capture several network
dependent behaviors of the system.

In this paper we study the effect of network topology and
parameters on the damping, i.e. the dominant eigenvalue,
of the network preserving model introduced in [1]. We
first relate the damping with the algebraic connectivity of
a state dependent weighted Laplacian [2]. This evidences
the interplay between damping and network topology. Then,
we use implicit function theorem [12] to explore the depen-
dence of the algebraic connectivity on network parameters.
More specifically, we derive how power scheduling and line
impedances affect the operating point of the network and
predict the net effect of these changes on the algebraic
connectivity. With these results, we provide updating rules
that can improve the damping of a power network. The
analysis further provides us some insights. For example,
improving connectivity, by adding lines for instance, may
not improve the damping.

The rest of the paper is organized as follows. Section II
describes the network preserving model introduced in [1],
summarizing its assumptions. Section III relates the damping
of a power network with the second smallest eigenvalue of a

state dependent weighted Laplacian. We then characterize the
dependence of the eigenvalue, a.k.a. algebraic connectivity,
of this Laplacian in term of its weights in Section IV,
and derive updating directions that improve the damping
of a network in IV-A and IV-B. Numerical examples are
presented in Section V and we conclude in Section VI.

II. NETWORK PRESERVING MODEL

For the Bergen-Hill (BH) model introduced in [1], con-
sider a power network composed of n buses and m genera-
tors, where each bus i can potentially have attached a load,
a generator, or both. The bus interconnection is modeled by
lossless transmission lines connecting buses i and j with
constant reactance jxij . Whenever xij > 0 we say that the
buses i and j are neighbors, and denote it by i ∈ Nj or
j ∈ Ni. See Figure 1(a) for an illustration of a sample power
network with four buses and two generators.

(a) Real Power Network (b) Equivalent Network

Fig. 1. Power Network Representations

Each generator i is assumed to have a constant internal
voltage magnitude |Vi| and transient reactance jxii. This
assumption allows us to substitute the generator with a
constant voltage internal bus and a lossless transmission line
(with reactance jxii). Thus by transforming impedances in
admittances (i.e. yij = 1/jxij) we obtain an equivalent
representation of the network shown in Figure 1(b).

The state of each generator is completely described by the
generator’s phase φi and frequency deviation ωi = φ̇i. The
dynamics are modeled by the swing equation

Miφ̈i +Diφ̇i = Pmi − Pei , ∀i ∈ G

where Mi and Di are the generator’s inertia and damping,
Pmi

is the mechanical power, Pei is the electrical real power
that the network is demanding from the generator and G is
the set of generator buses.



The aggregated load of each bus i is modeled by constant
reactive power Qdi and frequency dependent real power
Pdi(φ̇i) = Pdi + Diφ̇i, ∀i ∈ L, with L being the set of
load buses.

Then, under these assumptions, the dynamic behavior of
[1] can be compactly described by

Mφ̈+Dφ̇ = −B
(
f(b) ◦ sin(BTφ)

)
+ P, (1)

where (a ◦ b)i = aibi is the Hadamard product between the
vectors a and b, and (f(b))ij = |Vi| |Vj | bij is the maximum
instantaneous power flow between i and j. |Vi| is the voltage
magnitude at bus i and bij is the imaginary part of the
ijth element of the bus admittance matrix Ybus [15]. The
diagonal matrices M and D represent the generators’ inertia,
generators’ damping and loads’ frequency coefficients, i.e.

(M)ij =

{
Mi, if i = j i ∈ G,
0 o.w.,

(D)ij =

{
Di if i = j,
0 o.w.,

we will use Dmax, Dmin and Mmax to denote the nonzero
extreme values D and M can reach. The vector P ∈ Rm+n

is the power injection at each bus, i.e.

(P )i =

{
Pmi

∀i ∈ G
−Pdi ∀i ∈ L .

And the matrix B ∈ R(m+n)×(m+n)(m+n−1) is the incidence
matrix of the complete graph Km+n = (V, Ek) defined for
each bus i ∈ V = G ∪ L and each edge e ∈ Ek as B(i, e)
equal 1 if i is the head of e, −1 if i is the tail of e, and 0
otherwise.

Note that although an orientation is implicit in the defi-
nition of B, equation (1) is independent of the orientation
used. Also, by definition the range of B is the ker(1Tm+n)
where 1m+n is the vector of all ones of dimension m + n,
i.e. 1Tm+nB = 0T(m+n)(m+n−1).

Remark 1: The matrix B as defined here does not capture
(alone) the topology of the network. It is the conjunction of
B and b = (bij) that captures the topology since bij > 0
if and only if (i, j) represent a line of the extended power
network graph G = (V, E), i.e. iff ij ∈ E . In this way the
addition of a line does not change the dimension of B.

III. EFFECT OF TOPOLOGY

The damping of (1) can be locally estimated by computing
the eigenvalues of the Jacobian Jφ∗ of the linearized version
of (1) around a given equilibrium (φ∗, φ̇∗ = 0),

Mδφ̈+Dδφ̇+ L(w(φ∗))δφ = 0, (2)

where the matrix L(w(φ∗)) := Bdiag[w(φ∗)]BT repre-
sents the weighted Laplacian of the graph G with weights
wij(φ

∗) = |Vi| |Vj | bij cos(φ∗j − φ∗i ), and captures several
topological properties of the network (see e.g. [2]).

When (φ∗, 0) is stable, L(w(φ∗)) is positive semidefinite
with, under generic conditions, only one zero eigenvalue
ν1(L(w(φ∗))) with eigenvector 1m+n. This implies that the
smallest eigenvalue of (2), λ1, is zero. The existence of this
zero eigenvalue is due to the rotational symmetry of the
system, sin(BT (φ+ 1m+n)) = sin(BTφ).

If Di � Mi, it is possible to approximate (1) by setting
M = 0 [5]. Then, (2) becomes a first order system and the
damping can be upper-bounded by,

<[λ2] ≤ − cos(α∗)
ν2(L(w(φ∗)))

Dmax
, (3)

where α∗ := ∠(D1,1) is the angle between vectors D1 and
1; we use <[·] and =[·] to denote the real and imaginary part
of a complex element.

Equation (3) suggests a correlation between <[λ2] and
the algebraic connectivity ν2(L(w(φ∗))); however, a priori
this relation seems to be only valid when Di � Mi. The
problem is that when Di 6� Mi, the computation of the
eigenvalues of (2) is usually done by introducing the state
variables δω = δφ̇ and interpreting (2) as a first order linear
system of dimension 2m + n. This approach hides the rich
symmetry inherent to M , D and L(w(φ∗)) and makes the
generalization of (3) hard.

In this paper we use a more elegant approach to relate
the damping of (1) with ν2(L(w(φ∗))). Using Matrix Poly-
nomial Theory [8], we show that the when the network is
close to a bifurcation [4] (3) still holds. This approach is
summarized next.

Instead of solving the linear eigenvalue problem of finding
pairs (λi, vi) ∈ C × C2m+n such that (λiI − Jφ∗)vi = 0,
we solve the quadratic eigenvalue problem [16] of finding
(λi, xi) ∈ C × Cm+n such that Q(λi)xi = 0 with Q(λ) =
Mλ2 + Dλ + L(w(φ∗)). It is easy to show that Q(λ) has
2(m + n) eigenvalues and that if λi is an eigenvalue of
Jφ∗ , it is also an eigenvalue of Q(λ) [8]. The difference
in the number of eigenvalues is due to the fact that M
has n zero eigenvalues, which is reflected in Q(λ) with the
presence of n infinite eigenvalues. However, since we are
only concerned about the dominant eigenvalue of (2), these
infinite eigenvalues are not of interest to us.

This is a more natural formulation, since now the sym-
metry of M , D and L(w(φ∗)) implies that if xi is a right
eigenvector of Q(λ) then its complex conjugate x̄i is a left
eigenvector, and given the finite pair (λi, xi) the following
relationship holds

λi =

−
l(xi)
d(xi)

if m(xi) = 0,
−d(xi)±

√
d(xi)2−4m(xi)l(xi)

2m(xi)
otherwise.

(4)

where m(x) = x̄TMx, d(x) = x̄TDx and l(x) =
x̄TL(w(φ∗))x. Notice that since M ≥ 0, D > 0 and
L(w(φ∗)) ≥ 0, m(x), d(x) and l(x) are real and for any
x 6= 0, m(x) ≥ 0, d(x) > 0 and l(x) ≥ 0.

The next theorem extends (3) to some cases where M 6= 0.
Theorem 1 (Damping Bound): When (1) is close to a

bifurcation, the dominant eigenvalue λ2 of (2) is real and
bounded by (3).

Proof: Since the system is assumed to be close to a
bifurcation, then <[λ2] must close to the imaginary axis, i.e.
|Re[λ2]| � Dmin

Mmax
. Thus, it follows from (4) that λ2 is real

(=[λ2] = 0).



We first show that <[λ2] ≤ − l(x2)
d(x2)

, which is trivial from
(4) if m(x2) = 0. Thus consider the case of m(x2) > 0.
Since =[λ2] = 0, (4) implies d(x2)2 > 4m(x2)l(x2). Thus,
using the fact that

√
1− x ≤ 1− 1

2x and (4), we get

<[λ2] ≤
−d(x2) + d(x2)

(
1− 1

2 ( 4m(x2)l(x2)
d(x2)2

)
)

2m(x2)
= − l(x2)

d(x2)
.

Therefore, whenever =[λ2] = 0, <[λ2] = λ2 ≤ − l(x2)
d(x2)

.
The main problem with this bound is that since l(x) is

not positive definite, it cannot be readily lower bounded by
a positive value. We therefore need to use the fact that x2 is
an eigenvector of Q(λ) to obtain an appropriate lower bound
on l(x2).

Since x2 is an eigenvector and λ2 6= 0, then it follows
from 1Tm+nLφ∗ = 0 and Q(λ2)x2 = 0 that,

0 = 1Tm+nQ(λ2)x2 = 1Tm+n(λ22M + λ2D + Lφ∗)x2

= 1Tm+n(λM +D)x2.

So, when λ2 � Dmin

Mmax
, x2 ∈ ker[1Tm+nD] and it follows

that the biggest angle that x2 can achieve with respect to
ker(1T ) is α∗ and therefore l(x2) ≥ cos(α∗) ‖x2‖2 > 0.
Finally, since d(x2) ≤ Dmax ‖x2‖2, we get (3).

IV. IMPROVING DAMPING OF A STABLE EQUILIBRIUM

This section introduces some updating rules on the net-
work parameters that improve the damping of a power
network close to a saddle node bifurcation. In order to do
this we need to know how the second smallest eigenvalue
ν2(L(w)) =: ν2(w) of the Laplacian L(w) changes with w.
There are several nice properties of ν2(w) when L(w) is
positive semidefinite, see e.g. [2]. In particular, ν2(w) is a
concave function of w and homogeneous of degree one , i.e.
ν2(λw) = λν2(w).

Here we are interested in computing ∂
∂wij

ν2(w) whenever
it is possible. If for given w the multiplicity of ν2(w) is
one, ∇wν2(w) is defined and can be readily computed by
expressing ν2(w) as

ν2(w) = min
{x:‖x‖=1,〈x,1〉=0}

xTL(w)x

= min
x

max
µ1,µ2

W (w, x, µ1, µ2)

= x∗(w)TL(w)x∗(w)

where W (w, x, µ1, µ2) is the Lagrangian and x∗(w) is the
unique eigenvector corresponding to ν2(w). Then, we can
use envelope theorem [14] to compute

∂ν2(w)

∂wij
= (x∗(w)i − x∗(w)j)

2.

Thus, the gradient can be compactly expressed
as ∇wν2(w) = px∗(w), where px∗(w) :=
diag[BTx∗(w)x∗(w)TB]1m+n, and diag[A] is the matrix
operator that projects all the off diagonal elements to zero
and keeps the diagonal untouched. Similarly, we will use

diag[a] to denote the operator that converts the vector a in
a diagonal matrix.

When ν2(w) is not simple, there are several x∗(w) that
solve this optimization problem. In this case ∇wν2(w)
is in general not defined, but it is easy to show that
for every x∗(w), px∗(w) ∈ ∂+wν2(w), where ∂+g(w) :=
{p|〈p, w̄ − w〉 ≥ g(w̄) − g(w)} is the concave super-
differential of the function g(w). Although in general there
is no guarantee of local improvement for every direction p ∈
∂+g(w), subgradient-type iterations can still reach the global
optimum. See [10] for general treatment of subdifferentials
of eigenvalues of symmetric matrices.

One interesting consequence of this derivation is that
(px∗(w))ij ≥ 0. This implies that ν2(w) is a nondecreasing
function of its elements and the only way to reduce its value
is by decreasing some wij . The main difficulty in our case is
that the weights wij depend on the parameters of the system
in a nonlinear manner, i.e. wij = |Vi| |Vj | bij cos(φ∗j − φ∗i )
where φ∗ is a solution to

F (φ, b, P ) = −Bf(b) ◦ sin(BTφ) + P = 0, (5)

for fixed line inductances b and fixed power schedule P .
Therefore, it is not clear at first sight how changes on b and
P affect the corresponding w.

Throughout this paper we assume that the network is in a
stable steady state such that the corresponding φ∗ is stable
and L(w(φ∗)) has only one zero eigenvalue, i.e. ν2(w) >
0. In the rest of this section we show how changing the
network parameters affects ν2(w), and how these changes
are influenced by the topology of the network and the current
operating point.

A. Improving Damping via Power Scheduling

In this subsection we show how power injection changes
can locally improve the damping of a power network. We
assume fixed line inductances b = (bij) and full control of P
within the interior of feasible closed set BP = {P : Pmin ≤
P ≤ Pmax}. That is, we can not only change the values
of Pgi , but we can also change, up to a certain extent, Pdi .
Although this used to be an unreasonable assumption, the
introduction of renewable energy sources in the distribution
part of the network can enable the design of coordination
mechanism that produce the desired changes on Pd.

Since b is assumed to be fixed, F (φ, b, P ) = F (φ, P ), and
thus every equilibria φ∗ satisfies, F (φ∗, P ) = 0. Here, we
will focus on how small changes in the power scheduling
P + δP affect the position of the equilibrium φ∗ + δφ.

Although in principle δφ, δP ∈ Rm+n, only a subspace
of Rm+n is of interest. Since the network is lossless,
〈P,1m+n〉 = 0 is always satisfied. Hence we will only
consider changes δP in the power schedule s.t. δP ∈
ker (1T ). Similarly, since w(φ∗ + κ1) = w(φ∗) ∀κ ∈ R,
we will restrict our attention on changes δφ ∈ ker (1T ). The
relationship between δP and δφ is then captured by

F (φ∗ + δφ, P + δP ) = F (δφ, δP ) = 0. (6)



Theorem 2 (Controllability of δφ w.r.t δP ): Given an
equilibrium point φ∗ of (1) with simple zero eigenvalue,
and a power scheduling P satisfying (5). There exists a
neighborhood of P , BP ⊂ P + ker(1T ), and function
δφ(δP ) such that F (δφ(δP ), δP ) = 0, ∀δP ∈ BP − P
and δφ(BP ) is open relatively to ker(1Tm+n), i.e. δφ is fully
controllable by δP .

Moreover, d(δφ)
d(δP ) can be computed as

d(δφ)

d(δP )
= L(w(φ∗))†, (7)

where L(w(φ∗))† is the Moore-Penrose pseudoinverse of the
weighted Laplacian L(w(φ∗)).

Proof: The proof of this theorem comes
from applying implicit function theorem (see e.g.
[12]) on a properly defined function. Notice that
∂
∂φF (φ, P ) = −L(w(φ∗)), and ∂

∂P F (φ, P ) = Im+n.
Thus, since L(w(φ∗)) is singular, implicit function theorem
cannot be directly applied. However, our restriction of
(δφ, δP ) to the subspace ker(1Tm+n)× ker(1Tm+n) does not
suffer this problem.

Since both vectors are restricted to ker(1Tm+n), by choos-
ing orthonormal basis of column vectors {Tj} we can write

δφ = Tx and δP = Ty

where the matrix T = [Tj ] ∈ R(m+n)×(m+n−1) is a
full column rank matrix, TTT = Im+n−1 and TTT =
Im+n − 1

m+n1m+n1
T
m+n is the orthogonal projection onto

ker(1Tm+n).
Now, define H(x, y) = TTF (Tx, Ty). Since 1Tm+nB =

0, F (φ, P ) ∈ ker(1Tm+n) provided P ∈ ker(1Tm+n). Thus,
F (Tx, Ty) = 0 if and only if H(x, y) = 0, and H
represents the same constraints as F when restricted to
ker(1T ) × ker(1T ). Differentiating H with respect x and
y gives

∂

∂x
H(x, y) = −TTL(w(φ∗))T , and

∂

∂y
H(x, y) = Im+n−1.

Since ∂
∂xH(x, y) is nonsingular, by implicit function the-

orem, there exist neighborhoods of 0, Bx and By , and a
function x(y) such that H(x(y), y) = 0 and x(By) = Bx.

Finally, since H(x(y), y) = 0 on By ,

d

dx
H(x(y), y) =

∂

∂x
H(x(y), P )

dx(y)

dy
+

∂

∂y
H(x(y), y)

= −TTL(w(φ∗))T
dx(y)

dy
+ Im+n−1 = 0

and therefore dx
dy = (TTL(w(φ∗))T )−1.

Defining δφ(δP ) = Tx(TT δP ) and BP = P +TBy gives
the first statement of the theorem. Equation (7) follows from
d(δφ)
d(δP ) = T dx

dyT
T , (TTL(w(φ∗))T )−1 = TTL(w(φ∗))†T

and the fact that TTTL(w(φ∗))†TTT = L(w(φ∗))†.
Using (7) we can predict how small changes of the power

affects the position of the equilibria, which in turn affects
the value of w(φ) (recall wij = |Vi| |Vj | bij cos(φj − φi)).

Thus, we can use Theorem 2 to compute the changes of the
weights δw as

δw =
dw

d(δP )
δP =

(
∂w

∂φ

)(
d(δφ)

d(δP )

)
δP

=
(
−diag[f(b) ◦ sin(BTφ∗)]BT

) (
L†(w(φ∗))

)
δP

=: A(φ∗)δP

where we use the fact
∂w

∂φ
= −diag[f(b) ◦ sin(BTφ)]BT . (8)

Ideally, we would like to move δw ∈ span(px∗(w(φ∗))),
but we are constrained only to the subspace span(A(φ∗)).
Therefore, a natural alternative is to set δP such that
the corresponding δw is the orthogonal projection of
px∗(w) onto span(A(φ∗)). This is done by setting δP =
γA(φ∗)†px∗(w(φ∗)) which gives

δw = A(φ∗)δP = γA(φ∗)A(φ∗)†px∗(w(φ∗)).

Remark 2: Although the updating direction of this section
modifies the values of Pg := (Pgi)

T and Pd := (Pdi)
T , it is

possible to constraint its actions only to Pg by projecting
δP onto S = ker(1Tm+n) ∩ BP and setting Pd,min =
Pd,max = Pd in the definition of BP . We denote this
projection operation onto the set S by ΠS [·], and similarly
use ΠBP

[·] to define the analogous for BP . Note that ΠBP
[·]

enforces the constraint of BP .

B. Improving Damping via Impedance Adaption

In this subsection we study how the changes of line
inductances bij , due to changes in the network topology or
the utilization of FACTS devices [9], can affect the operating
point of a network. Using this result, we will show that it is
possible that the addition of a line can weaken the condition
of the network, i.e. ν2(w) is reduced.

In order to measure how changes of δb affect the weights
w, we proceed in the same manner as in Theorem 2. We
start by computing the total derivative dw

d(δb) which is given
by

dw

d(δb)
=
∂w

∂b
+
∂w

∂φ

d(δφ)

d(δb)
. (9)

Since w(φ, b) = f(b) ◦ cos(BTφ), it is straightforward to
show that

∂w

∂b
= diag[v ◦ cos(BTφ)] (10)

where the elements of the vector v are (v)ij = |Vi| |Vj | if
ij ∈ E and (v)ij = 0 otherwise.

The main difficulty again rises in computing how the
changes of b, i.e. δb, affect φ∗. This is assessed in the next
theorem. As in Theorem 2, we restrict our attention to δφ ∈
ker(1T ). We do not impose any restriction on δb besides the
physical ones, i.e. b+ δb ∈ {b : bmin ≤ b ≤ bmax}.

Theorem 3 (Controllability of δφ w.r.t δb): Given an
equilibrium point φ∗ of (1) with a simple zero eigenvalue,
and bus admittances b such that F (φ∗, b) = 0. There exists



a neighborhood of b, Bb, a neighborhood of φ∗, Bφ∗ , and
function δφ(δb) such that

F (δφ(δb), δb) = 0, ∀δb ∈ Bb − b

and φ∗ + δφ(b + Bb) = Bφ∗ . Moreover, d(δφ)
d(δP ) can be

computed as

d(δφ)

d(δb)
= −L(w(φ∗))†Bdiag[v ◦ sin(BTφ∗)]. (11)

Proof: Since δφ is restricted to ker(1T ) we can use the
same transformation T to transform F (δφ, δb) = 0 into

H(x, δb) = TTF (Tx, δb) = 0.

The Jacobian ∂
∂xH(x, δb) = −TTL(w(φ∗))T remains the

same, and

∂

∂b
H(x, δb) = −TTBdiag[v ◦ sin(BTφ)].

Therefore, since ∂
∂xH(x, δb) is nonsingular, we can apply

again implicit function theorem to get

dx(δb)

d(δb)
= −

(
∂

∂x
H(x, δb)

)−1
∂

∂b
H(x, δb).

Equation (11) follows after reverting the change of variables.

Now substituting (8), (10) and (11) into (9) we obtain

dw

db
= diag[v ◦ cos(BTφ∗)]

+ diag[f(b) ◦ sin(BTφ)](R)diag[v ◦ sin(BTφ∗)]

where R = BTL(w)†B is the effective resistance matrix
when the weights w are interpreted as conductances. Rij,kl
represents the voltage difference between nodes i and j when
a current of 1 unit is injected in k and subtracted from l [7].
Notice that in our case, it is possible that some of the weights
wij are negative. Nonetheless L(w) is positive semi-definite
with a single zero eigenvalue and therefore Rij,ij > 0. Thus,
we can still interpret Rij,ij as a measure of the distance
between i and j.

Clearly, using this notion of distance, one can see how
ν2(w) is more sensitive to changes between nodes “farther”
away. However, what is interesting here is the appearance of
the term cos(φ∗j − φ∗i ). When the phase difference between
certain buses is larger than π

2 we have cos(φ∗j −φ∗i ) < 0 and
therefore and increment on bij could possibly affect nega-
tively the weight wij(φ). This phenomenon is numerically
illustrated in Section V-B.

V. NUMERICAL EXAMPLES

In this section, two examples are provided to illustrate the
findings of the previous sections.

A. Generator Power Scheduling

Consider a network of 3 generator buses, and 3 load buses
disposed in a complete graph configuration as in Figure 2
with bii = 10 for every generator, b12 = b13 = 2 and b23 =
10 . The initial power scheduling is

Pd = [ 4 6 8 ]T , and Pg = [ 7.994 3.006 7 ]T .

Assume also that the power demanded in each bus is fixed
and cannot be modified by the algorithm.

Fig. 2. 3 Bus Power Network

We now see how the operating point of the network can
be locally improved. One possible equilibrium φ∗ that solves
(6), for given P , is

φ∗ = [ .513 0 .032 .808 .097 .279 ]Tπ.
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The values of P chosen are such that the system is very
close to the bifurcation. Figure 3 shows the evolution of
<[λ2], the corresponding upper bound provided in Theorem
1 and the location of the 4th closest eigenvalues to the
imaginary axis. We can see that when the system is close
to a bifurcation, not only our proposed adaptation is more
effective, but also the upper bound computed is tighter.

Initially <[λ2] = λ2 is very close to zero, but it gradually
decreases until a new eigenvalue with non zero imaginary
part becomes dominant. This is captured in the right graph
of Figure 3. After this point, <[λ2] = − d(xi)

2m(xi)
and the

dependence on the algebraic connectivity is lost.

B. Adding or Removing a Line

In this example each generator bus gi is generating Pgi =
P̄ and each load bus demands a power of Pdi = P̄ with
P̄ = 5. We assume bij = 10 ∀ij.

Among the possible equilibria for this network we study
the equilibrium φ∗2 given by (φ∗2)di = 2π

6 (i − 1), i ∈
{1, . . . , 6} and (φ∗2)gi = (φ∗2)di + arcsin( 1

2 ).



Fig. 4. 6 Bus Power Network

In this case, when we add a line between d1 and d4, i.e. we
increase σbd1d4 (in red) from σ = 0 to σ = 1, dwdb becomes

dw

dbd1d4
= −ed1d4 < 0,

since φ∗d4 − φ∗d1 = π, and therefore 〈∇ν2, δw〉 ≤ 0. In fact,
since x∗(w(φ∗2))d1 6= x∗(w(φ∗2))d4, we can see in Figure 5
that ν2(w(φ∗2)) decreases.
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Fig. 5. Effect of Adding bd1d4

Here we can also see that although <[λ2] and
ν2(L(w(φ∗))) might not be in general correlated, when the
system is close to a bifurcation, i.e. ν2(L(w(φ∗))) and <[λ2]
are close to zero, the changes on ν2(L(w(φ∗))) directly
affect <[λ2]. Moreover, Figure 5 shows how our upper-bound
is only valid in this specific case.

VI. CONCLUSION AND FUTURE WORK

This paper studies the effect of power scheduling and
line impedances on the damping of a power network. Using
implicit function theorem, we derive the dependence of
the operating point on network parameters. This allows
us to design several updating directions for the network
parameters that locally increase the damping and discover
some interesting behaviors, for instance, adding a line can
degrade the damping and removing a line can improve it.

There are several directions along which this work can be
extended. For example, recent developments in the context
of coupled oscillators [13] have related the instability of
equilibria with specific partitions of the network. It would be
interesting and useful to see to what extent those results are

related and can be applied to the subject of this paper. Addi-
tionally, there has been increasing interest in trying to include
stability in the computation of the Optimal Power Flow.
This is usually implemented by adding extra constraints to
the minimization problem [6]. The results presented here
unveil the tradeoff between stability and cost efficiency, and
can potentially be useful to include stability as part of the
optimization objective.

Acknowledgments: The research is supported by NSF under
CCF-0835706.

REFERENCES

[1] A.R. Bergen and D.J. Hill. A structure preserving model for power
system stability analysis. IEEE Transactions on Power Apparatus and
Systems, PAS-100(1):25–35, Jan. 1981.

[2] Stephen Boyd. Convex optimization of graph laplacian eigenvalues.
In International Congress of Mathematicians, pages 1311–1319.

[3] Chia-Chi Chu. Transient dynamics of electric power systems : direct
stability assessment and chaotic motions. PhD thesis, Electrical and
Computer Engineer, Cornell University, 1996.

[4] I. Dobson. Observations on the geometry of saddle node bifurcation
and voltage collapse in electrical power systems. Circuits and Systems
I: Fundamental Theory and Applications, IEEE Transactions on,
39(3):240 –243, mar. 1992.

[5] F. Dorfler and F. Bullo. Transient stability analysis in power networks
and synchronization of non-uniform Kuramoto oscillators. pages 930–
937, Baltimore, MD, June 2010.

[6] D. Gan, R.J. Thomas, and R.D. Zimmerman. Stability-constrained
optimal power flow. Power Systems, IEEE Transactions on, 15(2):535
–540, may. 2000.

[7] Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective
resistance of a graph. SIAM Rev., 50(1):37–66, 2008.

[8] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials.
Academic Press, 1982.

[9] D.J. Gotham and G.T. Heydt. Power flow control and power flow stud-
ies for systems with facts devices. Power Systems, IEEE Transactions
on, 13(1):60 –65, feb. 1998.

[10] J.-B. Hiriart-Urruty and A.S. Lewis. The clarke and michel-
penot subdifferentials of the eigenvalues of a symmetric ma-
trix. Computational Optimization and Applications, 13:13–23, 1999.
10.1023/A:1008644520093.

[11] Sung-Kwan Joo, Jang-Chul Kim, and Chen-Ching Liu. Empirical
analysis of the impact of 2003 blackout on security values of u.s.
utilities and electrical equipment manufacturing firms. Power Systems,
IEEE Transactions on, 22(3):1012 –1018, aug. 2007.

[12] John M. Lee. Intorduction to Smooth Manifolds. Springer, 2003.
[13] E. Mallada and A. Tang. Synchronization of phase-coupled oscillators

with arbitrary topology. In Proceedings of American Control Confer-
ence, 2010.

[14] A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic
theory. Oxford University Press New York, 1995.

[15] Hadi Saadat. Power System Analysis. McGraw Hill, 2nd edition
edition, 2002.

[16] Francoise Tisseur and Karl Meerbergen. The quadratic eigenvalue
problem. SIAM Review, 43(2):235–286, 2001.


