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We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion
fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics
in a society consisting of two types of agents: regular agents, who update their beliefs according to information
that they receive from their social neighbors; and stubborn agents, who never update their opinions and
might represent leaders, political parties or media sources attempting to influence the beliefs in the rest of
the society. When the society contains stubborn agents with different opinions, the belief dynamics never
lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely,
the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate
random vector.

The structure of the graph describing the social network and the location of the stubborn agents within
it shape the opinion dynamics. The expected belief vector is proved to evolve according to an ordinary
differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain
on the graph with absorbing states corresponding to the stubborn agents, and hence to converge to a
harmonic vector, with every regular agent’s value being the weighted average of its neighbors’ values, and
boundary conditions corresponding to the stubborn agents’ beliefs. Expected cross-products of the agents’
beliefs allow for a similar characterization in terms of coupled Markov chains on the graph describing the
social network.

We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing
time of the Markov chain on the graph describing the social network and the relative size of the linkages to
stubborn agents vanishes as the population size grows large, a condition of homogeneous influence emerges,
whereby the stationary beliefs’ marginal distributions of most of the regular agents have approximately equal
first and second moment.
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1. Introduction Disagreement among individuals in a society, even on central questions that
have been debated for centuries, is the norm; agreement is the rare exception. How can disagree-
ment of this sort persist for so long? Notably, such disagreement is not a consequence of lack
of communication or some other factors leading to fixed opinions. Disagreement remains even as
individuals communicate and sometimes change their opinions.

Existing models of communication and learning, based on Bayesian or non-Bayesian updating
mechanisms, typically lead to consensus provided that communication takes place over a strongly
connected network (e.g., Smith and Sorensen [46], Banerjee and Fudenberg [7], Acemoglu, Dahleh,
Lobel and Ozdaglar [2], Bala and Goyal [6], Gale and Kariv [25], DeMarzo, Vayanos and Zwiebel
[19], Golub and Jackson [26], Acemoglu, Ozdaglar and ParandehGheibi [3], Acemoglu, Bimpikis
and Ozdaglar [1]), and are thus unable to explain persistent disagreements. One notable exception
is provided by models that incorporate a form of homophily mechanism in communication, whereby
individuals are more likely to exchange opinions or communicate with others that have similar
beliefs, and fail to interact with agents whose beliefs differ from theirs by more than some given
confidence threshold. This mechanism was first proposed by Axelrod [5] in the discrete opinion
dynamics setting, and then by Krause [30], and Deffuant and Weisbuch [18], in the continuous
opinion dynamics framework. Such belief dynamics typically lead to the emergence of different
asymptotic opinion clusters (see, e.g., [34, 10, 14]), but fail to explain persistent opinion fluctuations
in the society, as well as the role of influential agents in the opinion formation process. In fact, the
latter phenomena have been empirically observed and reported in the social science literature, see,
e.g., the stream of work originated with Kramer’s paper [29] documenting large swings in voting
behavior within short periods, and the sizable literature in social psychology (e.g., Cohen [13])
documenting changes in political beliefs as a result of parties or other influential organizations.

In this paper, we investigate a tractable opinion dynamics model that generates both long-run
disagreement and opinion fluctuations. We consider an inhomogeneous stochastic gossip model of
communication wherein there is a fraction of stubborn agents in the society who never change
their opinions. We show that the presence of stubborn agents with competing opinions leads to
persistent opinion fluctuations and disagreement among the rest of the society.

More specifically, we consider a society envisaged as a social network of n interacting agents (or
individuals), communicating and exchanging information. Each agent a starts with an opinion (or
belief)Xa(0)∈R and is then activated according to a Poisson process in continuous time. Following
this event, she meets one of the individuals in her social neighborhood according to a pre-specified
stochastic process. This process represents an underlying social network. We distinguish between
two types of individuals, stubborn and regular. Stubborn agents, which are typically few in number,
never change their opinions: they might thus correspond to media sources, opinion leaders, or
political parties wishing to influence the rest of the society, and, in a first approximation, not getting
any feedback from it. In contrast, regular agents, which make up the great majority of the agents
in the social network, update their beliefs to some weighted average of their pre-meeting belief
and the belief of the agent they met. The opinions generated through this information exchange
process form a Markov process whose long-run behavior is the focus of our analysis.

First, we show that, under general conditions, these opinion dynamics never lead to a consensus
(among the regular agents). In fact, regular agents’ beliefs fail to converge almost surely, and keep
on fluctuating in an ergodic fashion. Instead, the belief of each regular agent converges in law
to a non-degenerate stationary random variable, and, similarly, the vector of beliefs of all agents
jointly converge to a non-degenerate stationary random vector. This model therefore provides a
new approach to understanding persistent disagreements and opinion fluctuations.
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Second, we investigate how the structure of the graph describing the social network and the
location of the stubborn agents within it shape the behavior of the opinion dynamics. The expected
belief vector is proved to evolve according to an ordinary differential equation coinciding with the
Kolmogorov backward equation of a continuous-time Markov chain on the graph with absorbing
states corresponding to the stubborn agents, and hence to converge to a harmonic vector, with every
regular agent’s value being the weighted average of its neighbors’ values, and boundary conditions
corresponding to the stubborn agents’ beliefs. Expected cross-products of the agents’ beliefs allow
for a similar characterization in terms of coupled Markov chains on the graph describing the social
network. The characterization of the expected stationary beliefs as harmonic functions is then used
in order to find explicit solutions for some social networks with particular structure or symmetries.

Third, in what we consider the most novel contribution of our analysis, we study the behavior
of the stationary beliefs in large-scale highly fluid social networks, defined as networks where the
product between the fraction of links incoming in the stubborn agent set times the mixing time of
the associated Markov chain is small. We show that in highly fluid social networks, the expected
value and variance of the stationary beliefs of most of the agents concentrate around certain values
as the population size grows large. We refer to this result as homogeneous influence of stubborn
agents on the rest of the society—meaning that their influence on most of the agents in the society
is approximately the same. The applicability of this result is then proved by providing several
examples of large-scale random networks, including the Erdös–Rényi graph in the connected regime,
power law networks, and small-world networks. We wish to emphasize that homogeneous influence
in highly fluid societies needs not imply approximate consensus among the agents, whose beliefs
may well fluctuate in an almost uncorrelated way. Ongoing work of the authors is aimed at a deeper
understanding of this topic.

Our main contribution partly stems from novel applications of several techniques of applied
probability in the study of opinion dynamics. In particular, convergence in law and ergodicity of
the agents’ beliefs is established by first rewriting the dynamics in the form of an iterated affine
function system and then proving almost sure convergence of the time-reversed process [20]. On
the other hand, our estimates of the behavior of the expected values and variances of the stationary
beliefs in large-scale highly fluid networks are based on techniques from the theory of Markov
chains and mixing times [4, 31], as well as on results in modern random graph theory [21].

In addition to the aforementioned works on learning and opinion dynamics, this paper is related
to some of the literature in the statistical physics of social dynamics: see [11] and references therein
for an overview of such research line. More specifically, our model is closely related to some work by
Mobilia and co-authors [36, 37, 38], who study a variation of the discrete opinion dynamics model,
also called the voter model, with inhomogeneities, there referred to as zealots: such zealots are
agents which tend to favor one opinion in [36, 37], or are in fact equivalent to our stubborn agents
in [38]. These works generally present analytical results for some regular graphical structures (such
as regular lattices [36, 37], or complete graphs [38]), and are then complemented by numerical
simulations. In contrast, we prove convergence in distribution and characterize the properties of
the limiting distribution for general finite graphs. Even though our model involves continuous belief
dynamics, we will also show that the voter model with zealots of [38] can be recovered as a special
case of our general framework.

Our work is also related to work on consensus and gossip algorithms, which is motivated by
different problems, but typically leads to a similar mathematical formulation (Tsitsiklis [48], Tsit-
siklis, Bertsekas and Athans [49], Jadbabaie, Lin and Morse [28], Olfati-Saber and Murray [42],
Olshevsky and Tsitsiklis [43], Fagnani and Zampieri [24], Nedić and Ozdaglar [39]). In consensus
problems, the focus is on whether the beliefs or the values held by different units (which might
correspond to individuals, sensors, or distributed processors) converge to a common value. Our
analysis here does not focus on limiting consensus of values, but in contrast, characterizes the
stationary fluctuations in values.
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The rest of this paper is organized as follows: In Section 2, we introduce our model of interaction
between the agents, describing the resulting evolution of individual beliefs, and we discuss two
special cases, in which the arguments simplify particularly, and some fundamental features of the
general case are highlighted. Section 3 presents convergence results on the evolution of agent beliefs
over time, for a given social network: the beliefs are shown to converge in distribution, and to
be an ergodic process, while in general they do not converge almost surely. Section 4 presents a
characterization of the first and second moments of the stationary beliefs in terms of the hitting
probabilities of two coupled Markov chains on the graph describing the social network. Section 5
presents explicit computations of the expected stationary beliefs and variances for some special
network topologies. Section 6 provides bounds on the level of dispersion of the first two moments
of the stationary beliefs: it is shown that, in highly fluid networks, most of the agents have almost
the same stationary expected belief and variance. Section 7 presents some concluding remarks.

Basic Notation and Terminology We will typically label the entries of vectors by elements of
finite alphabets, rather than non-negative integers, hence R

I will stand for the set of vectors with
entries labeled by elements of the finite alphabet I. An index denoted by a lower-case letter will
implicitly be assumed to run over the finite alphabet denoted by the corresponding calligraphic
upper-case letter (e.g.

∑

i will stand for
∑

i∈I). For any finite set J , we use the notation 1J

to denote the indicator function over the set J , i.e., 1J (j) is equal to 1 if j ∈ J , and equal
to 0 otherwise. For a matrix M ∈ R

I×J , MT ∈ R
J×I will stand for its transpose, ||M || for its

2-norm. For a probability distribution µ over a finite set I, and a subset J ⊆ I we will write
µ(J ) :=

∑

j µj. If ν is another probability distribution on I, we will use the notation ||µ−ν||TV :=
1
2

∑

i |µi−νi|= sup{|µ(J )− ν(J )| : J ⊆ I} , for the total variation distance between µ and ν. The
probability law (or distribution) of a random variable Z will be denoted by L(Z). Continuous-time
Markov chains on a finite set V will be characterized by their transition rate matrix M ∈ R

V×V ,
which has zero row sums, and whose non-diagonal elements are nonnegative and correspond to
the rates at which the chain jumps from a state to another (see [41, Ch.s 2-3]). If V (t) and V ′(t)
are Markov chains on V, defined on the same probability space, we will use the notation Pv( · ),
and Pvv′( · ), for the conditional probability measures given the events V (0) = v, and, respectively,
(V (0), V ′(0)) = (v, v′). Similarly, for some probability distribution π over V (possibly the stationary
one), Pπ( · ) :=

∑

v,v′ πvπv′Pvv′( · ) will denote the conditional probability measure of the Markov
chain with initial distribution π, while Ev[ · ], Ev,v′ [ · ], and Eπ[ · ] will denote the corresponding
conditional expectations. For two non-negative real-valued sequences {an : n ∈ N}, {bn : n ∈ N},
we will write an = O(bn) if for some positive constant K, an ≤ Kbn for all sufficiently large n,
an = Θ(bn) if bn =O(an), an = o(bn) if limn an/bn = 0.

2. Belief evolution model We consider a finite population V of interacting agents, of pos-
sibly very large size n := |V|. The connectivity among the agents is described by a simple directed

graph
−→
G =

(

V,
−→
E

)

, whose node set is identified with the agent population, and where
−→
E ⊆V×V\D,

with D := {(v, v) : v ∈V}, stands for the set of directed links among the agents.1

At time t≥ 0, each agent v ∈V holds a belief (or opinion) about an underlying state of the world,
denoted by Xv(t)∈R. The full vector of beliefs at time t will be denoted by X(t) = {Xv(t) : v ∈V}.
We distinguish between two types of agents: regular and stubborn. Regular agents repeatedly
update their own beliefs, based on the observation of the beliefs of their out-neighbors in

−→
G .

Stubborn agents never change their opinions, i.e., they do not have any out-neighbors. Agents
which are not stubborn are called regular. We will denote the set of regular agents by A, the set
of stubborn agents by S, so that the set of all agents is V =A∪S (see Figure 1).

1 Notice that we don’t allows for parallel links or loops.
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Figure 1. A social network with seven regular agents (colored in grey), and five stubborn agents (colored in white,
and black, respectively). The presence of a directed link (v, v′) indicates that agent v is influenced by the opinion of
agent v′. Therefore, links are only incoming to the stubborn agents, while links between pairs of regular agents may
be uni- or bi-directional.

More specifically, the agents’ beliefs evolve according to the following stochastic update process.
At time t = 0, each agent v ∈ V starts with an initial belief Xv(0). The beliefs of the stubborn
agents stay constant in time:

Xs(t) =Xs(0) =: xs , s∈ S , t≥ 0 .

In contrast, the beliefs of the regular agents are updated as follows. To every directed link in
−→
E

of the form (a, v), where necessarily a∈A, and v ∈V, a clock is associated, ticking at the times of
an independent Poisson process of rate rav > 0. If the (a, v)-th clock ticks at time t, agent a meets
agent v and updates her belief to a convex combination of her own current belief and the current
belief of agent v:

Xa(t) = (1− θav)Xa(t
−) + θavXv(t

−) , (1)

where Xv(t
−) stands for the left limit limu↑tXv(u). Here, the scalar θav ∈ (0,1] is a trust parameter

that represents the confidence that the regular agent a ∈ A puts on agent v’s belief.2 That rav

and θav are strictly positive for all (a, v) ∈
−→
E is simply a convention (since if ravθav = 0, one can

always consider the subgraph of
−→
G obtained by removing the link (a, v) from

−→
E ). Similarly, we

also adopt the convention that rvv′ = θvv′ = 0 for all v, v′ ∈ V such that (v, v′) /∈
−→
E (hence, including

loops v′ = v). For every regular agent a∈A, let Sa ⊆S be the subset of stubborn agents which are

reachable from a by a directed path in
−→
G . We refer to Sa as the set of stubborn agents influencing

a. For every stubborn agent s ∈ S, As := {a : s ∈ Sa} ⊆ A will stand for the set of regular agents
influenced by s.

The tuple N =
(−→
G ,{θe},{re}

)

contains the entire information about patterns of interaction

among the agents, and will be referred to as the social network. Together with an assignment of
a probability law for the initial belief vector, L(X(0)), the social network designates a society.
Throughout the paper, we make the following assumptions regarding the underlying social network.

Assumption 1. Every regular agent is influenced by some stubborn agent, i.e., Sa is non-empty
for every a in A.

2 We have imposed that at each meeting instance, only one agent updates her belief. The model can be easily extended
to the case where both agents update their beliefs simultaneously, without significantly affecting any of our general
results.
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Assumption 1 may be easily removed. If there are some regular agents which are not influenced by
any stubborn agent, then there is no link in E connecting the set R of such regular agents to V \R.
Then, one may decompose the subgraph obtained by restricting G to R into its communicating
classes, and apply the results in [24] (see Example 3.5 therein), showing that, with probability one,
a consensus on a random belief is achieved on every such communicating class.

We denote the total meeting rate of agent v ∈V by rv, i.e., rv :=
∑

v′ rvv′ , and the total meeting
rate of all agents by r, i.e., r :=

∑

v rv. We use N(t) to denote the total number of agent meetings
(or link activations) up to time t≥ 0, which is simply a Poisson arrival process of rate r. We also
use the notation T(k) to denote the time of the k-th belief update, i.e., T(k) := inf{t≥ 0 : N(t)≥ k}.

To a given social network, we associate the matrix Q∈R
V×V , with entries

Qvw := θvwrvw Qvv :=−
∑

v′ 6=v
Qvv′ , v 6=w ∈V . (2)

In the rest of the paper, we will often consider a continuous-time Markov chain V (t) on V with
transition rate matrix Q.

The following example describes the canonical construction of a social network from an undi-
rected graph, and will be used often in the rest of the paper.

Example 1. Let G = (V,E) be a connected multigraph,3 and S ⊆ V, A = V \ S. Define the

directed graph
−→
G = (V,

−→
E ), where (a, v) ∈

−→
E if and only if a ∈ A, v ∈ V \ {a}, and {a, v} ∈ E ,

i.e.,
−→
G is the directed graph obtained by making all links in E bidirectional except links between

a regular and a stubborn agent, which are unidirectional (pointing from the regular agent to
the stubborn agent). For v,w ∈ V, let κv,w denote the multiplicity of the link {v,w} in E (each
self-loop contributing as 2), and let dv =

∑

w κv,w be the degree of node v in G. (In particular,
κa,v = 1E({a, v}) if G is a simple graph, i.e., it does not contain neither loops nor parallel links.)

Let the trust parameter be constant, i.e., θav = θ ∈ (0,1] for all (a, v)∈
−→
E . Define

rav = d−1
a κa,v1V\{a}(v) , a∈A , v ∈ V . (3)

This concludes the construction of the social network N =
(−→
G ,{θe},{re}

)

. In particular, one has

Qav = θκa,v/da , ∀(a, v)∈
−→
E .

Observe that connectedness of G implies that Assumption 1 holds. Finally, notice that nothing
prevents the multigraph G from having (possibly parallel) links between two nodes both in S.

However, such links do not have any correspondence in the directed graph
−→
G , and in fact they are

irrelevant for the belief dynamics, since stubborn agents do not update their beliefs.

We conclude this section by discussing in some detail two special cases whose simple structure
sheds light on the main features of the general model. In particular, we consider a social network
with a single regular agent and a social network where the trust parameter satisfies θav = 1 for all
a∈A and v ∈V. We show that in both of these cases agent beliefs fail to converge almost surely.

2.1. Single regular agent Consider a society consisting of a single regular agent, i.e., A=
{a}, and two stubborn agents, S = {s0, s1} (see Fig. 2(a)). Assume that ras0

= ras1
= 1/2, θas0

=
θas1

= 1/2, xs0
= 0, xs1

= 1, and Xa(0) = 0. Then, one has for all t≥ 0,

Xa(t) =
∑

1≤k≤N(t)

2k−N(t)−1B(k) ,

3 I.e., E is a multi-set of unordered pairs of elements of V. This allows for the possibility of considering parallel links
and loops.
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Figure 2. Typical sample-path behavior of the belief of the regular agent in the simple social network topology
depicted in (a). In (b) the actual belief process Xa(t), fluctuating ergodically on the interval [0,1]; in (c), the time-
reversed process, rapidly converging to a stationary random belief Xa.

where N(t) is the total number of agent meetings up to time t (or number of arrivals up to time t
of a rate-1 Poisson process), and {B(k) : k ∈N} is a sequence of Bernoulli(1/2) random variables,
independent mutually and from the process N(t). Observe that, almost surely, arbitrarily long
strings of contiguous zeros and ones appear in the sequence {B(k)}, while the number of meetings
N(t) grows unbounded. It follows that, with probability one

lim inf
t→∞

Xa(t) = 0 , limsup
t→∞

Xa(t) = 1 ,

so that the belief Xa(t) does not converge almost surely.
On the other hand, observe that, since

∑

k>n 2−k|B(k)| ≤ 2−n, the series Xa :=
∑

k≥1 2−kB(k) is
sample-wise converging. It follows that, as t grows large, the time-reversed process

←−
Xa(t) :=

∑

1≤k≤N(t)

2−kB(k)

converges to Xa, with probability one, and, a fortiori, in distribution. Notice that, for all positive
integer k, the binary k-tuples {B(1), . . . ,B(k)} and {B(k), . . . ,B(1)} are uniformly distributed
over {0,1}k, and independent from the Poisson arrival process N(t). It follows that, for all t≥ 0,

the random variable
←−
X a(t) has the same distribution as Xa(t). Therefore, Xa(t) converges in

distribution to Xa as t grows large. Moreover, it is a standard fact (see e.g. [45, pag.92]) that
Xa is uniformly distributed over the interval [0,1]. Hence, the probability distribution of Xa(t) is
asymptotically uniform on [0,1].

The analysis can in fact be extended to any trust parameter θis = θis′ = θ ∈ (0,1). In this case,
one gets that

Xa(t) = θ
∑

1≤k≤N(t)

(1− θ)N(t)−kB(k)

converges in law to the stationary belief

Xa := θ(1− θ)−1
∑

k≥1

(1− θ)kB(k) . (4)

As explained in [20, Section 2.6], for every value of θ in (1/2,1), the probability law of Xa is
singular, and in fact supported on a Cantor set. In contrast, for almost all values of θ ∈ (0,1/2),
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t=0 t

u=0u=U1uu=t

Figure 3. Duality between the voter model with zealots and the coalescing Markov chains with absorbing states.
The network topology is a line with five regular agents and two stubborn agents placed in the two extremities. The
time index for the opinion dynamics, t, runs from left to right, whereas the time index for the coalescing Markov
chains process, u, runs from right to left. Both dotted and solid arrows represent meeting instances. Fixing a time
horizon t > 0, in order to trace the beliefs X(t), one has to follow coalescing Markov chains starting at u = 0 in the
different nodes of the network, and jumping from a state to another one in correspondence to the solid arrows. The
particles are represented by bullets at times of their jumps. Clusters of coalesced particles are represented by bullets
of increasing size.

the probability law of Xa is absolutely continuous with respect to Lebesgue’s measure.4 In the
extreme case θ= 1, it is not hard to see that Xa(t) =B(N(t)) converges in distribution to a random
variable Xa with Bernoulli(1/2) distribution. On the other hand, observe that, regardless of the
fine structure of the probability law of the stationary belief Xa, i.e., on whether it is absolutely
continuous or singular, its moments can be characterized for all values of θ ∈ (0,1]. In fact, it follows
from (4) that the expected value of Xa is given by

E[Xa] = θ(1− θ)−1
∑

k≥1

(1− θ)k
E[B(k)] = θ

∑

k≥0

(1− θ)k 1

2
=

1

2
,

and, using the mutual independence of the B(k)’s, the variance of Xa is given by

Var[Xa] = θ2(1− θ)−2
∑

k≥1

(1− θ)2k Var[B(k)] = θ2
∑

k≥0

(1− θ)2k 1

4
=

θ

4(2− θ)
.

Observe that the expected value of Xa is independent from θ, while its variance increases from 0
to a maximum of 1/2 as θ is increased from 0 to 1.

2.2. Voter model with zealots We now consider the special case when the social network
topology

−→
G is arbitrary, and θav = 1 for all (a, v) ∈ E . In this case, whenever a link (a, v) ∈

−→
E is

activated, the regular agent a adopts agent v’s current opinion as such, completely disregarding
her own current opinion.

This opinion dynamics, known as the voter model, was introduced independently by Clifford and
Sudbury [12], and Holley and Liggett [27]. It has been extensively studied in the framework of
interacting particle systems [32, 33]. While most of the research focus has been on the case when
the graph is an infinite lattice, the voter model on finite graphs, and without stubborn agents, was

4 See [44]. In fact, explicit counterexamples of values of θ ∈ (0,1/2) for which the asymptotic measure is singular are
known. For example, Erdös [22, 23] showed that, if θ = (3−

√
5)/2, then the probability law of Xa is singular.
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considered, e.g., in [15, 17], [4, Ch. 14], and [21, Ch. 6.9]: in this case, consensus is achieved in some
finite random time, whose distribution depends on the graph topology only.

In some recent work [38] a variant with one or more stubborn agents (there referred to as zealots)
has been proposed and analyzed on the complete graph. We wish to emphasize that such voter
model with zealots can be recovered as a special case of our model, and hence our general results,
to be proven in the next sections, apply to it as well. However, we briefly discuss this special case
here, since proofs are much more intuitive, and allow one to anticipate some of the general results.

The main tool in the analysis of the voter model is the dual process, which runs backward in time
and allows one to identify the source of the opinion of each agent at any time instant. Specifically,
let us focus on the belief of a regular agent a at time t > 0. Then, in order to trace Xa(t), one has
to look at the last meeting instance of agent a that occurred no later than time t. If such a meeting
instance occurred at some time t−U1 ∈ [0, t] and the agent met was v ∈ V, then the belief of agent a
at time t coincides with the one of agent v at time t−U1, i.e., Xa(t) =Xv(t−U1). The next step is
to look at the last meeting instance of agent v occurred no later than time t−U1; if such an instance
occurred at time t−U2 ∈ [0, t−U1], and the agent met was w, thenXa(t) =Xv(t−U1) =Xw(t−U2).
Clearly, one can iterate this argument, going backward in time, until reaching time 0. In this way,
one implicitly defines a continuous-time Markov chain Va(u) with state space V, which starts at
Va(0) = a and stays put there until time U1, when it jumps to node v and stays put there in the
time interval [U1,U2), then jumps at time U2 to node w, and so on. It is not hard to see that,
thanks to the fact that the meeting instances are independent Poisson processes, the Markov chain
Va(u) has transition rate matrix Q. In particular, it halts when it hits some state s ∈ S. This
shows that L(Xa(t)) = L(XVa(t)(0)) . More generally, if one is interested in the joint probability
distribution of the belief vector X(t), then one needs to consider n− |S| continuous-time Markov
chains, {Va(t) : a ∈A} each one starting from a different node in A (specifically, Va(0) = a for all
a∈A), and run simultaneously on V (see Figure 3). These Markov chains move independently with
transition rate matrix Q, until the first time that they either meet, or they hit the set S: in the
former case, they stick together and continue moving on V as a single particle, with transition rate
matrix Q; in the second case, they halt. This process is known as the coalescing Markov chains
process with absorbing set S. Then, one gets that

L({Xa(t) : a∈A}) =L({XVa(t)(0) : a∈A}) . (5)

Equation (5) establishes a duality between the voter model with zealots and the coalescing Markov
chains process with absorbing states. In particular, Assumption 1 implies that, with probability
one, each Va(u) will hit the set S in some finite random time T a

S , so that in particular the vector
{Va(u) : a∈A} converges in distribution, as u grows large, to an SA-valued random vector {Va(T

a
S ) :

a ∈ A}. It then follows from (5) that X(t) converges in distribution to a stationary belief vector
X whose entries are given by Xs = xs for every stubborn agent s ∈ S, and Xa = xVa(Ta

S
) for every

regular agent a∈A.

3. Convergence in distribution and ergodicity of the beliefs This section is devoted to
studying the convergence properties of the random belief vector X(t) for the general update model
described in Section 2. Figure 4 reports the typical sample-path behavior of the agents’ beliefs
for a simple social network with population size n= 4, and line graph topology, in which the two
stubborn agents are positioned in the extremes and hold beliefs x0 <x3. As shown in Fig. 4(b), the
beliefs of the two regular agents, X1(t), and X2(t), fluctuate persistently in the interval [x0, x3]. On
the other hand, the time averages of the two regular agents’ beliefs rapidly approach a limit value,
of 2x0/3 +x3/3 for agent 1, and x0/3 +2x3/3 for agent 2.

As we will see below, such behavior is rather general. In our model of social network with at
least two stubborn agents having non-coincident constant beliefs, the regular agent beliefs fail to
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Figure 4. Typical sample-path behavior of the beliefs, and their ergodic averages for a social network with population
size n = 4. The topology is a line graph, displayed in (a). The stubborn agents correspond to the two extremes of
the line, S = {0,3}, while their constant opinions are x0 = 0, and x3 = 1. The regular agent set is A = {1,2}. The
confidence parameters, and the interaction rates are chosen to be θav = 1/2, and rav = 1/3, for all a = 1,2, and
v = a± 1. In picture (b), the trajectories of the actual beliefs Xv(t), for v = 0,1,2,3, are reported, whereas picture
(c) reports the trajectories of their ergodic averages Zv(t) := t−1

R

t

0
Xv(u)du.

converge almost surely: we have seen this in the special cases of Section 2.1, while a general result
in this sense will be stated as Theorem 2. On the other hand, we will prove that, regardless of
the initial regular agents’ beliefs, the belief vector X(t) is convergent in distribution to a random
stationary belief vector X (see Theorem 1), and in fact it is an ergodic process (see Corollary 1).

In order to prove Theorem 1, we will rewrite X(t) in the form of an iterated affine function
system [20]. Then, we will consider the so-called time-reversed belief process. This is a stochastic
process whose marginal probability distribution, at any time t≥ 0, coincides with the one of the
actual belief process, X(t). In contrast to X(t), the time-reversed belief process is in general not
Markov, whereas it can be shown to converge to a random stationary belief vector with probability
one. From this, we recover convergence in distribution of the actual belief vector X(t).

Formally, for any time instant t≥ 0, let us introduce the projected belief vector Y (t)∈R
A, where

Ya(t) =Xa(t) for all a ∈A. Let IA ∈R
A×A be the identity matrix, and for a ∈A, let e(a) ∈R

A be
the vector whose entries are all zero, but for the a-th which equals 1. For every positive integer k,
consider the random matrix A(k)∈R

A×A, and the random vector B(k)∈R
A, defined by

A(k) = IA + θaa′

(

e(a)e
T
(a′)− e(a)e

T
(a)

)

B(k) = 0 ,

if the k-th activated link is (a,a′)∈
−→
E , with a,a′ ∈A, and

A(k) = IA− θase(a)e
T
(a) B(k) = e(a)θasxs ,

if the k-th activated link is (a, s)∈
−→
E , with a∈A, and s∈ S. Define the matrix product

−→
A(k, l) :=A(l)A(l− 1) . . .A(k+1)A(k) , 1≤ k≤ l , (6)

with the convention that
−→
A (k, l) = IA for k > l. Then, at the time T(l) of the l-th belief update,

one has
Y (T(l)) =A(l)Y (T−

(l)) +B(l) =A(l)Y (T(l−1)) +B(l) , l≥ 1 ,

so that, for all t≥ 0,

Y (t) =
−→
A (1,N(t))Y (0) +

∑

1≤k≤N(t)

−→
A (k+1,N(t))B(k) , (7)
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where we recall that N(t) is the total number of agents’ meetings up to time t. Now, define the
time-reversed belief process

←−
Y (t) :=

←−
A (1,N(t))Y (0) +

∑

1≤k≤N(t)

←−
A(1, k− 1)B(k) , (8)

where
←−
A(k, l) :=A(k)A(k+1) . . .A(l− 1)A(l) , k≤ l ,

with the convention that
←−
A (k, l) = IA for k > l. The following is a fundamental observation (cf. [20]):

Lemma 1. For all t≥ 0, Y (t) and
←−
Y (t) have the same probability distribution.

Proof. Notice that {(A(k),B(k)) : k ∈N} is a sequence of independent and identically distributed
random variables, independent from the process N(t). This, in particular, implies that, the l-tuple
{(A(k),B(k)) : 1≤ k≤ l} has the same distribution as the l-tuple {(A(l−k+1),B(l−k+1)) : 1≤
k≤ l}, for all l ∈N. From this, and the identities (7) and (8), it follows that the belief vector Y (t)

has the same distribution as
←−
Y (t), for all t≥ 0.

The second fundamental result is that, in contrast to the actual regular agents’ belief vector
Y (t), the time-reversed belief process

←−
Y (t) converges almost surely.

Lemma 2. Let Assumption 1 hold. Then, for every value of the stubborn agents’ beliefs {xs} ∈
R

S, there exists an R
A-valued random variable Y , such that,

P

(

lim
t→∞

←−
Y (t) = Y

)

= 1 ,

for every initial distribution L(Y (0)) of the regular agents’ beliefs.

Proof. Observe that the expected entries of A(k), and B(k), are given by

E[Aaa′(k)] =
Qaa′

r
, E[Aaa(k)] = 1 +

Qaa

r
, E[Ba(k)] =

1

r

∑

s
Qasxs ,

for all a 6= a′ ∈A. In particular, E[A(k)] is a substochastic matrix. It follows from Perron-Frobenius’
theory that the spectrum of E[A(k)] is contained in the disk centered in 0 of radius ρ, where ρ ∈
[0,+∞) is its largest in module eigenvalue, with corresponding left eigenvector y with nonnegative
entries. Moreover, Assumption 1 implies that, for all nonempty subsets J ⊆A, there exists some
j ∈ J and v ∈ V \ J such that (j, v) ∈ E (otherwise Sj = ∅ for all j ∈ J ). Therefore

∑

a E[Aja]≤
1− r−1Qjv < 1. Choosing J as the support of the eigenvector y gives ρ

∑

a ya =
∑

a(E[A(k)]Ty)a =
∑

j yj

∑

a E[Aja(k)]<
∑

j yj , so that ρ < 1. Then, using the Jordan canonical decomposition, one
can show that

∣

∣

∣

∣

∣

∣
E

[←−
A(1, k)

]
∣

∣

∣

∣

∣

∣

∞
≤Ckn−1ρk , ∀k≥ 0 ,

where C is a constant depending on E[A(1)] only. Upon observing that the
←−
A (1, k) has non-negative

entries, and using the inequality E[max{Z,W}] ≤ E[Z] + E[W ] valid for all nonnegative-valued
random variables Z and W , one gets that

E

[∣

∣

∣

∣

∣

∣

←−
A (1, k)

∣

∣

∣

∣

∣

∣

1

]

= E

[

max
a′

∑

a

←−
A aa′(1, k)

]

≤
∑

a,a′

E

[←−
A a,a′(1, k)

]

≤ n
∣

∣

∣

∣

∣

∣
E

[←−
A (1, k)

]∣

∣

∣

∣

∣

∣

∞
≤Cnkn−1ρk .

(9)
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Now, fix some υ ∈ (ρ,1). From the independence of
←−
A (1, k − 1) and B(k) it follows that, for all

k≥ 1,

P

(
∣

∣

∣

∣

∣

∣

←−
A (1, k− 1)B(k)

∣

∣

∣

∣

∣

∣

1
≥ υk−1

)

≤ υ−k+1
E

[

||
←−
A (1, k− 1)B(k)||1

]

≤ υ−k+1
E

[

||
←−
A (1, k− 1)||1||B(k)||1

]

= υ−k+1
E

[

||
←−
A (1, k− 1)||1

]

E [||B(k)||1]

≤ βk−1 ,

where βk :=Cnkn−1(ρ/υ)k
E[||B(1)||1]. Since

∑

k≥0 βk <∞, the above bound and the Borel-Cantelli

lemma imply that, with probability one, ||
←−
A (1, k−1)B(k)||1<υ

k−1 for all but finitely many values
of k≥ 1. Hence, almost surely, the series

Y :=
∑

k≥1

←−
A(1, k− 1)B(k)

is absolutely convergent. An analogous argument shows almost sure convergence of
←−
A (1, k)Y (0) to

0, as k grows large. Since, with probability one, N(t) goes to infinity as t grows large, one has that

lim
t→∞

←−
Y (t) = lim

t→∞

←−
A (1,N(t))Y (0) + lim

t→∞

∑

1≤j≤N(t)

←−
A (1, j− 1)B(j) = Y ,

with probability one. This completes the proof.

Lemma 1 and Lemma 2 allow one to prove convergence in distribution of X(t) to a random belief
vector X, as stated in the following result.

Theorem 1. Let Assumption 1 hold. Then, for every value of the stubborn agents’ beliefs
{xs} ∈ R

S, there exists an R
V-valued random variable X, such that, for every initial distribution

L(X(0)) satisfying P(Xs(0) = xs) = 1 for every s∈ S,

lim
t→∞

E[ϕ(X(t))] = E[ϕ(X)] ,

for all bounded and continuous test functions ϕ : R
V → R. Moreover, the probability law of the

stationary belief vector X is invariant for the system, i.e., if L(X(0)) =L(X), then L(X(t)) =L(X)
for all t≥ 0.

Proof. It follows from Lemma 2
←−
Y (t) converges to Y with probability one, and a fortiori in

distribution. By Lemma 1,
←−
Y (t) and Y (t) are identically distributed. Therefore, Y (t) converges

to Y in distribution, and the first part of the claim follows by defining Xa = Ya for all a ∈A, and
Xs = xs for all s∈ S. For the second part of the claim, it is sufficient to observe that the distribution
of Y =

∑

k≥1

←−
A (1, k−1)B(k) is the same as the one of Y ′ :=A(0)Y +B(0), where A(0), and B(0),

are independent copies of A(1), and B(1), respectively.

Motivated by Theorem 1, for any agent v ∈ V, we refer to the random variableXv as the stationary
belief of agent v. Using standard ergodic theorems for Markov processes, an immediate implication
of Theorem 1 is the following corollary, which shows that time averages of continuous functions of
agent beliefs with bounded expectation are given by their expectation over the limiting distribution.
Choosing the relevant function properly, this enables us to express the empirical averages of, and
correlations across, agent beliefs in terms of expectations over the limiting distribution, highlighting
the ergodicity of agent beliefs.
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Corollary 1. Let Assumption 1 hold. Then, for every value of the stubborn agents’ beliefs
{xs} ∈R

S, with probability one,

lim
t→∞

1

t

∫ t

0

ϕ(X(u))du= E[ϕ(X)] ,

where X is the stationary belief vector and ϕ : R
V → R is any continuous test function such that

E[ϕ(X)] exists and is finite.

Proof. Let Y (t) and Y be the projections of the belief vector at time t≥ 0, and of the stationary
belief vector A, respectively, to the regular agents set A. Let Ỹ (0) be an R

A-valued random vector,
independent from Y (0) and such that L(Ỹ (0)) =L(Y ). Let Y (t) be as in (7), and

Ỹ (t) =
−→
A (1,N(t))Ỹ (0) +

∑

1≤k≤N(t)

−→
A (k+1,N(t))B(k) ,

where N(t) is the total number of agents’ meetings up to time t, and
−→
A (k, l) is defined as in (6).

Then, Ỹ (t)−Y (t) =
−→
A(1,N(t))(Ỹ (0)−Y (0)) . Arguing as in the proof of Lemma 2, one shows that

limt→∞ ||Ỹ (t)− Y (t)||= 0 , with probability one. Now, for t > 0, let the vectors X̃(t) and X(t) be
defined by X̃a(t) = Ỹa(t), Xa(t) = Ya(t) for a ∈ A, and X̃s(t) =Xs(t) = xs for s ∈ S, and observe
that, with probability one, supt≥0 |X(t)| ≤maxv |Xv(0)|<∞, supt≥0 |X̃(t)| ≤maxv |Xv|<∞. Then,
for every continuous ϕ : R

V→R, one has that

lim
t→∞
|ϕ(X̃(t))−ϕ(X(t))|= 0 ,

with probability one. On the other hand, stationarity of the process X̃(t) allows one to apply the
ergodic theorem (see, e.g., [47, Theorem 6.2.12]), showing that, if E[ϕ(X)] exists and is finite, then

lim
t→∞

1

t

∫ t

0

ϕ(X̃(s))ds= E[ϕ(X)] ,

with probability one. Then, for any continuous ϕ such that E[ϕ(X)] exists and is finite, one has
that
∣

∣

∣

∣

1

t

∫ t

0

ϕ(X(s))ds−E[ϕ(X)]

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

t

∫ t

0

ϕ(X̃(s))ds−E[ϕ(X)]

∣

∣

∣

∣

+
1

t

∫ t

0

∣

∣

∣
ϕ(X(s))−ϕ(X̃(s))

∣

∣

∣
ds

t→∞
−→ 0 ,

with probability one.

Theorem 1, and Corollary 1, respectively, show that the beliefs of all the agents converge in
distribution, and that their empirical distributions converge almost surely, to a random stationary
belief vector X. In contrast, the following theorem shows that the stationary belief of a regular
agent which is connected to at least two stubborn agents with different beliefs is a non-degenerate
random variable. As a consequence, the belief of every such regular agent keeps on fluctuating with
probability one. Moreover, the theorem shows that the difference between the belief of a regular
agent influenced by at least two stubborn agents with different beliefs, and the belief of any other
agent does not converge to zero with probability one, so that disagreement between them persists
in time. For a∈A, let Xa = {xs : s∈ Sa} denote the set of stubborn agents’ belief values influencing
agent a.

Theorem 2. Let Assumption 1 hold, and let a∈A be such that |Xa| ≥ 2. Then, the stationary
belief Xa is a non-degenerate random variable. Furthermore, P(Xa 6=Xv)> 0 for all v ∈V \{a}.
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Proof. With no loss of generality, since the distribution of the stationary belief vectorX does not

depend on the probability law of the initial beliefs of the regular agents, we can assume that such a

law is the stationary one, i.e., that L(X(0)) =L(X). Then, Theorem 1 implies that L(X(t)) =L(X)

for all t≥ 0.

Let a ∈ A be such that Xa is degenerate. Then, almost surely, Xa(t) = xa for almost all t, for

some constant xa. Then, as we will show below, all the out-neighbors of a will have their beliefs

constantly equal to xa with probability one. Iterating the argument until reaching the set Sa, one

eventually finds that xs = xa for all s∈ S, so that |Xa|= 1. This proves the first part of the claim.

For the second part, assume that Xa = Xa′ almost surely for some a 6= a′. Then, one can prove

that, with probability one, every out-neighbor of a or a′ agrees with a or a′ at any time. Iterating

the argument until reaching the set Sa ∪Sa′ , one eventually finds that |Xs ∪Xs′ |= 1.

One can reason as follows in order to see that, if v is an out-neighbor of a, and Xa = xa is

degenerate, then Xv(t) = xa for all t. Let T av
(k) be the k-th activation of the link (a, v). Then,

Equation (1) implies that

Xv(T
av
(k)) = xa , ∀n≥ 1 . (10)

Now, define T ∗ := inf{t≥ 0 : Xv(t) 6= xa}, and assume by contradiction that P(T ∗<∞)> 0. By the

strong Markov property, and the property that link activations are independent Poisson processes,

this would imply that

P(first link activated after T ∗ is (a, v)|FT∗)> 0 on {T ∗ <∞} , (11)

which would contradict (10). Then, necessarily T ∗ =∞, and hence Xv =Xa, with probability one.

On the other hand, assume that P(Xa =Xv) = 1 for some v ∈ V \ {a}. Then, with probability

one Xa(t) =Xv(t) for all rational t≥ 0. Since, as proved above, with probability one Xa(t) is not

constant in t, both Xa(t) and Xv(t) should jump simultaneously. However, the probability of this

to occur is zero since link activations are independent Poisson processes. Therefore, necessarily

P(Xa =Xv)< 1.

Even though, by Theorem 1, the belief of any agent always converges in distribution, Theorem

2 shows that, if a regular agent a is influenced by stubborn agents with different beliefs, then her

stationary belief Xa is non-degenerate. By Corollary 1, this implies that, with probability one,

her belief Xa(t) keeps on fluctuating and does not stabilize on a limit. Similarly, Theorem 2 and

Corollary 1 imply that, if a regular agents is influenced by stubborn agents with different beliefs,

then, with probability one, her belief will not achieve a consensus asymptotically with any other

agent in the society.

4. Expected beliefs and belief crossproducts In this section, we provide a characteriza-

tion of the expected beliefs and belief crossproducts of the agents. In particular we will provide

explicit characterizations of the stationary expected beliefs and belief crossproducts in terms of
hitting probabilities of a pair of coupled Markov chains on

−→
G = (V,

−→
E ).5 Specifically, we consider

a coupling (V (t), V ′(t)) of continuous-time Markov chains with state space V, such that both V (t)

5 Note that the set of states for such Markov chain corresponds to the set of agents, therefore we use the terms “state”
and “agent” interchangeably in the sequel.
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(a) (b) (c)

Figure 5. In (a), a network topology consisting of a line with three regular agents and two stubborn agents placed
in the extremes. In (b), the directed graph representing the possible state transitions of the corresponding coupled

Markov chains pair (V (t), V ′(t)) when θe ∈ (0,1) for all e∈
→

E . Such coupled chains pair has 25 states, four of which
are absorbing states. The components of (V (t), V ′(t)) jump independently to neighbor states, unless they are either
on the diagonal, or one of them is in S : in the former case, there is some chance that the two components jump as
a unique one, thus inducing a direct connection along the diagonal; in the latter case, the only component that can
keep moving is the one which has not hit S , while the one who hit S is bound to remain constant from that point on.
In (c), the state transition graph is reported for the Markov chains pair (V (t), V ′(t)) in the extreme case when θe = 1

for all e∈
→

E . In this case, the coupled Markov chains are coalescing: once they meet, they stick together, moving as a
single particle, and never separating from each other. This reflects the fact that there are no outgoing links from the
diagonal set.

and V ′(t) have transition rate matrix Q, as defined in (2). The pair (V (t), V ′(t)) is a Markov chain
on the state space V ×V with transition rate matrix K whose entries are given by

K(v,v′)(w,w′) :=







































































Qvw if v 6= v′ , v 6=w , v′ =w′

Qv′w′ if v 6= v′ , v=w , v′ 6=w′

0 if v 6= v′ , v 6=w , v′ 6=w′

Qvv +Qv′v′ if v 6= v′ , v=w , v′ =w′

θvwQvw if v= v′ , w=w′ , v 6=w

(1− θvw)Qvw if v= v′ , v 6=w , v′ =w′

(1− θvw′)Qvw′ if v= v′ , v=w , v′ 6=w′

0 if v= v′ , w 6=w′ , w 6= v , w′ 6= v′

2Qvv +
∑

v′′ 6=v θvv′′Qvv′′ if v= v′ , v=w , v′ =w′ .

(12)

The first four lines of (12) state that, conditioned on (V (t), V ′(t)) being on a pair of non-coincident
nodes (v, v′), each of the two components, V (t) (respectively, V ′(t)), jumps to a neighbor node w,
with transition rate Qvw (respectively, to a neighbor node w′ with transition rate Qv′w′), whereas
the probability that both components jump at the same time is zero. On the other hand, the last
five lines of (12) state that, once the two components have met, i.e., conditioned on V (t) = V ′(t) = v,
they have some chance to stick together and jump as a single particle to a neighbor node w, with
rate θvwQvw, while each of the components V (t) (respectively, V ′(t)) has still some chance to jump
alone to a neighbor node w with rate (1− θvw)Qvw (resp., to w′ with rate (1− θvw′)Qvw′). In the
extreme case when θvw = 1 for all (v,w) in E , the sixth and seventh line of the righthand side
of (12) equal 0, and in fact one recovers the expression for the transition rates of two coalescing
Markov chains: once V (t) and V ′(t) have met, they stick together and move as a single particle,
never separating from each other. See Figure 5 for a visualization of the possible state transitions
of (V (t), V ′(t)).
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For v,w, v′,w′ ∈V, and t≥ 0, we will denote by

γv
w(t) := Pv(V (t) =w) = Pv(V

′(t) =w) , ηvv′

ww′(t) = Pvv′(V (t) =w,V ′(t) =w′) , (13)

the marginal and joint transition probabilities of the two Markov chains at time t. It is a stan-
dard fact (see, e.g., [41, Theorem 2.8.3]) that such transition probabilities satisfy the Kolmogorov

backward equations

d

dt
γv

w(t) =
∑

ṽ

Qvṽγ
ṽ
w(t) ,

d

dt
ηvv′

ww′(t) =
∑

ṽ,ṽ′

K(v,v′)(ṽ,ṽ′)η
ṽṽ′

ww′(t) , v, v′,w,w′ ∈V , (14)

with initial condition

γv
w(0) =

{

1 if v=w
0 if v 6=w ,

ηvv′

ww′(0) =

{

1 if (v, v′) = (w,w′)
0 if (v, v′) 6= (w,w′) .

(15)

The next simple result provides a fundamental link between the belief evolution process intro-

duced in Section 2 and the coupled Markov chains, by showing that the expected values and
expected cross-products of the agents’ beliefs satisfy the same linear system (14) of ordinary dif-

ferential equations as the transition probabilities of (V (t), V ′(t)).

Lemma 3. For all v, v′ ∈V, and t≥ 0, it holds

d

dt
E[Xv(t)] =

∑

w

QvwE[Xw(t)] ,
d

dt
E[Xv(t)Xv′(t)] =

∑

w,w′

K(v,v′)(ww′)E[Xw(t)Xw′(t)] , (16)

so that

E[Xv(t)] =
∑

w

γv
wE[Xw(0)] , E[Xv(t)Xv′(t)] =

∑

w,w′

ηvv′

ww′E[Xw(0)Xw′(0)] . (17)

Proof. Recall that, for the belief update model introduced in Section 2, arbitrary agents’ inter-
actions occur at the ticking instants T(k) of a Poisson clock of rate r. Moreover, with conditional

probability rvw/r, any such interaction involves agent v updating her opinion to a convex combi-
nation of her current belief and the one of agent w, with weight θvw on the latter. It follows that,

for all k≥ 0, and v ∈ V,

E[Xv(T(k+1))|FT(k)
]−Xv(T(k)) =

1

r

∑

w

rvwθvw(Xw(T(k))−Xv(T(k))) =
1

r

∑

w

QvwXw(T(k)) .

Then, the above and the fact that the Poisson clock has rate r imply the left-most equation in

(16).
Similarly, or all v 6= v′ ∈V, one gets that

E[Xv(T(k+1))Xv′(T(k+1))|FT(k)
]−Xv(T(k))Xv′(T(k))

= 1
r

∑

w rvwθvw

(

Xw(T(k))Xv′(T(k))−Xv(T(k))Xv′(T(k))
)

+ 1
r

∑

w′ rv′w′θv′w′

(

Xv(T(k))Xw′(T(k))−Xv(T(k))Xv′(T(k))
)

= 1
r

∑

w,w′K(v,v′)(w,w′)XwXw′ ,
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as well as

E[X2
v (T(k+1))|FT(k)

]−X2
v (T(k)) = 1

r

∑

w rvwE

[

((1− θvw)Xv + θvwXw)
2
−X2

v

]

= 1
r

∑

w rvwθvw (θvwX
2
w +2(1− θvw)XvXw− (2− θvw)X2

v )

= 1
r

∑

wQvw(1− θav) (XaXv−X
2
a)

+ 1
r

∑

w′Qvw′(1− θvw′) (XvXw′ −X2
v )

+ 1
r

∑

wQvwθvw (X2
w−X

2
v )

= 1
r

∑

w,w′K(v,v)(w,w′)XwXw′ .

Then, the two identities above and the fact that the Poisson clock has rate r imply the right-most
equation in (16). It follows from (14), (15), and (16) that

∑

w γ
v
w(t)E[Xw(0)] and E[Xv(t)] satisfy

the same linear system of differential equations, and the same holds true for E[Xv(t)Xv′(t)] and
∑

w,w′ ηvv′

ww′(t)E[Xw(0)Xw′(0)]. This readily implies (17).

We are now in a position to prove the main result of this section characterizing the expected
values and expected cross-products of the agents’ stationary beliefs in terms of the hitting proba-
bilities of the coupled Markov chains. Let us denote by TS and T ′

S the hitting times of the Markov
chains V (t), and respectively V ′(t), on the set of stubborn agents S, i.e.,

TS := inf{t≥ 0 : V (t)∈ S} , T ′
S := inf{t≥ 0 : V ′(t)∈ S} .

Observe that Assumption 1 implies that both TS and T ′
S are finite with probability one for every

initial distribution of the pair (V (0), V ′(0)). Hence, for all v, v′ ∈ V, we can define the hitting
probability distributions γv over S, and ηvv′ over S2, whose entries are respectively given by

γv
s := Pv(V (TS) = s) , s∈ S ,

ηvv′

ss′ := Pvv′(V (TS) = s,V ′(T ′
S) = s′) , s, s′ ∈ S .

(18)

Then, we have the following:

Theorem 3. Let Assumption 1 hold. Then, for every value of the stubborn agents’ beliefs
{xs} ∈R

S,

E[Xv] =
∑

s

γv
sxs , E[XvXv′ ] =

∑

s,s′

ηvv′

ss′ xsxs′ , v, v′ ∈V . (19)

Moreover, {E[Xv] : v ∈ V} and {E[XvXv′ ] : v, v′ ∈ V} are the unique vectors in R
V , and R

V×V

respectively, satisfying

∑

v

QavE[Xv] = 0 , E[Xs] = xs , ∀a∈A , ∀s∈ S , (20)

∑

w,w′

K(a,a′),(w,w′)E[XwXw′ ] = 0 , E[XvXv′ ] = E[Xv]E[Xv′ ] , ∀a,a′ ∈A , ∀(v, v′)∈ V2 \A2 .

(21)

Proof. Assumption 1 implies that limt→∞ γv
s (t) = γv

s for every s ∈ S, and limt→∞ γv
a(t) = 0 for

every a∈A. Therefore, (17) implies that

lim
t→∞

E[Xv(t)] =
∑

s

γv
sxs , ∀v ∈ V . (22)
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Now, if the initial belief distribution L(X(0)) coincides with the stationary one L(X), one has that
L(X(t)) =L(X) for all t≥ 0, so that in particular E[Xv(t)] = E[Xv], and hence limt→∞ E[Xv(t)] =
E[Xv] for all v. Substituting in the righthand side of (22), this proves the leftmost identity in (19).
The rightmost identity in (19) follows from an analogous argument.

In order to prove the second part of the claim, observe that the expected stationary beliefs and
belief cross-products necessarily satisfy (20) and (21), since, by Lemma 3, they evolve according
to the autonomous differential equations (16), and are convergent by the arguments above. On the
other hand, uniqueness of the solutions of (20) and (21) follows from [4, Ch. 2, Lemma 27].

Remark 1. Since the stationary beliefsXv take values in the interval [mins xs,maxs xs], one has
that both E[Xv] and E[XvXv′ ] exist and are finite. Hence, Corollary 1 implies that the asymptotic
empirical averages of the agents’ beliefs and their cross-products, i.e., of the almost surely constant
limits

lim
t→∞

1

t

∫ t

0

Xv(u)du, lim
t→∞

1

t

∫ t

0

Xv(u)Xv′(u)du , v, v′ ∈V

coincide with the expected stationary beliefs and belief crossproducts, i.e., E[Xv] and E[XvXv′ ],
respectively, independently of the distribution of initial regular agents’ beliefs.

Remark 2. As a consequence of Theorem 3, one gets that, if Xa = {x∗}, then Xa = x∗, and,
by Corollary 1, Xa(t) converges to x∗ with probability one. Hence, in particular, E[Xa] = x∗, and
Var[Xa] = 0. This can be thought of as a sort of complement to Theorem 2.

5. Explicit computations of stationary expected beliefs and variances We present
now a few examples of explicit computations of the stationary expected beliefs and variances for
social networks obtained using the construction in Example 1, starting from a simple undirected
graph G = (V,E). Recall that, in this case, Qav = θ/da for all a∈A, and v ∈V such that {a, v} ∈ E .
It then follows from Theorem 3 that the expected stationary beliefs can be characterized as the
unique vectors in R

V satisfying

E[Xa] =
1

da

∑

v:{v,a}∈E

E[Xv] , E[Xs] = xs , ∀a∈A , ∀s∈ S . (23)

Moreover, in the special case when θ = 1, the second moments of the stationary beliefs are the
unique solutions of

E[X2
a ] =

1

da

∑

v:{v,a}∈E

E[X2
v ] , E[X2

s ] = x2
s , ∀a∈A , ∀s∈ S . (24)

Example 2. (Tree) Let us consider the case when G = (V,E) is a tree and the stubborn agent
set S consists of only two elements, s0 and s1, with beliefs x0, and x1, respectively. For v,w ∈ V,
let d(v,w) denote their distance, i.e., the length of the shortest path connecting them in G. Let
m := d(s0, s1), and W = {s0 = w0,w1, . . . ,wm−1,wm = s1}, where {wi−1,wi} ∈ E for all 1 ≤ i ≤m,
be the unique path connecting s0 to s1 in G. Then, we can partition the rest of the node set as
V \W =

⋃

0≤i≤m Vw, where Vi is the set of nodes v ∈V \W such that the unique paths from v to s0

and s1 both pass through wi. Since the set of neighbors of every v ∈ Vi is contained in Vi ∪ {wi},
(23) implies that

E[Xv] = E[Xwi
] , ∀v ∈Vi , 1≤ i≤m. (25)

Hence, one is left with determining the values of E[Xwi
], for 0≤ i≤m. Observe that clearly

E[Xw0
] = xs0

, E[Xwm
] = xs1

. (26)
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v
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1

x
0
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2
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0

s
0

s
1

Figure 6. In the left-most figure, expected stationary beliefs and variances (the latter valid for the special case
when θ = 1) in a social network with a line graph topology with n = 5, and stubborn agents positioned in the two
extremities. The expected stationary beliefs are linear interpolations of the two stubborn agents’ beliefs, while their
variances follow a parabolic profile with maximum in the central agent, and zero variance for the two stubborn
agents s0, and s1. In the right-most figure, expected stationary beliefs in a social network with a tree-like topology,
represented by different levels of gray. The solution is obtained by linearly interpolating between the two stubborn
agents’ beliefs, x0 (white), and x1 (black), on the vertices lying on the path between s0 and s1, and then extended
by putting it constant on each of the connected components of the subgraph obtained by removing the links of such
path.

On the other hand, for all 0< i <m, the neighborhood of wi consists of wi−1, wi+1, and possibly
some elements of Vi. Then, (23) and (25) imply that

E[Xwi
] =

1

2
E[Xwi−1

] +
1

2
E[Xwi+1

] , 0< i<m. (27)

Now, observe that, since

i

m
xs1

+
m− i

m
xs0

=
1

2
(i− 1)xs1

+
1

2
(m− i+1)xs0

+
1

2
(i+1)xs1

+
1

2
(m− i− 1)xs1

,

then the unique solution of (26) and (27) is given by

E[Xwi
] =

i

m
xs1

+
m− i

m
xs0

, 0≤ i≤m. (28)

Upon observing that d(v, sj) = d(wi, sj) for all w ∈Vi, 0≤ i≤m, and j = 0,1, we may rewrite (25)
and (28) as

E[Xv] =











xi if |Sv|= {xi} , i= 0,1 ,

d(v, s0)x1 + d(v, s1)x0

d(v, s0) + d(v, s1)
, if |Sv|= 2 .

(29)

In other words, the stationary expected beliefs are linear interpolations of the beliefs of the stubborn
agents. A totally analogous argument shows that, if the confidence parameter satisfies θ= 1, then
(24) is satisfied by

E[X2
a ] =

d(a, s0)x
2
1 + d(a, s1)x

2
0

d(a, s0) + d(a, s1)
,

so that the stationary variance of agent a’s belief is given by

Var[Xa] = E[X2
a ]−E[Xa]

2 =
d(a, s0)d(a, s1)

(d(a, s0) + d(a, s1))2
(x0−x1)

2
.

The two equations above show that the belief of each regular agent keeps on fluctuating ergodically
around a value which depends on the relative distance of the agent from the two stubborn agents.
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Figure 7. Two social network with a special case of tree-like topology, known as star graph, and two stubborn
agents. In social network depicted in left-most figure one of the stubborn agents, s0, occupies the center, while the
other one, s1, occupies one of the leaves. There, all regular agents’ stationary beliefs coincide with the belief x0 of s0,
represented in white. In social network depicted in right-most figure, none of the stubborn agents, occupy the center.
There, all regular agents’ stationary beliefs coincide with the arithmetic average (represented in gray) of x0 (white),
and x1 (black).

The amplitude of such fluctuations is maximal for central nodes, i.e., those which are homoge-
neously distant from both stubborn agents. This can be given the intuitive explanation that, the
closer a regular agent is to a stubborn agent s with respect to the other stubborn agent s′, the more
frequent her, possibly indirect, interactions are with agent s and the less frequent her interactions
are with s′, and hence the stronger the influence is from s rather than from s′. Moreover, the more
equidistant a regular agent a is from s0 and s1, the higher the uncertainty is on whether, in the
recent past, agent a has been influenced by either s0, or s1.

On its left-hand side, Figure 6 reports the expected stationary beliefs and their variances for
a social network with population size n = 5, line (a special case of tree-like) topology: the two
stubborn agents are positioned in the extremities, and plotted in white, and black, respectively,
while regular agents are plotted in different shades of gray corresponding to their relative distance
from the extremities, and hence to their expected stationary belief. In the right-hand side of Figure
6, a more complex tree-like topology is reported, again with two stubborn agents colored in white,
and black respectively, and with regular agents colored by different shades of gray corresponding
to their relative vicinity to the two stubborn agents. Figure 7 reports two social networks with
star topology (another special case of tree). In both cases there are two stubborn agents, colored
in white, and black, respectively. In the left-most picture, the white stubborn agent occupies the
center, so that all the rest of the population will eventually adopt his belief, and is therefore colored
in white. In the right-most picture, none of the stubborn agents occupies the center, and hence all
the regular agents, hence colored in gray, are equally influenced by the two stubborn agents.

Example 3. (Barbell) For even n≥ 6, consider a barbell-like topology consisting of two com-
plete graphs with vertex sets V0, and V1, both of size n/2, and an extra link {a0, a1} with a0 ∈A0,
and a1 ∈ A1 (see Figure 8). Let S = {s0, s1} with s0 6= a0 ∈ V0 and s1 6= a1 ∈ V1. Then, (23) is
satisfied by

E[Xa] =















































4

n+8
xs0

+
n+4

n+8
xs1

if a= a1

n+4

n+8
xs0

+
4

n+8
xs1

if a= a0

2

n+8
xs0

+
n+6

n+8
xs1

if a∈A1 \ {a1}

n+6

n+8
xs0

+
2

n+8
xs1

if a∈A0 \ {a0} .
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Figure 8. A social network with population size n = 12, a barbell-like topology, and two stubborn agents. In each
of the two halves of the graph the expected average beliefs concentrate around the beliefs of the stubborn agent in
the respective half.

In particular, observe that, as n grows large, E[Xa] converges to xs0
for all a ∈ A0, and E[Xa]

converges to xs1
for all a∈A1. Hence, the network polarizes around the opinions of the two stubborn

agents.

Example 4. (Abelian Cayley graph) Let us denote by Zm the integers modulo m. Put
V = Z

d
m, and let Θ⊆ V \ {0} be a subset generating V and such that if x ∈Θ, then also −x ∈Θ.

The Abelian Cayley graph associated with Θ is the graph G = (V,E) where {v,w} ∈ E iff v−w ∈Θ.
Notice that Abelian Cayley graphs are always undirected and regular, with dv = |Θ| for any v ∈V.
Denote by ei ∈V the vector of all 0’s but the i-th component equal to 1. If Θ = {±e1, . . . ,±ed}, the
corresponding G is the classical d-dimensional torus of size n=md. In particular, for d= 1, this is
a cycle, while, for d= 2, this is the torus (see Figure 9).

Let the stubborn agent set consist of only two elements: S := {s0, s1}. Then the following formula
holds (see [4, Ch. 2, Corollary 10]):

γv
s0

= Pv(Ts1
<Ts0

) =
Evs0

−Evs1
+Es1s0

Es0s1
+Es1s0

(30)

where Evw := Ev[Tw] denotes the expected time it takes to a Markov chain started at v to hit for
the first time w. On the other hand, average hitting times Evw can be expressed in terms of the
Green function of the graph, which is defined as the unique matrix Z ∈R

V×V such that

Z1= 0 , (I −P )Z = I −n−111T ,

where 1 stands for the all-1 vector. The relation with the hitting times is given by

Evw = n−1(Zww−Zvw) . (31)

(See, e.g., [4, Ch. 2, Lemma 12].)
Let P be the stochastic matrix corresponding to the simple random walk on G. It is a standard

fact that P is irreducible and its unique invariant probability is the uniform one. (See, e.g., [9,
Chapter 15].) Morever, there is an orthonormal basis of eigenvectors for P good for any Θ: if
l= (l1, . . . ld) ∈V define Υl ∈R

V by

Υl(k) =m−d/2 exp

(

2πi

m
l · k

)

, k = (k1, . . . , kd)∈V ,
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Figure 9. Two social networks with cycle and 2-dimensional toroidal topology, respectively.

(where l · k :=
∑

i liki). The corresponding eigenvalues can be expressed as follows

λl =
1

|Θ+|

∑

k∈Θ+

cos

(

2π

m
l · k

)

where Θ+ is any subset of Θ such that for all x∈Θ, |{x,−x}∩Θ+|= 1. Hence,

Zvw =m−d
∑

l 6=0

exp
(

2πi
m
l · (v−w)

)

1− 1
|Θ+|

∑

k∈Θ+

cos
(

2π
m
l · k

) , v,w ∈V . (32)

From (30), (31), and the fact that Es0s1
=Es1s0

by symmetry, one obtains

γa
s1

=
1

2
+

m−d
∑

l 6=0

exp
(

2πi
m
l · (a− s1)

)

− exp
(

2πi
m
l · (a− s0)

)

1− 1
|Θ+|

∑

k∈Θ+

cos
(

2π
m
l · k

)

2m−d
∑

l 6=0

1− cos
(

2π
m
l · (s0− s1)

)

1− 1
|Θ+|

∑

k∈Θ+

cos
(

2π
m
l · k

)

, a∈A . (33)

The expected stationary beliefs can then be computed using Theorem 3 and (33).

6. Homogeneous influence in highly fluid social networks In this section, we present
estimates for the expected stationary beliefs and belief variances as a function of the underlying
social network. First, we will introduce the notion of fluidity of a social network, a quantity which
depends only on the geometry of the network and on the size of the stubborn agent set. Then, we
will prove that, when the social network is highly fluid, the influence of the stubborn agents on the
rest of the society is homogeneous, meaning that most of the regular agents have approximately the
same stationary expected belief and (in the special case when θe = 1 for all e∈

−→
E ) belief variance.

6.1. Network fluidity and homogeneous influence Recall that Theorem 3 allows one to
express the first moment of the stationary beliefs in terms of the hitting probability distributions
γv on the stubborn agent set S of the continuous-time Markov chain V (t) with state space V and
transition rate matrix Q. It is a simple but key observation that such hitting probabilities only
depend on the restriction of Q to A×V (the other rows affecting only the behavior of V (t) after
hitting S), and they do not change if any row of Q is multiplied by some positive scalar (this
multiplication having the only affect of speeding up or slowing down V (t) without changing the
jump probabilities). Formally, we have the following
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Lemma 4. Let P ∈R
V×V be stochastic and such that

Pav = αaQav , ∀a∈A , v ∈ V , a 6= v , (34)

for some αa > 0. Let W (k), for k= 0,1, . . ., be a discrete-time Markov chain with transition prob-
ability matrix P . Then, the hitting probability distributions of the continuous-time Markov chain
V (t) with transition rate matrix Q coincide with those of W (k), i.e.,

γv
s = Pv(W (US) = s) , ∀v ∈ V , s∈ S ,

where US := min{k ≥ 0 : W (k)∈ S}.

Lemma 4 allows one to consider the discrete-time chain W (k) with any transition probability
matrix P satisfying (34), in order to compute the hitting probability distributions γv. In fact, it
is convenient to consider stochastic matrices P ∈ R

V×V that, in addition to satisfying (34), are
irreducible and aperiodic. Let us denote the set of all such matrices by P. Observe that, provided
that Assumption 1 holds, the set P is non-empty, since it can be easily checked to contain, e.g., the
matrix P ∈R

V×V with entries Psv = 1/n, Paa = 0, Paw =−Qaw/Qaa for all s∈ S, v ∈ V, a∈A, and
w ∈V \{a}. Observe that, for every P ∈P, irreducibility implies the existence of a unique invariant
probability measure, and, together with aperiodicity, convergence of the time-k distribution

pv(k) = {pv
w(k) : w ∈ V} , pv

w(k) := Pv(W (k) =w) , (35)

irrespectively of the initial state v ∈V. We introduce the following notation.
Definition 1. Given a social network satisfying Assumption 1, and P ∈P, let π=P ′π be the

unique invariant probability measure of P . Let

π(S) :=
∑

s

πs , π∗ := min
v
πv ,

be the size of the stubborn agents set and, respectively, the minimum weight of an agent, as
measured by π. Moreover, let

τ := inf

{

k ≥ 0 : max
v
||pv(k)−π||TV ≤

1

2e

}

, (36)

where pv(k) are as in (35), denote the (variational distance) mixing time of the discrete-time
Markov chain W (k) with state space V and transition probability matrix P .

For the canonical construction of a social network introduced in Example 1, the quantities above
have a more explicit characterization which allows for a geometric interpretation.

Example 5. Let us consider the canonical construction of a social network from a given con-
nected multigraph G = (V,E), outlined in Example 1. Define P̃ ∈R

V×V by putting P̃vw = κv,w/dv,
where κv,w is the multiplicity of the link {v,w} in E , and dv =

∑

w κv,w is the degree of node v in G.
Then, put P = (I+ P̃ )/2, where I stands for the identity matrix on V. In fact, P defined as above
is known in the literature as the transition matrix of the simple lazy random walk on G [31, page
9]. Observe that (34) is satisfied, connectedness of G implies irreducibility of P̃ , and hence of P ,
while aperiodicity of P (not necessarily of P̃ ) is immediate. Hence, P ∈P. Moreover, the invariant
measure π (of both P and P̃ ) is given by

πv = dv/(nd) , ∀v ∈V ,

where d := n−1
∑

v dv is the average degree of G. Observe that, in this construction,

π(S) =
(

∑

v
dv

)−1 ∑

s
ds (37)
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is the fraction of the total degree of the stubborn agents set S and the total degree of the whole
agent set V in G. Moreover, the mixing time can be bounded in terms of the conductance of G,
defined as

Φ := min
{

φ(W) : W ⊆V , 0<
∑

w
dw ≤ nd/2

}

, (38)

where

φ(W) :=

∑

w∈W

∑

v∈V\W 1E({v,w})
∑

w∈W dw

is the bottleneck ratio of the set W ⊆V, i.e., the ratio between the number of links connecting W
to the rest of the node set and its total degree. In particular, standard results imply that

1

4Φ
≤ τ ≤

2

Φ2
log

2e

π∗

. (39)

(See, e.g., [31, Theorem 7.3] for the lower bound, and combine [31, Theorem 12.3] and [21, Theorem
6.2.1] in order to get the upper bound.)

We conclude this example by observing that different choices of the multigraph G may result in
the same social network, hence in particular in the same directed graph

−→
G . For example, G could

have links between pairs of nodes both belonging to S. While such links are irrelevant for the belief
dynamics (they have no correspondence in the directed graph

−→
G ), they do affect the stochastic

matrix P , hence the quantities π(S) and τ . In particular, while removing such links from G clearly
has the effect of decreasing π(S), it also has the potential of increasing the mixing time τ (since less
connected graphs tend to have larger mixing time). Hence, while the stationary belief distribution
does not depend on the presence of links connecting pairs of stubborn agents in G, the estimates of
the stationary beliefs’ moments derived in this section could potentially benefit from considering
these links.

We are now ready to introduce the notion of fluidity of a social network.
Definition 2. Let the social network satisfy Assumption 1. For every P ∈P let

ψ(P ) :=
nπ∗

τπ(S) log (e2/(τπ(S)))
. (40)

The fluidity of the social network is

Ψ := sup{ψ(P ) : P ∈P} . (41)

A sequence of social networks (or, more briefly, a social network) of increasing population size n is
highly fluid if Ψ diverges as n grows large.

Our estimates will show that for large-scale highly fluid social networks, the first two moments
of the stationary beliefs of most of the regular agents in the population can be approximated by
those of a weighted-mean belief Z, supported in the finite set X := {xs : s∈ S}, and given by

P(Z = z) =
∑

s
γs1{z}(xs) , z ∈X , γs :=

∑

v
πvγ

v
s , s∈ S . (42)

We refer to the probability distribution {γs : s ∈ S} as the stationary stubborn agent distribution.
Observe that γs = Pπ(W (US) = s) coincides with the probability that the Markov chain W (k),
started from the stationary distribution π, hits the stubborn agent s before any other stubborn
agent s′ ∈ S. In fact, as we will clarify below, one may interpret γs as a relative measure of the
influence of the stubborn agent s on the society compared to the rest of the stubborn agents s′ ∈ S.

More precisely, let us denote the expected value and variance of the weighted-mean belief Z by

E[Z] :=
∑

s
γsxs , σ2

Z :=
∑

s
γs (xs−E[Z])

2
. (43)
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Let σ2
v denote the variance of the stationary belief of agent v,

σ2
v := E[X2

v ]−E[Xv]
2 .

We also use the notation ∆∗ for the maximum difference between stubborn agents’ beliefs, i.e.,

∆∗ := max{xs−xs′ : s, s
′ ∈ S} . (44)

The next theorem presents the main result of this section.

Theorem 4. Let Assumption 1 hold. Then, for all ε > 0,

1

n

∣

∣

∣

{

v :
∣

∣

∣
E[Xv]−E[Z]

∣

∣

∣
>∆∗ε

}
∣

∣

∣
≤

1

εΨ
. (45)

Furthermore, if the trust parameters satisfy θav = 1 for all (a, v) ∈
−→
E , then

1

n

∣

∣

∣

{

v :
∣

∣

∣
σ2

v −σ
2
Z

∣

∣

∣
>∆2

∗ε
}

∣

∣

∣
≤

1

εΨ
. (46)

This theorem implies that in large-scale highly fluid social networks, as the population size n
grows large, the stationary expected beliefs and variances of the regular agents concentrate around
fixed values corresponding to the expected weighted-mean belief E[Z], and, respectively, its variance
σ2

Z (see Figures 10 and 11). We refer to this phenomenon as homogeneous influence of the stubborn
agents on the rest of the society—meaning that their influence on most of the agents in the society
is approximately the same. Indeed, it amounts to homogeneous first and second moment of the
agents’ stationary beliefs. This shows that in highly fluid social networks, most of the regular agents
are affected by the stubborn agents in approximately the same way.

Observe that, provided that nπ∗ remains bounded from below by a positive constant, as we
will prove to be the case in all the considered examples, a social network is highly fluid when
the stationary measure π(S) of the stubborn agents set vanishes fast enough to compensate for
the possible growth of the mixing time τ , as the network size n grows large. Hence, intuitively,
Theorem 4 states that, if the set S and the mixing time τ are both small enough, then the influence
of the stubborn agents will be felt by most of the regular agents much later then the time it
takes them to influence each other, so that their beliefs’ empirical averages and variances will
converge to values very close to each other. Theorem 4 is proved in Section 6.3. Its proof relies
on the characterization of the expected stationary beliefs and variances in terms of the hitting
probabilities γv

s . The definition of highly fluid network implies that the (expected) time it takes
a Markov chain to hit the set S, when started from most of the nodes, is much larger than the
mixing time τ . Hence, before hitting S, the chain looses memory of where it started from, and
approaches S almost as if started from the stationary distribution π.

It is worth stressing how the condition of homogeneous influence may significantly differ from
an approximate consensus. In fact, the former only involves the (first and second moments of)
the marginal distributions of the agents’ stationary beliefs, and does not have any implication for
their joint probability law. A distribution in which the agents’ stationary beliefs are all mutually
independent would be compatible with the condition of homogeneous influence, as well as an
approximate consensus condition, which would require the stationary beliefs of most of the agents
to be close to each other with high probability. We will study this topic in ongoing work.

Before proving Theorem 4 in Section 6.3, we present some examples of highly fluid social networks
in Section 6.2.
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Figure 10. Homogeneous influence in Erdös-Rényi graphs of increasing sizes. The population sizes are n = 100 in
(a), n = 500 in (b), and n = 2000 in (c), while p = 2n−1 log n. In each case, there are two stubborn agents randomly
selected from the node set V with uniform probability and holding beliefs equal to 0, and 1, respectively. The figures
show the empirical density of the expected stationary beliefs, for typical realizations of such graphs. As predicted by
Theorem 4, such empirical density tends to concentrate around a single value as the population size grows large.

6.2. Examples of large-scale social networks We now present some examples of families
of social networks that are highly fluid in the limit of large population size n. All the examples will
follow the canonical social network construction of Examples 1 and 5, starting from an undirected
graph G.

We start with an example of a social network which is not highly fluid.
Example 6. (Barbell) For even n≥ 6, consider the barbell-like topology introduced in Exam-

ple 3. It is not hard to see that the minimum in the right-hand side of (38) is achieved by W = V0,
so that the conductance satisfies

Φ =
(n

2

(n

2
− 1

)

+1
)−1

≤
4

(n+1)2
.

It then follows from (39) that τ ≥ (4Φ)−1≥ (n+1)2/16. Since dv ≥ n/2− 1 for all v, it follows that
the barbell-like network is never highly fluid provided that |S| ≥ 1. In fact, we have already seen
in Example 3 that the expected stationary beliefs polarize in this case, so that the influence of the
stubborn agents on the rest of the society is not homogeneous.

Let us now consider a standard deterministic family of symmetric graphs.
Example 7. (d-dimensional tori) Let us consider the case of a d-dimensional torus of size

n=md, introduced in Example 4. Since this is a regular graph, one has π∗n= 1, and π(S) = |S|/n.
Moreover, it is well known that (see, e.g., [31, Theorem 5.5]) τ ≤ Cdn

2/d, for some constant Cd

depending on the dimension d only. Then, τπ(S) ≤ Cd|S|n
2/d−1. For d ≥ 3, this implies that the

social network with toroidal topology is highly fluid, and hence homogeneous influence holds,
provided that |S|= o(n1−2/d).

In contrast, for d≤ 2, our arguments do not allow one to prove high fluidity of the social network.
In fact, using the explicit calculations of Example 2, one can see that the stubborn agents’ influence
is not homogeneous in the case d = 1, since the expected stationary beliefs do not concentrate.
On the other hand, in the case d = 2, we conjecture that, using the explicit expression (33) and
Fourier analysis, one should be able to show that the condition |S|= o(n1/2) would be sufficient for
homogeneous influence. In fact, a more general conjecture is that |S|= o(n1−1/d) should suffice for
homogeneous influence, when d≥ 2. Proving this conjecture would require an analysis finer than
the one developed in this section, possibly based on discrete Fourier transform techniques. The
motivation behind our conjecture comes from thinking of a limit continuous model, which can be
informally summarized as follows. First, recall that the expected stationary beliefs vector solves
the Laplace equation on G with boundary conditions assigned on the stubborn agent set S. Now,



Acemoglu, Como, Fagnani, and Ozdaglar: Opinion fluctuations and disagreement

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 27

consider the Laplace equation on a d-dimensional manifold with boundary conditions on a certain
subset. Then, in order for the problem to be well-posed, such subset should have dimension d− 1.
Similarly, one should need |S| = Θ(n1−1/d) = Θ(md−1) in order to guarantee that the expected
stationary beliefs vector is not almost constant in the limit of large n.

We now present four examples of random graph sequences which have been the object of extensive
research. Following a common terminology, we say that some property of such graphs holds with
high probability, if the probability that it holds approaches one in the limit of large population
size n.

Example 8. (Connected Erdös-Rényi) Consider the Erdös-Rényi random graph G =
ER(n,p), i.e., the random undirected graph with n vertices, in which each pair of distinct vertices
is a link with probability p, independently from the others. We focus on the regime p= cn−1 logn,
with c > 1, where the Erdös-Rényi graph is known to be connected with high probability [21,
Thm. 2.8.2]. In this regime, results by Cooper and Frieze [16] ensure that, with high probability,
τ =O(logn), and that there exists a positive constant δ such that δc logn≤ dv ≤ 4c logn for each
node v [21, Lemma 6.5.2]. In particular, it follows that, with high probability, (π∗n)−1 ≤ 4/δ. Hence,
using (37), one finds that the resulting social network is highly fluid, provided that |S|= o(n/ logn),
as n grows large. Figure 10 shows the empirical density of the expected stationary beliefs for typi-
cal realizations of Erdös-Rényi graphs of increasing size n= 100,500,2000, and constant stubborn
agents number |S|= 2.

Example 9. (Fixed degree distribution) Consider a random graph G =FD(n,λ), generated
as follows. Fix V with |V| ≥ 2, and let {dv : v ∈ V} be a family of independent and identically
distributed random variables with P(dv = k) = λk, for k ∈N. Assume that λ1 = λ2 = 0, that λ2k >
0 for some k ≥ 2, and that the first two moments

∑

k λkk, and
∑

k λkk
2 are finite. Then, let

G = FD(n,λ) be the multigraph of vertex set V generated by conditioning on the event En :=
{
∑

v dv is even} (whose probability converges either to 1/2 or to 1 as n grows large) and matching
the vertices uniformly at random given their degree. (See [21, Ch. 3] for details on this construction)
Then, results in [21, Ch. 6.3] show that the mixing time of the lazy random walk on G satisfies
τ =O(logn) with high probability. Therefore, using (37), one finds that the resulting social network
is highly fluid with high probability provided that

∑

s ds = o
(

n/logn
)

.

Example 10. (Preferential attachment) The preferential attachment model was introduced
by Barabasi and Albert [8] to model real-world networks which typically exhibit a power law
degree distribution. We follow [21, Ch. 4] and consider the random multigraph G = PA(n,m)
with n vertices, generated by starting with two vertices connected by m parallel links, and then
subsequently adding a new vertex and connecting it to m of the existing nodes with probability
proportional to their current degree. As shown in [21, Th. 4.1.4], the degree distribution converges
in probability to the power law λk = 2m(m+ 1)/k(k+ 1)(k+ 2), and the graph is connected with
high probability [21, Th. 4.6.1]. In particular, it follows that, with high probability, the average
degree d remains bounded, while the second moment of the degree distribution diverges an n grows
large. On the other hand, results by Mihail et al. [35] (see also [21, Th. 6.4.2]) imply that the mixing
time of the lazy random walk satisfies τ = O(logn), with high probability. Therefore, thanks to
(37), the resulting social network is highly fluid with high probability if

∑

s ds = o
(

n/logn
)

.

Example 11. (Watts & Strogatz’s small world) Watts and Strogatz [50], and then New-
man and Watts [40] proposed simple models of random graphs to explain the empirical evidence
that most social networks contain a large number of triangles and have a small diameter (the lat-
ter has become known as the small-world phenomenon). We consider Newman and Watts’ model,
which is a random graph G = NW(n,k, p), with n vertices, obtained starting from a Cayley
graph on the ring Zn with generator {−k,−k+ 1, . . . ,−1,1, . . . , k− 1, k}, and adding to it a Pois-
son number of shortcuts with mean pkn, and attaching them to randomly chosen vertices. In this
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Figure 11. Homogeneous influence in preferential attachment networks of increasing sizes. The figures show the
empirical density of the expected stationary beliefs, for typical realizations of such graphs. The population sizes are
n = 100 in (a) and (d), n = 500 in (b) and (e), and n = 2000 in (c) and (f), while m = 4. In each case, there are two
stubborn agents holding beliefs equal to 0, and 1, respectively. In (a), (b), and (c), the stubborn agents are chosen
to coincide with the two latest attached nodes, and therefore tend to have the lowest degree. In contrast, in (d), (e),
and (f), the stubborn agents are chosen to be the two initial nodes, and therefore tend to have the highest degrees.
As predicted by Theorem 4, the empirical density of the expected stationary beliefs tends to concentrate around a
single value as the population size grows large. The rate at which this concentration occurs is faster in the top three
figures, where

P

s
ds is smaller, and slower in the bottom three figures, where

P

s
ds is larger.

case, the average degree remains bounded with high probability as n grows large, while results by
Durrett [21, Th. 6.6.1] show that the mixing time τ = O(log3 n). This, and (37) imply that the
network is highly fluid with high probability provided that

∑

s ds = o
(

n/log3n
)

.

6.3. Proof of Theorem 4 In order to prove Theorem 4, we will obtain estimates on the
hitting probability distributions γv.

The following result provides a useful estimate on the total variation distance between the hitting
probability distribution γv over S and the stationary stubborn agent distribution γ.

Lemma 5. Let the social network satisfy Assumption 1 and P ∈ P. Then, for all P ∈ P, and
k≥ 0,

||γv − γ||TV ≤ Pv(US < k) + exp(−⌊k/τ⌋) , v ∈V , (47)

where τ is the mixing time of the discrete-time Markov chain W (k) with transition probability
matrix P (cf. (36)), and US := min{k ≥ 0 : W (k)∈ S} is the hitting time of such chain on S.

Proof. Notice that (47) is trivial when k = 0 or v ∈ S. For k ≥ 1 and a ∈ A, one can reason as
follows. Let ŨS := inf{k′ ≥ k : W (k′) ∈ S}. Thanks to Lemma 4, one has that the distributions of
W (US) and W (ŨS), conditioned on W (0) = a, are given by γa, and

∑

v p
a
v(k)γ

v, respectively. Using
the identity

||µ− ν||TV =
1

2
sup

f∈[−1,1]V

{

∑

v
(µv− νv)fv

}
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(see, e.g., [31, Prop. 4.5]), and observing that the event {US ≥ k} implies {W (US) =W (ŨS)}, one
gets that

∣

∣

∣

∣

∣

∣
γa−

∑

v
pa

v(k)γ
v
∣

∣

∣

∣

∣

∣

TV
=

1

2
sup

f∈[−1,1]V

{

Ea

[

f(W (US))− f(W (ŨS))
]}

=
1

2
sup

f∈[−1,1]V

{

Ea

[1{US<k}

(

f(W (US))− f(W (ŨS))
)]}

≤ Pa (US < k) .

On the other hand, since the Markov kernel v 7→ γv is contractive in total variation distance, one
has that

∣

∣

∣

∣

∣

∣

∑

v
pa

v(k)γ
v− γ

∣

∣

∣

∣

∣

∣

TV
=

∣

∣

∣

∣

∣

∣

∑

v
(pa

v(k)−πv)γ
v
∣

∣

∣

∣

∣

∣

TV
≤ ||pa(k)−π||TV .

Finally, submultiplicativity of the maximal total variation distance from the stationary distribution
(see, e.g., [31, Lemma 4.12]) implies that

||pa(k)−π||TV ≤ exp(−⌊k/τ⌋) .

By applying the triangle inequality and the three bounds above, one gets that

||γa− γ||TV ≤
∣

∣

∣

∣

∣

∣
γa−

∑

v
γa

v (t)γv
∣

∣

∣

∣

∣

∣

TV
+

∣

∣

∣

∣

∣

∣

∑

v
γa

v (t)γv− γ
∣

∣

∣

∣

∣

∣

TV
≤ Pa (US <k)+ exp(−⌊k/τ⌋) ,

thus proving the claim.

Lemma 6, stated below, is the main technical result of this section.

Lemma 6. Consider a social network satisfying Assumption 1. Then,

1

n
|{v ∈V : ||γv − γ||TV ≥ ε} || ≤

1

Ψε
,

for every ε > 0.

Proof. Fix an arbitrary P ∈P, and let π= P ′π be its invariant measure. Let W (k) be a discrete-
time Markov chain with transition probability matrix P . For every nonnegative integer k, station-
arity of π and the union bound yield

Pπ(US < k) = Pπ

(

⋃

0≤j<k
{W (j)∈ S}

)

≤
∑

0≤j<k

Pπ(W (j)∈ S) = kπ(S) , (48)

Combining (48) with Lemma 5, one gets that

∑

v

πv||γ
v − γ||TV ≤ Pπ(US < k) + exp(−⌊k/τ⌋)≤ kπ(S) + exp(−⌊k/τ⌋) .

Choosing k= τ⌊log(e/(τπ(S))⌋ yields

1

n

∑

v

||γv−γ||TV ≤
∑

v

πv

nπ∗

||γv−γ||TV ≤
1

nπ∗

(

τπ(S) log
e

τπ(S)
+ exp

(

− log
e

τπ(S)
+ 1

))

=
1

ψ(P )
.

Then,
ε

n
|{v ∈ V : ||γv − γ||TV ≥ ε}| ≤

1

n

∑

v

||γv − γ||TV ≤
1

ψ(P )
.

The claim now follows from the arbitrarinessss of P ∈P.
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Proof of Theorem 4. Let ys := xs + ∆∗/2−max{xs′ : s′ ∈ S} for all s ∈ S. Clearly |ys| ≤∆∗/2.
Then, it follows from Theorem 3 that

∣

∣

∣
E[Xv]−E[Z]

∣

∣

∣
=

∣

∣

∑

s
γv

sxs−
∑

s
γsxs

∣

∣

∣
=

∣

∣

∑

s
γv

s ys−
∑

s
γsys

∣

∣

∣
≤∆∗||γ

v − γ||TV ,

so that (45) immediately follows from Lemma 6.

On the other hand, in order to show (46), first recall that, if θe = 1 for all e ∈
−→
E , then Eq.

(12) provides the transition rates of coalescing Markov chains. In particular, if V (0) = V ′(0), then
V (TS) = V ′(T ′

S), so that ηvv
ss′ = γv

s if s= s′, and ηvv
ss′ = 0 otherwise. Then, it follows from Theorem

3 that
σ2

v = E[X2
v ]−E[Xv]

2

=
∑

s,s′
ηvv

ss′xsxs′ −
(

∑

s
γv

sxs

)2

=
∑

s
γv

sx
2
s−

(

∑

s
γv

sxs

)2

=
1

2

∑

s

∑

s′
γv

sγ
v
s′(xs−xs′)

2 .

Similarly,

σ2
Z =

1

2

∑

s,s′
γsγs′(xs−xs′)

2 ,

so that

|σ2
v −σ

2
Z | ≤

1

2

∑

s,s′
|γv

sγ
v
s′ − γsγs′ | (xs−xs′)

2

≤
1

2

∑

s,s′
|γv

sγ
v
s′ − γsγs′ |∆

2
∗

≤
1

2

∑

s,s′
(γv

s |γ
v
s′ − γs′ |+ γs′ |γ

v
s − γs|)∆2

∗

= ||γv − γ||TV ∆2
∗ .

Now, (46) follows again from a direct application of Lemma 6.

Remark 3. For a stochastic matrix P ∈ P which is reversible, i.e., such that πvPvw = πwPwv

for all v,w ∈ V, (observe that this additional property is enjoyed by the matrix P considered in
Example 5 for the canonical construction of a social network from an undirected graph G) one
can potentially obtain tighter estimates on the homogeneity of the agents’ influence. In fact, one

could use the results on the approximate exponentiality of hitting times (i.e., the property that
the distribution of TS/Eπ[TS ] is close to a rate-1 exponential distribution, see, e.g., [4, Ch. 3.5]) in
order to show that, for a continuous-time Markov chain with transition rate matrix P − I, one has

Pπ(TS ≥ t)≤ (t+ τ)/Eπ[TS ] for all t≥ 0. Using this bound in place of (48), arguments analogous to
those developed in this section imply that τ/Eπ[TS ] = o(1) is a sufficient condition for homogeneous
influence. Observe that, using Markov’s inequality and (48) with k= ⌊1/(2π(S))⌋, gives

Eπ[TS ] = Eπ[US ]≥

⌊

1

2π(S)

⌋

Pπ

(

US ≥

⌊

1

2π(S)

⌋)

≥

⌊

1

2π(S)

⌋(

1−π(S)

⌊

1

2π(S)

⌋)

≥
1− 4π2(S)

4π(S)
.

Hence, this argument would provide potentially a weaker sufficient condition for homogenous influ-

ence in situations where π(S) = o(1/Eπ[TS ]).
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7. Conclusion In this paper, we have studied a possible mechanism explaining persistent
disagreement and opinion fluctuations in social networks. We have considered an inhomogeneous
stochastic gossip model of continuous opinion dynamics, whereby some stubborn agents in the net-
work never change their opinions. We have shown that the presence of these stubborn agents leads
to persistent fluctuations and disagreements among the rest of the society: the beliefs of regular
agents do not converge almost surely, and keep on fluctuating in an ergodic fashion. A duality
argument allows for characterizing expected stationary beliefs in terms of the hitting probabilities
of a Markov chain on the graph describing the social network, while the correlation between the
stationary beliefs of any pair of regular agents can be characterized in terms of the hitting probabil-
ities of a pair of coupled Markov chains. We have shown that in highly fluid social networks, whose
associated Markov chains have mixing times which are sufficiently smaller than the inverse of the
stubborn agents’ set size, the vectors of the stationary expected beliefs and variances are almost
constant, so that the stubborn agents have homogeneous influence on the rest of the society. We
wish to emphasize that homogeneous influence in highly fluid societies needs not imply approxi-
mate consensus among the agents, whose beliefs may well fluctuate in an almost uncorrelated way.
A deeper understanding of this topic is ongoing work.
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