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Abstract— Well-known model predictive control (MPC) theory
for constrained linear time-invariant (LTI) systems is extended
to accommodate hard constraints and cost penalizations on the
spectra of the system’s output trajectories. Thus the proposed
method facilitates enforcing constraints, and placing weights, on
the harmonic content of input-, state- and output-trajectories,
in addition to the usual constrained control objectives. The
proposed methods are demonstrated by the example problem
of reducing torsional vibrations in a drive-shaft.

Index Terms— Model predictive control; Constrained con-
trol; Spectrum control; Frequency cost-functionals

I. INTRODUCTION

Many aspects of constrained MPC theory are by now
well-established [17,25,27,30], and MPC has proven effec-
tive for constrained control because it facilitates enforcing
common geometric constraint objectives on states, inputs
and outputs. However, constraints hamper designing the har-
monic response of the closed-loop system, something readily
achievable in an unconstrained setting using traditional loop-
shaping techniques. The aim of this paper is to establish a
framework for constrained shaping of the output spectrum of
a constrained system, using both cost penalizations, as well
as by enforcing hard constraints, on the harmonic content of
the output signal. To the authors’ knowledge no method to
enforce spectrum constraints yet exists. The contribution of
this paper is a proposal for such a method.

There is a need to design and constrain the spectrum
of constrained systems’ responses. In [31], electromagnetic
interference (EMI) emissions in switch-mode power supplies
were suppressed by regulating the control signal’s switching
spectrum. Control of power converters with imposed load
current spectra was considered in [11]. In [10], electrical
power converters that produce sinusoidal output voltages
with low harmonic distortion were considered. Similarities
of [10,11,31] are that the methods employ a filter, and using
an MPC approach they penalize some function of the filter
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output in order to affect a system’s harmonic response. Filters
are similarly employed here. In [20] an MPC approach and a
variational constraint were utilized to limit switching signals
to appliances on electrical power grids, for the purpose
of reducing mechanical wear-and-tear. The approaches of
[10,11,20,31] are incapable of enforcing hard constraints on
a system’s output spectrum. However, it may be desirable
to enforce such constraints, e.g. to rigorously comply with
EMI emissions regulations [31]. Related matters, although
less closely related, are the approach of [12] for constrained
clipping of audio signals, the method of [36] for achieving
frequency response specifications, the discussion in [28] on
trade-offs of output current spectrum quality in predictive
control of a permanent magnet synchronous machine, the
need in [29] to perform frequency-dependent control actions
for marine craft, and the need in [32] to regulate certain
resonances when earthquake-proofing civil structures.

The proposed approach is described here via discrete-
time LTI systems, although it can be incorporated into a
more general setting. A constrained LTI system is augmented
by two LTI filters. One of the filters is employed to yield
frequency cost-functionals which induce a coloration of the
output spectrum. This is an extension of the continuous-
time spectrum shaping results of [19,24,33]. The other filter
is used to generate spectrum information that may then be
constrained. The augmented system is LTI and may be made
subject to well-known LTI-MPC methods.

Paper structure: The spectrum control problem is defined
in Section II and the unconstrained spectrum control problem
is solved in Section III. Spectrum constraints and the asso-
ciated filter are discussed in Section IV, and in Section V an
augmented state-space modeling framework is presented that
allows the constrained spectrum control problem to be tack-
led using well-known LTI-MPC methods. In Section VI the
proposed methods are demonstrated by numerical examples.

Notation: We denote by R the set of reals, by C the set
of complex numbers, by N the set of non-negative integers,
by N the set of consecutive non-negative integers {n, ...,
m}, by I, the n x n identity matrix, by 0 the zero matrix
with appropriate dimension, by p(A) the spectral radius of
a matrix A, by j the imaginary unit, and by {zx}7, a
sequence of elements z; Vk € NJ".

II. SPECTRUM CONTROL PROBLEM SETTING

We consider the constrained discrete-time LTI system

Tpr1 = Azp + Bug (D
Frp +Gu < W 2)

with step k£ € N, state x € R™, and control input u € R™.



Assumption 1: The pair (A, B) is stabilizable.

Assumption 2: At each step k the state z; is known.

Assumption 3: W > 0 (origin in interior of constraints)
We define a generalized output signal

2z = Cxp+ Du, € RP.

Note that we consider control laws based on state-feedback,
given Assumption 2. The output 2 is not a measured system
output, it is a mathematical construct defined solely to denote
a signal of which to penalize and constrain the spectrum. As
z is a linear combination of x and u the proposed method
provides a unified framework for constrained spectrum shap-
ing of input-, state-, and measured output-trajectories, al-
though measured outputs are ignored in this paper.

Assumption 4: z; =0 Vk <O

In order to access the spectral components of z we
consider the discrete-time Fourier transform (DTFT) Z
R — CP of output trajectory {z;}/>° __, defined as follows:

k=—o00"

Z(w) = o eIk

One objective of this paper is to shape the DTFT spectrum
Z(w) of the output trajectory using frequency weightings.

The second objective of this paper is to enforce hard con-
straints on the frequency components of the output trajectory.
There are various desirable and implementable approaches,
and which alternative is appropriate depends on the problem
setting. In this paper we aim to constrain the magnitude of
signal components of distinct frequencies w;, ¢ € Nf, e.g.
the plant’s resonant frequencies. Any number 7 of distinct
frequencies can be accommodated. We denote by Z(w;, k),
Z :R x N — C” a time-localized interpretation of Z(w;),
made at current time step k, based on past output values
2z, with [ in the temporal vicinity of k. The exact meaning
of Z(w;, k) is discussed in Section IV, but it is similar in
spirit to, although more general than, the short-time Fourier
transform (STFT) [6]. Then, employing this notion, the
spectrum constraint objective is to enforce general mixed
constraints of the form

Qi(zr, up, [Z2(w1, k)], | 2w k)] ) <0 VieN] (3)

at all steps k, where the functions §2; specify the con-
straints, and s is the total number of spectrum constraints.
Having such mixed constraints allows state-dependent spec-
trum constraints, e.g., “at high speed do not tolerate large
oscillations”. Alternatively one could formulate spectrum-
dependent input constraints, e.g., “partially disregard pilot
commands when the aircraft’s phugoids are excited”.

For simplicity, the proposed constrained spectrum control
problem setting, and solution strategy, is presented in this
paper via the problem of linear-quadratic regulation (LQR),
although the described methods can straightforwardly tackle
more general problems, like set-point/reference tracking, and
also the robust, etc., variations of these. For initial state
x( the objective then is frequency-weighted and spectrum-
constrained discrete-time LQR Problem 5.

Problem 5: Determine:

{up(zo)}iZo = arg {uril}izgzoﬁff: 17 (w)Z(w)]3 dw
+  Yito | 21 Quk + ul Ruyg + 2uj Sz, |

subject to (2) and (3) for all £ € N.

Weights 0, R, S have their usual LQR interpretations and
must satisfy [g ;T} > 0. The weighting function F : R —
C?*? is employed to induce a coloring of spectrum Z(w).

III. UNCONSTRAINED SPECTRUM LQR

In this section we derive the unconstrained solution to
Problem 5. This result is very similar to the proposition
described informally in [11], and is a discrete-time version
of the result of [19,24,33] for continuous-time unconstrained
frequency-weighted LQR.

Suppose frequency weighting function F(w) is realized by

Flw) = G (ejwfnw — A1)71 Bi+7D; ,
i.e. F(w) is the transfer function of discrete-time LTI filter

Cep1 = A +Biz , Yn = CiGe +Dizp (4)

with state ( € R™. We make Assumption 6 about filter (4).
Assumption 6: ¢, =0 Vk <0, p(A;) <1, (=0

We next define the following parameters for later use:

gy = [ap ¢ }T , M= 4y

X A 0 - B

A = [310 Al] ) BZ:{&D]

O = [QJrCTDlTDlC CTD;cl]
e Cre

R = R+D'D]DD

S = [S+D™D{D,C D'DIC | .

Assumption 7: R =0, Q =0, (Q%,A) detectable.

Note that by Assumptions 1 and 6 the pair (A, B) is
stabilizable. Then consider a matrix P € R™"*" satisfying
Riccati Eq. (5) and note that by Assumptions 1, 6 and 7
such a P exists and is unique. Further define feedback gain
K according to (6). We can then state and prove Lemma 8.

P = ATPA+Q- 5)
[BTPA+ 8] (R+ B PB)"[B"PA+ 5]
K = —(R+B"PB)"'[BTPA+ 9] (6)

Lemma 8: The optimal solution to Problem 5, in the ab-
sence of constraints (2) and (3), is given by

ur = Vk e N . (7

Proof: Let U(w), ¥ : R — C7 denote the DTFT of the
output ¢ of filter (4). Then by Parseval’s Theorem [3,7,21]:

+oo
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Thus the unconstrained solution to Problem 5 is equal to
{uk(z0)}io

= arg min
{uk }koc:[)

Z [ Qzy + uj, Rug + 2ug Sz + g ]
k=0
= arg{ m}in Yoo [i;@i‘k + uf Ruy, + 2u£§£k}

Uk =0
with 1 = flick —|—Buk, for which (7) provides the solution
by well-known LQR theory. (]

IV. FORMULATING SPECTRUM CONSTRAINTS

In this section we address the formulation of spectrum
constraints (3). For each frequency w; that we wish to
constrain we employ a frequency sampling filter [4], that
at each step k receives the output z; as an input, and
that has a transfer function with a magnitude response of
unity at w;, and zero otherwise. The filter output is then
constrained. Ideal filters are not realizable, thus in practice it
is not possible to constrain singular frequencies, but generally
spectrum constraints are enforced across the filter’s pass-
band'. Note, however, that in practice it may be preferable
to use non-ideal filters, with a substantial pass-band, because
that allows constraining signals in a band of frequencies
using just one filter. As mentioned above, various other
constraint strategies are possible, and the preferred choice
depends on the application details. Frequency “binning” or
integral spectrum constraints are an alternative to the strategy
presented here (see Section VII).

In this paper we employ LTI filters of the form

Ehpr = A +Boz , b = Co&p +Dazy (8)

with state £ € R™® and output ¢ € R, and we make the
following assumption.

Assumption 9: ¢, =0 Vk <0, p(A2) <1, & =0

We wish to formulate spectrum constraint (3) in a general
form that is tractable for optimization in MPC, so henceforth
we restrict the discussion to the formulation of (convex)
second-order cone (SOC) constraints [9]. The goal is then
to design control laws such that, in addition to geometric
constraints (2), system (1) satisfies SOC spectrum constraints

©:[af uf of ] +6:], < [z} uf of]+6

for all ¢« € Nj, where s is the number of constraints,
and entities ©;, 0;, v;, d; are design parameters. Placing
SOC constraints on the spectrum allows us to formulate a
wide variety of convex constraints (3), and an example is
given at the end of this section. Note that SOC constraint
(9) subsumes linear and quadratic constraints [9]. To be
meaningful for constrained LQR we make Assumption 10.

Assumption 10: ||6;]|2 < §; Vi € Nj (origin in interior)

There are a large number of design decisions to be made
when choosing filter (8) and constraints (9), and a thorough

IThe term “pass-band” is a little misleading in this context, because
signals that fall within the pass-band are those constrained.

discussion is beyond the scope of this paper. Outlined below
are some basic design considerations.

Finite impulse response (FIR) filters are attractive on the
one hand. They are simple to implement, and inherently
stable, because A5 is nilpotent. The length of time the output
21, can affect the spectrum constraint is determined by the
FIR filter order, because the impulse response of an Mth
order FIR filter is exactly M +1 steps long. Furthermore,
any number of Mth order FIR frequency sampling filters
can be implemented with a common state £, where the state
¢ is simply a shifting memory bank of past output values, and
each filter occupies one row of output matrices Co and Ds.
For example filters based on the discrete Fourier transform
(DFT) [21,35] could be used. This is the approach employed
in Section VI-B, and described below. Note that the DFT is
a complex mapping, but linear, so the real and imaginary
parts are easily determined separately. Simple magnitude
constraints imposed on the outputs of DFT based filters
are then implemented using quadratic constraints. Magni-
tude constraints that depend linearly on the state or input
are implemented using SOC constraints. Approximations
of magnitude constraints can be implemented using only
linear constraints. Alternatively, FIR filters based on other
transforms, e.g. the discrete cosine transform (DCT) and
discrete sine transform (DST) [1,26,34], could be employed,
as is done in Section VI-A. The DCT and DST determine
the frequency components in terms of cosine and sine basis
functions, respectively, and are real mappings. While deriva-
tives of the DFT, the DCT and DST have higher spectral
resolution for the same length of input data sequence.

FIR filters with higher selectivity require higher filter
orders (see Fig. 1), which leads to larger state dimension
ng. In contrast infinite impulse response (IIR) filters can be
designed to be more selective for smaller filter orders and
state dimensions. However, for a fixed filter order, increasing
the selectivity means that p(A2) — 1. This implies that
the length of time that historical outputs z; can significantly
affect the current filter output ¢, becomes longer. This limi-
tation is analogous to that of FIR filters — to distinguish two
signals of increasingly similar frequency requires observing
the two signals for increasing lengths of time.

Windows are a key element to consider when determin-
ing spectra from finite-length signal trajectories, and these
attempt to eliminate spectral “pollution” introduced by the
finite signal length. The authors have no rigorous design
advice, but the Hamming window, proven effective in signal
processing, has demonstrated to be far superior to a simple
rectangular window, and therefore is employed in Section VI.

In Fig. 1 four FIR filters’ responses, of increasing filter
order, are plotted. The filters are based on the DCT, and
for simplicity are set to sample a signal of a quarter the
sampling frequency. The reduction of side-lobes due to the
Hamming window is clear, but this comes at the expense of
lower selectivity, for a filter of the same order.

In Section VI we make use only of FIR filters and
Hamming windows, although the proposed methods hold for
both FIR and IIR filters, and for any window scheme.
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Fig. 1. Magnitude response of Mth order FIR frequency sampling filter

based on the DCT with M € {3,11,31,301}. Larger M = more
selective filter. Top: Rectangular window. Bottom: Hamming window.

As a demonstration of the proposed approach, suppose z
is scalar, and that we need a simple magnitude constraint,
based on the DFT, on output signals of frequency @, and
we believe that at each step k considering a 4-step historical
output sequence {zl}{“:,%3 gives a good trade-off between
filter selectivity and impulse response length (delay). Thus

Z?:o Zk+1-3 e lw
= Z?:o (cos(lw) — jsin(l®)) zp4i1—3
= o1 — jOég

Z(@, k) (10)

and for some [ (positive scalar real) we want to enforce

[Z@ b = ai+a3 < 8.
We implement this by defining
0 00 1
A = 100 By = 0
10 1 0 0
cr cos(20)  cos(1lw)  cos(0w)
27 | —sin(20) —sin(l@) - sin(0@)
o cos(3w)
Dy = — sin(3w)

and subsequently enforce the quadratic constraint
pon < B

The above derivation uses a rectangular window, but any
non-rectangular window can easily be incorporated into (10).

In the example above (10) is the STFT of z, and thus
constraint (11) is a constraint on the spectrogram [6] of z.

Quadratic constraint (11) can be approximated arbitrarily
closely by polyhedral constraints on ¢,. Such polyhedral
constraints facilitate formulating common linear program-
ming (LP) and quadratic programming (QP) problems [9].

Y

V. FULL LTI STATE-SPACE MODEL FOR MPC

In this section we construct a fully augmented state-
space model that permits the formulation of Problem 5 in

a standard way. We define

e o= o &
- A 0 O - B
A = BiC A 0 , B:=| BiD
B2C 0 Ag BQD
Q = diag(Q,O) ., R:=R, § := [.SA' 0]
and consider augmented LTI system (12):
Tpy1 = AZy + Buy, (12)

Constraints (2) and (9) are straightforwardly formulated
as SOC constraints on [Zj,u] . The solution to Problem 5
is then equal to the solution to Problem 11.

Problem 11: Determine:

{up(zo)} oy = argmin{uk}zozo

>oreo | Zh QTk + uf Ruy, + 2u] STy, |
subject to (2) and (9) for all k£ € N.
Lemma 12: The pair (A,B) is stabilizable if and only if
the pair (A, B) is stabilizable.
Lemma 13: R >0, Q > 0, (Q%H@) detectable.

Lemmata 12 and 13 are direct consequences of Assump-
tions 1, 6, 7, and 9, and no further proofs are provided.

Problem 11 can now be tackled using well known LTI
MPC theory [17,25,27]. MPC details are not discussed in
this paper, because given the modeling framework presented
in this section, the MPC methods employed in the examples
in Section VI are standard. As mentioned above, Problems 5
and 11 are LQR problems, however, the proposed frequency
cost-functionals and spectrum constraint mechanism can
straightforwardly be incorporated into more general prob-
lems, e.g. tracking problems [14,22] (as we do in Section VI),
and also robust versions of these [2,15,18,23] (robustness is
ignored throughout this paper).

In MPC design we frequently make use of invariant
sets [5,13,16], because these are generally required to give
guarantees of recursive feasibility, stability, optimality and
robustness [27]. Invariant sets for systems subject to SOC
constraints cannot be determined (at present), thus it may
be desirable to limit oneself to either linear or quadratic
constraints (2) and (9), for which invariant sets may be
characterized. The framework proposed here generally leads
to models with high state dimension 7, even if the original
system’s state dimension n is small. Thus the complexity
of computing polyhedral invariant sets may be prohibitive.
However, in some situations it is not required to compute
invariant sets in R”, instead invariant sets of lower dimension
may be employed (detailed discussion omitted for brevity).

VI. NUMERICAL EXAMPLES

A. An illustrative toy example

We consider the system xy+1 = ug, 2 = ) with scalar
x and u, and no constraints (2). The reason for choosing the
trivial dynamics is to demonstrate the effects and idiosyn-
crasies of spectrum weighting and spectrum constraining,
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Fig. 2. Toy example: Low (top), medium (center) and high (bottom)
weighting on high-frequency component. State x: blue. Reference: red.

and differences between the two, without mixing in spectral
coloration due to the plant’s intrinsic transfer characteristics.
The control objective is to track a state-input reference
trajectory that is known a priori. This system can clearly be
controlled to track any (known) reference trajectory, without
errors, using any length of prediction horizon. The reference
trajectory is 200 steps long, with two periods of a low-
frequency signal of large amplitude, superimposed onto a
high-frequency signal of 2-step period length and small
amplitude, and with a constant beginning and end. The state-
reference trajectory is plotted in red in Figs. 2 to 6. We
choose a prediction horizon length of 30, and weighting
matrices R=0Q =1, S =0.

Filters (4) and (8) are 3rd order FIR filters based on
the DCT in combination with a Hamming window (details
omitted for brevity). Basically, at step k the filters send
the 4-step output trajectory {z;}F_, 5 through a Hamming

160 200
Step k&

Fig. 4. Toy example: Loose (top), medium (center) and tight (bottom)
constraint on high-frequency component. State x: blue. Reference: red.

window, compute the DCT, then either the highest frequency
component, or the DC value, is penalized and constrained,
depending on the case, as explained below.

Plotted in Figs. 2 and 4 are the state trajectories resulting
from spectrum weighting (no constraints) and spectrum con-
straints (no weighting), respectively, on the high-frequency
component. Three weightings and constraints each are pre-
sented, and these were tuned to give a similar residual high-
frequency component (tuning details omitted). The high-
frequency component is clearly smoothed out in Fig. 2, while
large transitions are performed when needed. In contrast, in
Fig. 4 the constraints effectively limit the slew-rate, and large
reference transitions lead to large tracking errors.

Plotted in Figs. 3 and 5 are the state trajectories resulting
from spectrum weighting (no constraints) and spectrum con-
straints (no weighting), respectively, on the DC component.
Three weightings and constraints each are presented, and

o

o

o

0 40 80 120 160 200
Step k

Fig. 3. Toy example: Low (top), medium (center) and high (bottom)
weighting on DC component. State x: blue. Reference: red.

0 40 80 120 160 200
Step k

Fig. 5. Toy example: Loose (top), medium (center) and tight (bottom)
constraint on DC component. State z: blue. Reference: red.



%

%

,

L )
0 40 80 120 160 200
Step k

Fig. 6. Toy example: State-dependent spectrum constraints on high-
frequency component. State x: blue. Reference: red.

these were tuned to give similar residual DC components
(tuning details omitted). The DC component is clearly re-
moved in both cases. Interestingly, the weighting introduces
significantly more high-frequency “ringing” before the high-
frequency reference trajectory starts, and after it has ended.
Furthermore, Fig. 3 displays Gibbs phenomenon. Note, how-
ever, that it is quite coincidental that the other figures do not
display Gibbs phenomenon. In the authors’ experience Gibbs
phenomenon frequently occurs without careful filter design,
and especially so for certain combinations of prediction
horizon length, filter order and window function. Note that
in this example we are penalizing and constraining a single
frequency component — in general a more even weighting
and/or constraining avoids the “water-bed effect” of shifting
signal energy to other frequencies.

Plotted in Fig. 6 are three examples with state-dependent
spectrum constraints — the high-frequency constraint is
tighter as the state is larger (top), as the state is smaller
(middle), and as |z| is larger (bottom). Using the proposed
framework it is not possible to specify a state-dependent
spectrum constraint that tightens when |z| becomes smaller,
as such a constraint is non-convex. Note that the convex
state-dependent spectrum constraints of Fig. 6 are easily
implemented in the LTI setting with mixed constraints (9).
In contrast, state-dependent weightings cannot be accom-
modated in an LTI setting. They could be approximated in
an LTI setting using mixed linear costs, but to implement
rigorously may require a PWA hybrid-systems approach.

B. Torsional vibration control example

The objective in this example is torsional vibration control
in a drive-shaft. Torsional vibrations are oscillations of the
relative angular positions and velocities of the elements of a
shaft. They often occur unexpectedly and can cause extensive
damage [8,37]. Note that the purpose of this example is to
demonstrate the spectrum weighting and spectrum constraint

K1 K2

v3
141 v2

Fig. 7. Vibration control example: Simple drive-shaft model.

method, and that the presented results are not the optimal tun-
ing for suppression of torsional oscillations in a drive-shaft.

A simple model of a drive-shaft is depicted in Fig. 7,
and consists of three concentric rotating discs connected by
torsional spring-damper units. The control input is a (scalar)
torque applied to disc 1, and disc 3 is connected to a fixed
load by a torsional damper. The following parameters are
used: J; = Jp = 10kgm?, J3 = 10- Jy, k1 = 10* Nm/rad,
ko =10 - k1, 1 = v3 = v3 = 0.1 Nms/rad. We denote by
01, 02, 03 the angular positions of the discs. The absolute
angular positions are irrelevant here, of importance are the
relative angles between adjacent discs. The plant can be mod-
eled by a continuous-time LTI system with state and output

xr = [ (91 — 92) (92 — 03) él 92 0.3 }T S R
z = 10%0; —6) €R .

The units of output 2 are [10~%rad] (tenths of milli-rad).
The continuous-time system is sampled at 250 Hz using a
zero-order hold on the input. The subsequent application of
MPC is performed on the resulting discrete-time system.

The control objective is to perform a unit step change
in the output, while avoiding exciting the normal modes
of vibration of the system. The open-loop system has two
resonances, at roughly 5 Hz and 17 Hz — see Fig. 8.

We first employ a standard MPC strategy with cost matri-
ces @ = diag(300,0,0,0,0), R =1, S = 0, and a prediction
horizon length of 30. The output response is plotted in blue
in Figs. 9 and 10. Clearly the response is highly oscillatory,
with excitation predominantly of the 17 Hz resonance.

We next introduce a frequency weighting (no spectrum
constraints), to specifically target the 17 Hz resonance. We
choose filter (4) to be a 3rd order Butterworth filter, tuned
to 17 Hz, with the following state-space matrices:

525 —2.97 1.85 —0.67 0.26 —0.18
4 0 0 0 0 0
0 2 0 0 0 0

A= 0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 025 0

B = [00625 0 000 0]

C; = [369 —261 130 -34 19 -30 ]-107*

Dy = 439-107%.

The filter’s magnitude response is plotted in red in Fig. 8.
Note that the frequency weighting can be tuned by scaling
the filter’s output matrices C; and D;. Plotted in Fig. 9 are
the input and output trajectories for two different Butterworth
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Fig. 8. Vibration control example: Magnitude frequency response of plant
(blue) and 3rd order Butterworth frequency weighting filter F(w) (red).

filter weightings, one small (red), one large (black). It can
be seen that an increased Butterworth filter weighting more
effectively suppresses the 17 Hz oscillations. However, this
comes at the expense of higher overshoots.

We next introduce spectrum constraints (no frequency
weighting), again targeting the 17 Hz resonance. We choose
filter (8) to be based on the DFT using a history of 41 output
values, and enforce quadratic spectrum constraints analogous
to the example of (11). The resulting input and output
trajectories are plotted in red in Fig. 10. The oscillations in
the output are clearly removed very effectively, but are not
removed completely as in the case when employing a heavy
frequency weighting. An advantage of spectrum constraints
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Fig. 9. Vibration control example: Input and output trajectories for three

different MPC schemes: Standard MPC (blue), Butterworth-MPC with low
weight (red), and Butterworth-MPC with high weight (black). The reference
signal is a unit step change in output at ¢ = 0.1s.

over frequency weighting is the absence of an overshoot, but
the price for this is a somewhat sluggish step response.

This example demonstrates that both frequency cost-
functionals as well as the proposed hard spectrum constraints
are very useful elements in the repertoire of tools available
to manipulate the response of a constrained system.

VII. CONCLUSION AND FUTURE WORK

In this paper the novel concept of constrained spectrum
control was considered, and an MPC approach for the
constrained shaping of a constrained LTI system’s output
spectra was presented. The salient ingredients are two filters,
one that specifies frequency cost-functionals, and another
that provides a time-localized interpretation of the output
spectra which to constrain. The constrained spectrum control
problem could then be re-cast into a usual LTI framework
and well-known MPC theory applied.

This paper is the first report on a new research direction,
and there is a large number of opportunities to further
explore the described problem setting and proposed solution
approach. The extension to spectrum control of more general
classes of systems, e.g. nonlinear, time-varying, hybrid, etc.,
is obvious. However, there are two fundamental areas that
hold important and unanswered questions, irrespective of the
plant details — recall that the two filters are LTI

The first is the question of what classes of spectrum
constraints are desirable and implementable. The method as
presented can be employed to constrain the magnitude of
signals of a finite selection of frequencies using frequency
sampling filters. However, linear/quadratic integral magni-
tude constraints, and also phase constraints, are tractable
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Fig. 10. Vibration control example: Input and output trajectories for three
different MPC schemes: Standard MPC (blue, same as Fig. 9), Butterworth-
MPC with high weight (black, same as Fig. 9), and spectrum-constrained
MPC (red). The reference signal is a unit step change in output at ¢ = 0.1s.



alternatives. A more complete picture of the possibilities,
with accompanying applications, is required.

The second is the issue of optimal filter and window design
for the different possibilities of spectrum specification. The
use of DFT/DCT-based filters in Section VI was for sim-
plicity, and because they are well understood. The Hamming
window was chosen because it is regarded as effective by
the signal processing community. A plethora of possible fil-
ter/window substitutes exists and a rigorous design method-
ology must be developed — tailored to the purpose of control.
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