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Abstract— A control-theoretic study of complex systems such
as closed-loop neural prostheses exhibits several challenges,
from the design of an optimal feedback control problem to its
solution. In this paper we study one such system, a closed-loop
voluntary movement of a prosthetic finger using electrophysio-
logical activities of a single cortical motor neuron. We develop
an optimal feedback control problem in the nonlinear receding
horizon based terminal set constraint framework. We analyze
the feasibility and stability of the control problem. Further, we
solve the control problem numerically by implementing a local
optimum based nonconvex nonlinear programming algorithm.
Finally, we study effects of visual and proprioceptive feedback
pathways on the closed-loop system. Our results elucidate the
importance of multiple feedback paths in designing a closed-
loop neural prosthetic system.

I. INTRODUCTION

Motor intended neural prostheses, such as artificial limbs, are

driven and controlled by neural activities from the primary

motor cortex (M1). An interface that connects these devices

to the brain is called brain-machine interface (BMI). This

interface contains a noise filter, a decoder to extract motor

intended information from the activities of M1 neurons, a

local prosthetic device movement controller and finally an

encoder to feedback mechanical information, available from

the prosthetic device, to the brain [1]. Thus the brain, the

BMI and the prosthetic device together act as a closed-loop

neural prosthetic system. In this paper, we study this system

in an optimal feedback control framework. Our goal is not

to model the exact system or demonstrate how the brain

controls voluntary movements but to study the importance

of proprioceptive as well as visual feedback in designing a

closed-loop neural prosthetic system.

Motor intended neural prosthetic systems have been stud-

ied extensively in the last two decades. Most of these

studies are either human clinical trials or animal trials [2].

Moreover, these studies neglect the effect of proprioceptive

feedback in designing the prosthetic system. It is well known
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that proprioceptive feedback carries kinematic and dynamic

information of a natural limb back to the brain through

natural afferent pathways. In the case of amputees, this

feedback pathway is lost. Therefore BMIs are considered as

an open-loop or partially closed-loop system in their current

formulations, where the proprioception is either neglected

or partially considered using the subject’s natural limb [3].

Also in the absence of proprioception, the brain is unable

to make error corrections during the voluntary movement of

the prosthetic device subject to external loads. Therefore, to

improve the versatility of movement in case of amputees,

it is necessary to include artificial proprioceptive feedback

from the artificial/prosthetic limbs to the brain.

Recently, micro-stimulation techniques have emerged as

a promising approach in providing artificial proprioceptive

feedback by stimulating appropriate sensory areas of the

brain [4]. Even though these techniques are promising for

developing future BMIs, the experimental trial and error

approach in designing appropriate stimulating sensory in-

put currents may damage a part of the brain or change

the natural functionality of the brain. Therefore, a system-

atic approach that uses optimal feedback control theory is

highly desirable towards developing stimulation enhanced

next generation BMIs. This approach provides flexibility in

designing optimal stimulating sensory input currents and in

analyzing the closed-loop neural prosthetic system under

various feedback scenarios. It allows modulations in spiking

activities of neurons by designing stimulating input currents

and simultaneously studying their effect on the entire system

in a controlled environment. Moreover, this framework may

allow one to obtain an enriched understanding of how our

brain works. Motivated by these facts, we develop an optimal

feedback control framework based on the receding horizon

control architecture [5] for extension/flexion of a finger using

activities of a single cortical motor neuron.

Fig. 1 shows the block diagram representation of the

receding horizon based optimal feedback control design for

the actuation and control of a prosthetic finger in a closed-

loop framework. Here, “Intent” represents the direction and

the goal of the movement. We assume that this intent

information is available to the controller prior to design

of the closed-loop system. “Receding Horizon Controller”

represents the external controller. This controller designs

appropriate “stimulating input current” to stimulate “Cortical

Motor Neuron”. The loop is closed by including “Feedback

Currents” available from the system. Feedback information

available from the “Torque” and the “Movement” of the

“Prosthetic Finger” represents the proprioceptive feedback.

The feedback information available from the “Eye” repre-
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sents the visual feedback.

Fig. 1. Receding Horizon based Optimal Neural Prosthetic Finger Control

Although we develop/use computationally efficient and sim-

plified models to elucidate effects of visual and propriocep-

tive feedbacks in the closed-loop neural prosthetic system,

this control framework is general enough to incorporate

experimentally validated neurophysiology-based models of

the system. The remaining paper is organized as follows.

In section II, we develop the control problem and describe

our assumptions on the system models. This is followed

by feasibility analysis and stability of the receding hori-

zon problem in section III. The formulation of nonconvex

nonlinear constrained optimization problem and approach to

solve this optimization problem is described in section IV.

Then we present a numerical solution and provide results to

demonstrate extension of right hand index finger movement

in section V. The paper ends with a summary.

II. PROBLEM STATEMENT

Receding Horizon Control Problem: We consider an opti-

mal closed-loop neuroprosthetic control problem of the form

min
Is
k+1|k

,Is
k+2|k

,··· ,Is
k+Nc(k)|k

Jp(k) (1a)

such that

∆tm
i|k ≤ ∆ts

i|k ≤ Tf f or k+1≤ i≤ k+Nc(k), (1b)

(θ f |k−θk+Np(k)|k)
2 ≤ ε . (1c)

The cost function Jp(k) is defined as Jp(k) = Tf +

∑
k+Np(k)
i=k+1 ∆ts

i|k at each discrete index k ≥ 0 and represents

a minimum time objective. i | k denotes the ith event at

the index k. Np(k) and Nc(k) are time varying prediction

and control horizon respectively. Np(k) ≥ Nc(k),∀k ≥ 0.

Is
k+1|k, · · · , I

s
k+Nc(k)|k

are stimulating input currents over the

control horizon. We set Is
k+Nc(k)+ j|k = Is

k+Nc(k)|k
for j =

{1,2, · · · ,Np(k)− Nc(k)}. The relationship between these

input currents with the cost function Jp(k) is established

through the Izhikevich model [6] of a single cortical motor

neuron.

Izhikevich Cortical Motor Neuron Model:

v̇(t) = F(v(t))−u(t)+ Is
i|k + I

p

i|k(t), (2a)

u̇(t) = a(bv(t)−u(t)), (2b)

i f v(t)≥ v f , then

v(t)← c and u(t)← u(t)+d.
(2c)

Here, F(v(t)) = 0.04v(t)2 + 5v(t)+ 140. v(t) is the mem-

brane potential (in millivolt (mV)) at real time t (in mil-

lisecond (ms)). u(t) is the membrane recovery variable. The

discrete index i belongs to {k+1, · · · ,k+Np(k)}. I
p

i|k(t) is the

proprioceptive feedback input current. v f = 30mV is the cut-

off membrane potential. a,b,c,d are dimensionless model

parameters. At t = 0, v(0) = c and u(0) = d. Whenever

the membrane potential v(t) exceeds the cut-off potential

v f , the occurrence of an action potential is assumed. We

define ts
i|k as the time of the (i | k)th action potential with

ts
1|0 = 0. The time duration between the two consecutive

action potentials, i.e. the (i | k)th and (i + 1 | k)th action

potential, is called the (i | k)th inter-spike interval (ISI) and is

defined as ∆ts
i|k = ts

i+1|k− ts
i|k. Thus we establish the relation

of ∆ts
i|k in the cost function Jp(k) = Tf +∑

k+Np(k)
i=k+1 ∆ts

i|k with

Is
i|k.

The proprioceptive feedback current I
p

i|k carries informa-

tion about the rate of contraction of muscle fibers as well as

the joint movement. Therefore, we model the proprioceptive

feedback current as I
p

i|k(t) = Kaτi|k(t)+Kpθ̇i|k(t). Ka and Kp

are constant gain parameters. θ̇i|k(t) is the angular velocity

of the prosthetic finger at time t ≥ ts
i|k. τi|k(t) is the torque

induced by the (i | k)th action potential at the joint of the

prosthetic finger. We establish the relation of the torque

τi|k(t) with the timing of action potentials ts
i|k by developing

a dynamical decoder model.

Dynamical Decoder Model:

τi|k(t) =

{

τi−1|k(t
s
i|k)+(t− ts

i|k)α ts
i|k ≤ t ≤ t(τm

i|k)

−(t− ts
i|k−Tf )β t(τm

i|k)≤ t ≤ ts
i+1|k,

(3a)

t(τm
i|k) =

ts
i|kα +(Tf + ts

i|k)β − τi−1|k(t
s
i|k)

α +β
. (3b)

τi−1|k(t
s
i|k) is the measurement of the torque at the time of

the (i | k)th action potential. This torque is induced by the

(i−1 | k)th action potential at time t = ts
i−1|k. We assume that

τ0|0(t
s
1|0) = 0. t(τm

i|k) is the time at which the torque induced

by the (i | k)th action potential reaches its maximum. α and

β are model parameters. Tf assumes a constant value and

defines the maximum time in which the torque induced by

the (i | k)th action potential dies out. This torque is then used

by the prosthetic finger model to extend/flex the finger about

the joint.

Prosthetic Finger Model:

Inθ̈i|k(t) =−knθ̇i|k(t)+ τi|k(t). (4)

Here, θi|k(t) is the angular position of the finger at time

t ≥ ts
i|k. θ̇i|k(t) is the derivative of θi|k(t) with respect to

time t and represents the velocity of the movement. In

is the moment of inertia of the finger about the joint.

knθ̇i|k(t) is the friction term that captures the frictional loss
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during the movement. Unknown model parameters in Eq. (3)

and (4) can be estimated using simultaneous experimental

recordings of cortical motor neuron ISIs and the movement

of a prosthetic finger.

System Constraints: The constraint (1b) defines the min-

imum and maximum limit on an ISI and ensures that the

movement of the prosthetic finger is continuous and smooth.

The minimum limit ∆tm
i|k is defined as max{∆tm,∆t(τm

i|k)}.
∆tm captures the refractory period of the cortical motor

neuron. This means that the cortical motor neuron cannot

fire the next action potential within this time period. ∆t(τm
i|k)

is the time duration, measured from the time of (i | k)th action

potential, in which the torque generated by the (i | k)th action

potential reaches its maximum. The constraint (1c) defines a

target space around the final angular position to be reached

during the voluntary movement of the finger. ε ≥ 0 is a

user defined parameter. θk+Np(k)|k is the prediction of the

angular position of the prosthetic finger in the next Np(k)
ISIs designed by the controller at the index k. θ f |k = θ f −θk|k

is the desired angular movement of the finger at the index

k where θ f is the desired extension / flexion in the finger

assuming that the finger is initially at 0◦.

Finally, we model the visual input in the form of the

difference between the final and current position of the finger.

We include this information in the visual model (“Eye” in

Fig. 1) which directly measures the current position of the

finger. This information is then used by the controller to

design optimal stimulating input current. Eqs. (1a, 1b, 1c,

2, 3 and 4) together form a non-linear optimization problem

which needs to be solved at each sample time.

III. FEASIBILITY AND STABILITY

In this section, we first analyze the feasibility of the control

problem stated in section II at k = 0.

Definition: We say that the control problem stated in sec-

tion II is feasible at k = 0 if there exists a sequence of

Is
i|0 for i = 1,2, · · · ,Nc(0) and Is

Nc(0)+ j|0 = Is
Nc(0)|0

for j =

1,2, · · · ,Np(0)−Nc(0) and thus a corresponding sequence

of ∆ts
i|0 for i = 1,2, · · · ,Np(0) such that constraints (1b) and

(1c) are feasible.

Assumption: There exists a sequence ∆ts
i|0 for i =

1,2, · · · ,Np(0) which satisfies the constraints.

Claim: There exists a sequence Is
i|0 for i = 1,2, · · · ,Nc(0)

and Is
Nc(0)+ j|0 = Is

Nc(0)|0
for j = 1,2, · · · ,Np(0)−Nc(0) corre-

sponding to ∆ts
i|0 for i = 1,2, · · · ,Np(0) respectively.

To show the claim, we consider the following cases:

1) Np(0) = Nc(0) = 1:

a) Eq. (2) has a unique solution (v(t, Is
1|0),u(t, I

s
1|0)) for a

given Is
1|0 and initial conditions [7]. Further, v(t, Is

1|0) is

a continuous function with respect to its arguments.

b) This implies that there is Is
1|0 for a given t = ∆ts

1|0 such

that the membrane potential v(t, Is
1|0) satisfies the relation

v(∆ts
1|0, I

s
1|0) = v f .

c) Moreover, first partial derivatives of v(t, Is
1|0) exist and

are continuous with respect to t and Is
i|0 [8].

d) F(v(t)) in Eq. (2) is convex and v(t) is a monotonically

increasing function in the neighborhood of t = ∆ts
1|0.

e) By the implicit function theorem [9], the partial deriva-

tive of v(t, I1|0) with respect to t at ∆ts
1|0 is non-zero for

all Is
1|0 ∈ (0, Imax) where Imax satisfies v(∆ts

1|0, Imax) = v f

for ∆ts
1|0 = ∆tm.

f) Thus ∆ts
1|0 is a continuous function of I1|0.

g) Further, by writing the differential of

v(∆ts
1|0, I

s
1|0) as dv(∆ts

1|0, I
s
1|0) = 0 implies

d∆ts
1|0

dIs
1|0

=

[−( ∂v(t,I)
∂ I

)/( ∂v(t,I)
∂ t

)]∆ts
1|0

,Is
1|0

.

h) The second order partial derivative of v(t, I) with respect

to t at {∆ts
1|0, I

s
1|0} exists.

i) With the assumption that the second order partial deriva-

tive of v(t, I) with respect to I at {∆ts
1|0, I

s
1|0} also exists,

the second order derivative of ∆ts
1|0 with respect to Is

1|0
exists.

2) Np(0) = Nc(0)≥ 2:

a) Given ∆ts
1|0 and ∆ts

2|0, there are corresponding

Is
1|0 and Is

2|0 respectively which satisfy the

relation v(∆ts
1|0, I

s
1|0,v(0),u(0)) = v f and

v(∆ts
2|0, I

s
2|0,v(∆ts

1|0),u(∆ts
1|0)) = v f .

b) From Eq. (2), v(0) = v(∆ts
1|0) = c and u(0) = d. Also,

u(∆ts
1|0) is a continuous function of ∆ts

1|0 and Is
1|0.

c) Now by the implicit function theorem, ∆ts
2|0 is a contin-

uous function of Is
1|0 and Is

2|0.

d) Moreover, first and second order partial derivatives of

∆ts
2|0 with respect to Is

1|0 and Is
2|0 exist and are continuous.

e) Now by extending above arguments to Np(0) =
Nc(0) > 2, ∆ts

Np(0)|0
is a continuous function of

{Is
1|0, I

s
2|0, · · · , I

s
Np(0)|0

}. Moreover, the first and second

order partial derivatives of ∆ts
Np(0)|0

with respect to

{Is
1|0, I

s
2|0, · · · , I

s
Np(0)|0

} exist and are continuous.

Similarly for Np(0) > Nc(0), one can show that

{∆ts
Nc(0)+1|0, · · · ,∆ts

Np(0)|0
} are continuous functions of

{Is
1|0, I

s
2|0, · · · , I

s
Nc(0)|0

} and their partial derivatives with

respect to {Is
1|0, I

s
2|0, · · · , I

s
Nc(0)|0

} exist and are continuous.

Thus the objective function as well as constraints in

the optimization problem are well behaved functions of

{Is
1|0, I

s
2|0, · · · , I

s
Nc(0)|0

}.

Now assuming the feasibility at k = 0 for the control

problem, the control problem will remain feasible ∀k > 0. At

k= 0, we can find a sequence of Is
i|0 for i= 1,2, · · · ,Nc(0) and

Is
Nc(0)+ j|0 = Is

Nc(0)|0
for j = 1,2, · · · ,Np(0)−Nc(0) such that

the control problem is feasible. At k = 1, we can choose a set

of admissible control inputs [5] Is
i|0 for i= 2,3, · · · ,Nc(0) and

Is
Nc(0)+ j|0 = Is

Nc(0)|0
for j = 1,2, · · · ,Np(0)−Nc(0), assuming

Nc(0) is fixed. This set can steer the θNp(0)|1 to the ε region

of θ f |1. If we continue this way, we find that the control

problem is feasible ∀k > 0 if it is feasible at k = 0.

Stability: The stability of the control problem can be

guaranteed by the terminal set constraint and well behaved

dynamics of the control problem. Now we can use Theorem

(7.5) from [5] to guarantee that for Np(k) > 1, there exists
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control horizon pair (Π(k),Np(k)) such that

Jp(k,Π(k),Np(k))≤ Jp(k,Π(k)
′
,Np(k)−1) (5)

and there exists η(k) ∈ (0,∞) satisfying

Jp(k+1,Π(k+1),Np(k+1))≤ Jp(k,Π(k),Np(k))−η(k),
(6)

where η(k) = ∆ts
k+1|k, Π(k) = {Is

k+1|k, I
s
k+2|k, · · · , I

s
k+Np(k)|k

},

Π(k)
′
= {Is

k+2|k, I
s
k+2|k, · · · , I

s
k+Np(k)|k

} and Is
k+ j|k = Is

k+Nc(k)|k

for j = 1,2, · · · ,Np(k)−Nc(k).

IV. NON-LINEAR OPTIMIZATION PROBLEM

In this section, we write the appropriate first order Karush-

Kuhn-Tucker (KKT) conditions for the non-linear optimiza-

tion problem represented by Eqs. (1a, 1b and 1c). It should

be noted here that the optimization algorithm is the same

for all k. Therefore, we focus on the optimization problem

at k = 0 and write the KKT conditions at k = 0. Basic

requirements for the KKT optimality conditions are that the

Lagrangian function should be twice continuously differ-

entiable with respect to optimization variables. At k = 0,

it is clear from the section III that the objective function,

Jp(0) = Tf +∑
Np(0)
i=1 ∆ts

i|0, and the constraint, defined by Eq.

(1b), are twice continuously differentiable with respect to

{Is
1|0, I

s
2|0, · · · , I

s
Nc(0)|0

} for i = 1,2, · · · ,Np(0). To show con-

tinuous differentiability of the constraint (1c) with respect to

{Is
1|0, I

s
2|0, · · · , I

s
Nc(0)|0

}, we provide the following argument.

From the dependency of τi|0 on ∆ts
i|0 in Eq. (3), it is clear that

θNp(0)|0 is a smooth function of ∆ts
i|0, where i = 1, · · · ,Np(0)

and thus at least twice continuously differentiable with

respect to {Is
1|0, · · · , I

s
Nc(0)|0

}.

To solve the optimization problem, we implemented the in-

feasible interior point algorithm as proposed in [10]. For this,

we wrote h(Is
0) = [∆ts

1|0−∆tm
1|0, · · · ,∆ts

Nc(0)|0
−∆tm

Nc(0)|0
,Tf −

∆ts
1|0, · · · ,Tf − ∆ts

Nc(0)|0
,ε − (θ f |0 − θNp(0)|0)

2]T , where (·)T

denotes the transpose. We reformulated the optimization

problem as follows:

min
I0,w

(Jp(0)−µ
2Nc(0)+1

∑
i=1

logwi) (7a)

subject to

h(Is
0)−w = 0, (7b)

where wi, i= 1,2, · · · ,2Nc(0)+1 are positive slack variables,

µ is the barrier parameter, w = [w1, · · · ,w2Nc(0)+1]
T and Is

0 =
[Is

1|0, · · · , I
s
Nc(0)|0

]T . The first order KKT conditions for the

minimum are given by following equations:




∇Jp(0)−∇h(Is
0)

T λ
−µW−1e+λ

w−h(Is
0)



= 0, (8)

where W is a diagonal matrix with elements of w, λ
is a vector of non-negative Lagrange multipliers, e is the

unit vector of length 2Nc(0) + 1. To solve the first order

KKT condition Eq. (8) numerically, we applied the standard

Newton method. In the symmetric form, the Newton update

for Eq. (8) becomes
[

−H(0) ∇h(Is
0)

T

∇h(Is
0) WΛ−1

][

∆Is
0

∆λ

]

=

[

∇Jp(0)−∇h(Is
0)

T λ
c(Is

0)+WΛ−1(µW−1e−λ )

]

,

(9a)

∆w = WΛ−1(µW−1e−λ −∆λ ), (9b)

where H(0) = ∇2Jp(0) − ∑
2Nc(0)+1

i=1 λihi(I
s
0), c(Is

0) = w −
h(Is

0). Λ is the diagonal matrix with elements of λ . ∆Is
0, ∆λ

and ∆w are the Newton steps in Is
0, λ and w respectively. To

find the descent directions for the Newton steps, we imple-

mented the Markov filter method [11]. Detailed description

of the algorithm is given in [10], [11].

V. NUMERICAL RESULTS

In this section, we study the control problem for four systems

namely closed-loop, partial closed-loop-V, partial closed-

loop-P and open-loop. Table I shows the distinction among

these systems.
TABLE I

SYSTEM DESIGN

System Visual feedback Proprioceptive feedback

Closed-loop Yes Yes

Partial closed-loop-V Yes No

Partial closed-loop-P No Yes

Open-loop No No

The Izhikevich cortical neuron model parameters a,b,c,d
were set to 0.0404,0.2497,−64.4679,21.2777 respectively.

These parameters were computed using the experimental data

recorded from a cortical motor neuron during the right hand

index finger movement in a primate study [12]. ∆tm was

set to 2 ms. The model parameters α,β ,Tf in Eq. (3) were

set to 0.5,0.01,50 respectively. These choices of parameter

allowed us to extend the index finger by 20◦ in the time

interval of 1−2 s. For systems with visual feedback, initial

value of ε was set to 0.2. ε was monotonically decreased

during the receding horizon problem and finally fixed to

0.01. For systems without visual feedback, ε was set to

0.01. Thus the final target location of θ was 19.9◦−20.1◦.
The control horizon Nc(0) was set to 4. Initial guesses

for {I1|0, · · · , INc(0)|0} were set to 25. The initial prediction

horizon Np(0) was computed such that the constraint Eq.

(1c) and thus the receding horizon control problem becomes

feasible at initial guesses. It should be noted here that the

prediction horizon Np(k) was not decreased monotonically

during the receding horizon computation. Eqs. (2, 3 and 4)

were computed numerically using the Euler scheme with the

fixed step size of 10−3.

We solved the receding horizon control problem described

in the section II at each k ≥ 0. For this, we implemented

the optimization algorithm, shown in the section IV, in the

MATLAB programming environment. We set the step length

parameter and the settable scale factor in the optimization

algorithm to their default values, which are given in [10].

Initial values of w were set to h(I). Initial values of the La-

grange multipliers were set to λi = 1/hi for i= 1, · · · ,2Nc and

λ2Nc+1 = 1. We observed that this particular choice works for

almost every problem we solved in our context. With this,
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we analyzed effects of visual and proprioceptive feedback in

designing the closed-loop neural prosthetic system.

It has been shown in BMIs studies that visual as well

as proprioceptive feedback play important role in guiding

voluntary movement tasks such as reaching or grasping [13],

[14]. In [14], it has been shown that the difficulty in using

a prosthetic limb for grasping a virtual object increases as

one or both of these feedback signals are switched off.

Particularly, it may even be impossible to attain the task

goal in the absence of visual feedback. Here, we studied the

importance of visual feedback from a different perspective.

We assumed that it is possible to reach the desired extension

of the finger in the open loop, partial closed-loop-V and

partial closed-loop-P system under nominal conditions. We

set proprioceptive feedback gains Ka and Kp to 0 for the

open-loop and partial closed-loop-V system. For the partial

closed-loop-P system, we set Ka = 1 and Kp = 100. With

this, we studied the effect of visual feedback in the presence

of synaptic noise. We first solved the control problem for

the open-loop system and the partial closed-loop-P system

and computed optimal stimulating input currents for both

systems. This provided us the number of ISIs required to

reach the desired angular position in both systems. It is a

well known fact that synaptic currents are fundamentally

noisy. Therefore we introduced a synaptic noise model (the

Gaussian noise with mean 0 and variance σ2) into the cortical

motor neuron model Eq. (2). We implemented the computed

optimal stimulating input currents on this stochastic model

with σ = 20 and obtained same number of ISIs as in the

absence of noise. Using these ISIs, we computed the final

angular position reached by the finger in the presence of

noise. The top plot in Fig. 2 represents the angular trajectory

with respect to time for the open-loop system in the absence

and presence of synaptic noise as well the partial closed-

loop-P system in the presence of synaptic noise.
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Fig. 2. Importance of visual feedback in designing neural prosthetic
system: Here, the top plot shows the angular position trajectory during
the extension of the finger. The y-axis represents the angular position (θ
measured in degrees) and the x-axis represents the time (t in milliseconds).
“N” indicates the presence of synaptic noise during the design, “WN”
indicates absence of any synaptic noise during the design. The bottom plot
represents modulations in inter-spike intervals (ISIs) of the cortical motor
neuron in the absence and presence of visual feedback information.

Here the angular trajectory of the open-loop system, “Open-

loop (N)”, and partial closed-loop system, “partial closed-

loop-P (N)”, in the presence of synaptic noise clearly shows

that the desired angular position is not reached in both

cases. Therefore, to reach the desired angular position in

the presence of synaptic noise, it is necessary to modify the

number of ISIs. This modification is only possible using

the available information of the prosthetic finger angular

position through the visual feedback. To show this, we solved

the control problem for the partial closed-loop system. We

computed optimal stimulating input currents over the control

horizon at each discrete step for the nominal system and

implemented the first computed stimulating current on the

stochastic neuron model. With the computed ISI using this

model, we computed the present angular position and used

this information as a visual feedback in designing the next

stimulating input current. The angular trajectory for this

system is shown in the top plot of Fig. 2 as “Partial closed-

loop (N)”.

The bottom plot in Fig. 2 shows the modulation in cortical

activities of the neuron in the presence of synaptic noise

for the open-loop, the partial closed-loop-V and the partial

closed-loop-P system. It indicates that the visual feedback

helps the brain in rejecting the effect of synaptic noise during

the extension of the finger by modifying cortical activities of

the neuron in the partial closed-loop system. Next, we study

the role of proprioception in a closed-loop neural prosthetic

system.

Experimental evidence indicates that there is a direct

relation between the muscle force and activities of cortical

motor neurons [13], [15]. Particularly, in [13], it has been

shown that proprioception affects firing rates of cortical

motor neurons significantly and enhances performance of

BMIs in on-line operation. Therefore, here, we studied firing

rate of the cortical motor neuron in the closed-loop and the

partial closed-loop-V designs in the absence of synaptic noise

and investigated the effect of proprioception on the firing

rate of the cortical motor neuron. For this, we assumed that

it is possible to reach the desired extension of the finger

in the absence and presence of proprioceptive feedback.

We set proprioceptive feedback gains Ka and Kp to 1 and

100 respectively. Model parameters as well as number of

control horizon were same for both systems as defined at the

beginning of this section. Fig. 3 shows modulation in ISIs

of the cortical motor neuron over the prediction horizon for

the closed-loop system and the partial closed-loop-V system

in the receding horizon based optimal control framework.

Fig. 3 clearly shows that ISIs of the cortical motor neuron

decreased after including the proprioceptive feedback in the

design. It is also shown in Fig. 3 that these decrements in ISIs

are not significant to conclude necessity of proprioception in

the operation of neural prosthetic system. We suspect that a

possible reason for this small decrement may be the small

gain value of Ka used in the proprioceptive feedback. There-

fore, next, we studied how activities of the cortical motor

neuron change as we change gains in the proprioceptive

feedback.
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Fig. 3. Modulations in inter-spike intervals (ISIs) of the cortical motor
neuron in presence and absence of proprioception for a task of extending a
finger by 20◦ about a joint: Here the y-axis represents ISIs variations (∆ts

in milliseconds) and the x-axis represents the control action index (k).

It was shown in a classical experiment by Evarts [15] that

the change in activities of cortical motor neurons signal the

amplitude of muscle force required to produce movement.

In particular, increase in external load opposing the direction

of movement increases firing rate of cortical motor neurons.

Therefore, we investigated the effect of torque sensed by

proprioception on the activities of the cortical motor neuron.

For this, we fixed the gain Kp to a value of 100 and varied

the gain Ka. It should be noted that the gain Ka carries

torque information in the proprioceptive feedback current

model and resembles the perception of extra force required

by the muscle. To reduce the computational effort, we set the

parameter α in Eq. (3) to 2 so that we reached the desired

angular position of 10◦ in less than 25 prediction steps. With

this setup, we studied variations in ISIs as a function of

the gain Ka. Fig. 4 represents how ISI vary over prediction

horizon for three different values of Ka in the closed-loop

system.
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Fig. 4. Modulations in inter-spike intervals (ISIs) of the cortical motor
neuron in presence of three different proprioceptive feedbacks for a task
of extending a finger by 10◦ about a joint: Here the closed-loop system
includes proprioception as well visual feedbacks, increasing values of the
gain Ka resemble more perception of the required torque for accomplishing
the task, the y-axis represents ISIs variations (∆ts in milliseconds) and the
x-axis represents the control action index (k).

Fig. 4 shows that ISIs of the cortical motor neuron changed

significantly when we increased the torque perceived by the

proprioceptive feedback current.

VI. SUMMARY

In summary, we have developed a generalized optimal con-

trol framework to study closed-loop system behavior in

neuroprosthetics applications. To the best of our knowledge,

this is the first systematic attempt to formalize closed-loop

neuroprosthesis analysis in an optimal predictive control

framework. Our results clearly indicate significant advan-

tages of using an optimal control framework in studying

complex biological systems such as neural prosthetic systems

which may be difficult in an experimental framework. Our

findings suggest that

1) visual feedback is important in rejecting internal noises,

naturally occurs in neuronal network, while reaching the

desired goal of the task;

2) proprioceptive feedback increases firing rate of the single

cortical motor neuron.
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