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Abstract—One of the popular dynamics on complex networks
is the epidemic spreading. An epidemic model describes how
infections spread throughout a network. Among the compartmen-
tal models used to describe epidemics, the Susceptible-Infected-
Susceptible (SIS) model has been widely used. In the SIS model,
each node can be susceptible, become infected with a given
infection rate, and become again susceptible with a given curing
rate. In this paper, we add a new compartment to the classic
SIS model to account for human response to epidemic spread.
Each individual can be infected, susceptible, or alert. Susceptible
individuals can become alert with an alerting rate if infected
individuals exist in their neighborhood. An individual in t he alert
state is less probable to become infected than an individualin
the susceptible state; due to a newly adopted cautious behavior.
The problem is formulated as a continuous-time Markov process
on a general static graph and then modeled into a set of
ordinary differential equations using mean field approximation
method and the corresponding Kolmogorov forward equations.
The model is then studied using results from algebraic graph
theory and center manifold theorem. We analytically show that
our model exhibits two distinct thresholds in the dynamics of
epidemic spread. Below the first threshold, infection dies out
exponentially. Beyond the second threshold, infection persists
in the steady state. Between the two thresholds, the infection
spreads at the first stage but then dies out asymptotically asthe
result of increased alertness in the network. Finally, simulations
are provided to support our findings. Our results suggest that
alertness can be considered as a strategy of controlling the
epidemics which propose multiple potential areas of applications,
from infectious diseases mitigations to malware impact reduction.

I. I NTRODUCTION

Modeling human reactions to the spread of infectious dis-
ease is an important topic in current epidemiology [1], [2],
and has recently attracted a substantial attention [3]–[10].
However, few papers are available in the literature which
consider the human response to the epidemic in a systematic
framework and the contributions to the problem are still in
an early stage. The challenges in this topic concern not only
how to model human reactions to the presence of epidemics,
but also how these reactions affect the spread of the disease
itself. In a general view, human response to an epidemic
spread can be categorized in the following three types: 1)
Change in the system state. For example, in a vaccination
scenario individuals go directly from susceptible state to
recovered without going through infected state. 2) Change
in system parameters. For example, as in [11], individuals
might choose to use masks. Those who use masks have a
smaller infection rate parameter, 3) Change in the contact
topology. For example, due to the perception of a serious
danger, individuals reduce their contacts with other people who
can potentially be infectious [2].

Early results on epidemic modeling dates back to [12]. In
[13] an epidemic model on a homogenous network was stud-
ied. Later on, results for heterogeneous networks were reported
in [14]. Pastor-Satorraset. al. [15] studied epidemic spreading
in scale free networks, showing that in these networks the
epidemic threshold vanishes with consequent concerns for the
robustness of many real complex systems. Wanget. al. [16]
provided the first result for a non-synthetic contact topology,
and studied the epidemic spread dynamic on a general static
graph. Through a local analysis of a mean-field discrete model,
it was shown that the epidemic threshold is directly related
to the inverse of the spectral radius of the adjacency matrix
of the contact graph. More detailed proof was provided in
[17]. Ganashet. al. [18] proved the same result without
any mean-field approximations. A continuous-time epidemic
model was studied by Van Mieghemet. al. [19], where a set
of ordinary differential equations was extracted through mean-
field approximation of a continuous time Markov process.
The relation between the epidemic threshold and the spectral
radius was rigorously proved and further insights about the
steady state infection probabilities were analytically derived.
Preciado and Jadbabaie [20] studied the epidemic spread on
geometric random networks and then in [21], they investigated
the epidemic threshold on a general contact graph with respect
to the network structural information.

A good review on existing results in the literature where
the human behavior is taken into account for epidemic mod-
eling can be found in [2]. Polettiet. al. [22] developed a
population-based model where susceptible individuals could
choose between two behaviors in response to presence of
infection. Funket. al. [8] showed that awareness of individuals
about the presence of a disease can help reducing the size
of the epidemic outbreak. In their paper, awareness and
disease have interconnected dynamics. Theodorakopouloset.
al. [3] formulated the problem so that individuals could make
decision based on the perception of the epidemic size. Most
of the existing results are suitable for a society of well-mixed
individuals, since the contact graph is usually consideredto
be homogeneous (i.e. all nodes have the same degree). To
the authors’ knowledge, the study of the human response in a
realistic network of individuals with a general contact graph
has not been reported so far.

In this paper, we model the human response to epidemic
in the following way. A new compartment is considered in
addition to susceptible and infected states. A susceptibleindi-
vidual becomes alert with some probability rate if surrounded
by infected individuals. An alert node gets infected with a
lower rate compared to a susceptible node does with the
same number of infected neighbors. The contribution of this
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paper is two-fold. 1) Unlike most of the previous results,
no homogeneity assumption is made on the contact network
and the human-disease interaction in this paper is modeled
on a general contact graph. 2) We show through analytical
approaches that two distinct thresholds exist. The two are
explicitly computed. To the authors’ knowledge the existence
of two distinct thresholds is reported for the first time in this
paper, providing a fundamental progress on previous results.
Additionally, this result has the potential to be applied to
mitigate epidemics in several different complex systems, from
human and animal infectious diseases, to malware propagation
in computer and sensor networks.

The rest of the paper is organized as follows. In Section II,
some backgrounds on graph theory, center manifold method,
and the N-Intertwined SIS model (developed in [19]) are
recalled. Section III is devoted to the problem formulationand
model derivations. Stability analysis results of the modelare
provided in Section IV. Finally, results are examined through
numerical simulations in Section V.

II. PRELIMINARILY AND BACKGROUND

A. Graph Theory

Graph theory (see [23]) is widely used for representing the
contact topology in an epidemic network. LetG = {V , E}
represent a directed graph, andV = {1, ..., N} denote the set
of vertices. Every individual is represented by a vertex. The
set of edges is denoted asE ⊂ V × V. An edge is an ordered
pair (i, j) ∈ E if individual j can be directly infected from
individual i. In this paper, we assume that there is no self
loop in the graph, that is,(i, i) /∈ E . Ni = {j ∈ V |(j, i) ∈ E}
denotes the neighborhood set of vertexi. GraphG is said to
be undirected if for any edge(i, j) ∈ E , edge(j, i) ∈ E . A
path is referred by the sequence of its vertices. A pathP of
length k betweenv0, vk is the sequence{v0, ..., vk} where
(vi−1, vi) ∈ E for i = 1, ..., k. Directed graphG is strongly
connected if any two vertices are linked with a path inG.
A = [aij ] ∈ R

N×N denotes the adjacency matrix ofG, where
aij = 1 if and only if (i, j) ∈ E elseaij = 0. The largest
magnitude of the eigenvalues of adjacency matrixA is called
spectral radius ofA and is denoted byρ(A).

B. Center Manifold Theory

Linearization is a useful technique for local stability analysis
of nonlinear systems. However, in the cases where lineariza-
tion results in a linear system with some negative real part and
some zero real part eigenvalues, the linearization method fails.
In these cases, the local stability analysis can be performed by
analyzing a nonlinear system of the order exactly equal to the
number of eigenvalues with zero real parts. This method is
known as center manifold method. In this section, we have a
quick review on center manifold theory. More details can be
found in [24] and [25].

For zs ∈ R
ns andzc ∈ R

nc , consider the following system

żs = Aszs + gs(zc, zs) (1)

żc = Aczc + gc(zc, zs), (2)

where the eigenvalues ofAs ∈ R
ns×ns and Ac ∈ R

nc×nc

have negative and zero real parts, respectively. The functions
gc andgs are twice continuously differentiable and satisfy the
conditions

gi(0,0) = 0, ∇gi(0,0) = 0, i ∈ {s, c}, (3)

where 0 is a vector or matrix of zeros with appropriate
dimensions. There exists a functionh : Rns → R

nc satisfying

h(0) = 0, ∇h(0) = 0, (4)

that zs = h(zc) is an invariant manifold (see [25] for the
definition) for (1) and (2) near the origin. The dynamic system
(1) and (2) can be studied through the reduced system

·
ẑc = Acẑc + gc(ẑc, h(ẑc)). (5)

The invariant manifoldzs = h(zc) is a center manifold for
the system (1) and (2), i.e., every trajectory of (1) and (2)
with the initial conditionzc(0) = ẑc(0) andzs(0) = h(ẑc(0))
satisfieszc(t) = ẑc(t) and zs(t) = h(ẑc(t)). In addition,
small deviation from the center manifold is exponentially
attracted, i.e., if‖zs(0)− h(ẑc(0))‖ is small enough, then
‖zs(t)− h(ẑc(t))‖ will go to zero exponentially.

C. N-Intertwined SIS Model for Epidemic Spread

We have built our modeling based on a newly proposed
continuous-time model for epidemic spread on a graph. Van
Mieghem et. al. [19] derived a set of ordinary differential
equations, called the N-intertwined model, which represents
the time evolution of the probability of infection for each
individual. The only approximation for the N-intertwined
model corresponds to the application of the mean-field theory.

Consider a network ofN individuals. Denote the infection
probability of thei-th individual by pi ∈ [0, 1]. Assume that
the disease is characterized by infection rateβ0 ∈ R

+ and cure
rate δ ∈ R

+. Furthermore, assume that the contact topology
is represented by a static graph. The N-intertwined model
proposed in [19] is

ṗi = β0(1− pi)
∑

j∈Ni

aijpj − δpi, i ∈ {1, ..., N}, (6)

whereaij = 1 if individual j is a neighbor of individuali,
otherwiseaij = 0.

Proposition 1: Consider the N-intertwined model (6). Ini-
tial infection will die out exponentially if the infection strength
τ ,

β
0

δ
satisfies

τ ,
β0

δ
≤

1

ρ(A)
, (7)

whereρ(A) is the spectral radius of the adjacency matrixA
of the contact graph.

Remark 1:The valueτ c = 1
ρ(A) is usually referred to as

the epidemic threshold. For any infection strengthτ > τc,
infection will persist in the steady state. The following result
discusses the steady state values for infection probabilities.

Proposition 2: If the infection strength is above the epi-
demic threshold, the steady state values of the infection
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probabilities, denoted bypssi for the i-th individual, is the
non-trivial solution of the following set of equations

β0

δ

∑

j∈Ni

aijp
ss
j =

pssi
1− pssi

, i ∈ {1, ..., N}. (8)

III. M ODEL DEVELOPMENT

In this paper, we add a new compartment to the classic SIS
model for epidemic spread modeling to propose a Susceptible-
Alert-Infected-Susceptible (SAIS) model. The contact topol-
ogy in this formulation is considered as a general static graph.
Each node of the graph represents an individual and a link
between two nodes determines the contact between the two in-
dividuals. Each node is allowed to be in one of the three states
”S: susceptible”, ”I: infected” , and”A: alert” . A susceptible
individual becomes infected by the infection rateβ0 times
the number of its infected neighbors. An infected individual
recovers back to the susceptible state by the curing rateδ. An
individual can observe the states of its neighbors. A susceptible
individual might go to the alert state if surrounded by infected
individuals. Specifically, a susceptible node becomes alert
with the alerting rateκ ∈ R

+ times the number of infected
neighbors. An alert individual can get infected in a process
similar to a susceptible individual but with a reduced infection
rate 0 ≤ βa < β0. We assume that transition from an alert
individual to a susceptible state is much slower than other
transitions. Hence, in our modeling setup, an alert individual
never goes directly to the susceptible state. The compartmental
transitions of a node with one single infected neighbor are
depicted in Fig. 1.

Fig. 1. The infected population fraction in Example. (a) SISmodel. (b) SAIS
model with. (c) SAIS model with . The Monte-Carlo simulationresults are
shown in blue.

The epidemic spread dynamic is modeled as a continuous-
time Markov process. For each nodei ∈ {1, ..., N}, define
a random variableXi : {S, I, A} → {0, 1, 2}. DenoteXt

i

a measure of the random variable at timet for node i.
The epidemic spread dynamics is modeled as the following

continuous-time Markov process:

Pr[Xt+∆t
i = 1|Xt

i = 0] = β0∆t
∑

j∈Ni

1{Xt
j
=1} + o(∆t),

Pr[Xt+∆t
i = 0|Xt

i = 1] = δ∆t+ o(∆t),

Pr[Xt+∆t
i = 2|Xt

i = 0] = κ∆t
∑

j∈Ni

1{Xt
j
=1} + o(∆t),

Pr[Xt+∆t
i = 1|Xt

i = 2] = βa∆t
∑

j∈Ni

1{Xt
j
=1} + o(∆t), (9)

for i ∈ {1, ..., N}. In (9), Pr[·] denotes probability,∆t > 0 is
a time step, and1{X} is one ifX is true and zero otherwise.
A function f(∆t) is said to beo(∆t) if lim∆t→0

f(∆t)
∆t

= 0.
A common approach for studying a continuous-time Markov

process is to derive the corresponding Kolmogorov forward
(backward) differential equations (see [26] and [27]). As can
be seen from the above equations, the conditional transition
probabilities of a node are expressed in terms of the ac-
tual state of its neighboring nodes. Therefore, each state of
the Kolmogorov differential equations corresponding to the
Markov process (9) will be the probability of being in a
specific configuration. In this case, we will end up with a
set of first order ordinary differential equations of the order
3N . Hence, the analysis will become dramatically complicated
as the network size grows. In addition, it is more desirable
to study the probability that each individual is susceptible,
infected, or alert. Using a proper mean-field approximation,
it is possible to express the transition probabilities in terms
of infection probabilities of the neighbors. Specifically,the
term 1{Xt

j
=1} is replaced withPr[Xt

j = 1] in (9). Hence, the
following new stochastic process is obtained:

Pr[Xt+∆t
i = 1|Xt

i = 0] = β0∆t
∑

j∈Ni

Pr[Xt
j = 1] + o(∆t),

Pr[Xt+∆t
i = 0|Xt

i = 1] = δ∆t+ o(∆t),

Pr[Xt+∆t
i = 2|Xt

i = 0] = κ∆t
∑

j∈Ni

Pr[Xt
j = 1] + o(∆t),

Pr[Xt+∆t
i = 1|Xt

i = 2] = βa∆t
∑

j∈Ni

Pr[Xt
j = 1] + o(∆t).

(10)

Define a new statexi , [si, pi, qi]
T , where si, pi, and

qi denote the probabilities of individuali to be susceptible,
infected, and alert, respectively. The Kolmogorov forward
differential equations of the stochastic process (10) can now
be found as

ẋi = ΘT
i xi, i ∈ {1, ..., N}, (11)

where

Θi ,









−δ 0 δ
βa

∑

j∈Ni

aijpj −βa

∑

j∈Ni

aijpj 0

β0

∑

j∈Ni

aijpj κ
∑

j∈Ni

aijpj −(β0 + κ)
∑

j∈Ni

aijpj









(12)
is the infinitesimal transition matrix. One property of the
dynamic system (11) is thatsi+pi+qi is a preserved quantity.
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Hence, the statessi, pi, andqi are not independent. Omittingsi
in (11), the following set of differential equations is obtained:

ṗi = β0(1− pi − qi)
∑

j∈Ni

aijpj + βaqi
∑

j∈Ni

aijpj − δpi,

(13)

q̇i = κ(1− pi − qi)
∑

j∈Ni

aijpj − βaqi
∑

j∈Ni

aijpj , (14)

for i ∈ {1, ..., N}.
Remark 2:As can be seen using a mean-field approxima-

tion, the dimension of the differential equations is reduced
from 3N to 2N . However, some information is definitely lost
and there is some error. For example, the Markov process
(9) exhibits an absorbing state. However, no absorbing state
can be observed based on the equations (13) and (14). In
addition, as is discussed in [19], the solution from the mean
field approximation is an upper-bound for the actual model.

IV. B EHAVIORAL STUDY OF SAIS EPIDEMIC SPREAD

MODEL

In this section, the dynamic system (13) and (14) derived
in the previous section is analyzed. It is shown that alertness
decreases the size of infection. In addition, in an SAIS epi-
demic model, the response of the system can be categorized in
three separate regions. These three regions are identified with
two distinct thresholdsτ1c andτ2c . Below the first threshold, the
epidemic dies out exponentially. Beyond the second threshold,
the epidemic persists in the steady state. Betweenτ1c and
τ2c , the epidemic spreads at the first stage but then dies
out asymptotically as the result of increased alertness in the
network.

A. Comparison between SAIS and SIS

In this section, the SAIS model and the SIS model are com-
pared in the sense of infection probabilities of the individuals.
Specifically, we are interested to comparepi(t), the response
of (13) and (14), with infection probabilityp′i(t) in the N-
intertwined SIS model, which is the solution of the system

ṗ′i = β0(1 − p′i)
∑

j∈Ni

aijp
′
j − δp′i. (15)

It is shown that alertness decreases the probability of infection
for each individual. This result is stated as the following
theorem.

Theorem 1:Starting with the same initial conditions
pi(t0) = p′i(t0), i = {1, ..., N}, the infection probabilities
of individuals in SIS model (15) always dominate those of the
SAIS model (13) and (14), i.e.,

pi(t) ≤ p′i(t), i = {1, ..., N} ∀t ∈ [t0,∞). (16)

Proof: Rewrite the equations (13) as

ṗi = β0(1−pi)
∑

j∈Ni

aijpj−(β0−βa)qi
∑

j∈Ni

aijpj−δpi. (17)

Starting with the same initial conditionspi(t0) = p′i(t0), it is
concluded that

pi(t0) = p′i(t0) ⇒ ṗi(t0) ≤ ṗ′i(t0), (18)

since βa < β0 by definition and therefore(β0 −
βa)qi(t0)

∑

j∈Ni
aijpj(t0) is a non-negative term. According

to (18), there existstf > t0 so that

pi(t) ≤ p′i(t), i ∈ {1, ..., N} ∀t ∈ [t0, tf ]. (19)

The theorem is proved if we show that inequality (19) holds
for every tf ∈ (t0,∞). Assume that there existst1 > t0, so
that (19) holds fortf = t1 but it is not true for anytf > t1.
Obviously, att = t1,

∃i ∈ {1, ..., N} so thatpi(t1) = p′i(t1) and ṗi(t1) > ṗ′i(t1).
(20)

In the subsequent arguments, it is shown that no sucht1 exists.
From (17),ṗi(t1) is found to satisfy

ṗi(t1) = β0(1− pi(t1))
∑

j∈Ni

aijpj(t1)

−(β0 − βa)qi(t1)
∑

j∈Ni

aijpj(t1)− δpi(t1)

≤ β0(1− pi(t1))
∑

j∈Ni

aijpj(t1)− δpi(t1)

= β0(1− p′i(t1))
∑

j∈Ni

aijpj(t1)− δp′i(t1), (21)

according to (20) and the fact that(β0−βa)qi(t1)
∑

aijpj(t1)
is a non-negative term. Based on (19),∀j ∈ {1, ..., N} we
havepj(t1) ≤ p′j(t1). Therefore, the inequality (21) is further
simplified as

ṗi(t1) ≤ β0(1 − p′i(t1))
∑

j∈Ni

aijp
′
j(t1)− δp′i(t1) = ṗ′i(t1).

(22)
Having ṗi(t1) ≤ ṗ′i(t1) contradicts with (20). Therefore, no
such t1 exists so that (20) is true. As a result the inequality
(19) holds for everytf ∈ (t0,∞). This completes the proof.

B. Exponential Epidemic Die-Out

Theorem 2:Consider the SAIS epidemic spread model (13)
and (14). Assume that the infection strength satisfies

τ =
β0

δ
<

1

ρ(A)
. (23)

Then, initial infections will die out exponentially.
Proof: The solution ofpi(t) was proved in Theorem 1

to be upper-bounded byp′i(t). As described in Section II-C
and based on Proposition 1, the N-intertwined model (15) is
exponentially stable if (23) is satisfied. As a consequence,pi(t)
in (17) is also exponentially stable if (23) is satisfied.

Remark 3: In the proof of Theorem 1,qi is considered as
a non-negative time-varying term. Under the conditions of
Theorem 2,qi(t) will regulate at some value depending on
the initial conditions.

Remark 4:Note that adding the alert compartment does not
contribute to the epidemic threshold for exponential die out.
This result is already concluded in [8] for a homogeneous
network (i.e. all nodes have the same degree).
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C. Asymptotically Epidemic Die-Out

According to (14),

qei =
1− pi

1 + βa

κ

, i ∈ {1, ..., N}, (24)

is an equilibrium for (14). To facilitate the subsequent analysis,
define a new stateri as

ri , qi − qei = qi −
1− pi

1 + βa

κ

. (25)

The derivativesṗi and ṙi in the new coordinate can be found
by substitutingqi = ri+

1

1+
βa
κ

− pi

1+
βa
κ

from (25) in (13) and

(14) as

ṗi = β0(1 − pi − {ri +
1

1 + βa

κ

−
pi

1 + βa

κ

})
∑

j∈Ni

aijpj

+βa{ri +
1

1 +
βa

κ

−
pi

1 +
βa

κ

}
∑

j∈Ni

aijpj − δpi

= {β0

βa

κ

1 + βa

κ

+ βa

1

1 + βa

κ

}
∑

j∈Ni

aijpj

−{β0 +
β0 + βa

1 + βa

κ

}pi
∑

j∈Ni

aijpj

−(β0 − βa)ri
∑

j∈Ni

aijpj − δpi, (26)

and

ṙi = κ(1− pi − {ri +
1

1 + βa

κ

−
pi

1 + βa

κ

})
∑

j∈Ni

aijpj

−βa{ri +
1

1 + βa

κ

−
pi

1 + βa

κ

}
∑

j∈Ni

aijpj

= −κ(1 +
βa

κ
)ri
∑

j∈Ni

aijpj . (27)

To facilitate the subsequent analysis, define

p , [p1, ..., pN ]T ∈ R
N , (28)

r , [r1, ..., rN ]T ∈ R
N . (29)

According to (26) and (27) and the definitions (28) and (29),
the followings are true

ṗ = (βeqA− δI)p+G1(p, r), (30)

ṙ = 0r+G2(p, r), (31)

where

βeq , β0

βa

κ

1 + βa

κ

+ βa

1

1 + βa

κ

, (32)

and

G1(·) , [g1,1(·), ..., g1,N (·)]T , (33)

G2(·) , [g2,1(·), ..., g2,N (·)]T , (34)

with

g1,i(p, r) , −{β0 +
β0 + βa

1 +
βa

κ

}pi
∑

j∈Ni

aijpj

−(β0 − βa)ri
∑

j∈Ni

aijpj , (35)

g2,i(p, r) , −κ(1 +
βa

κ
)ri
∑

j∈Ni

aijpj . (36)

If we linearize the system (30) and (31), the resulting system
has N zero eigenvalues. Therefore, linearization technique
fails to investigate the stability properties of (30) and (31). In
the following arguments, we show that center manifold theory
can be employed to study the stability of (30) and (31).

The eigenvalues of matrix(βeqA − δI) areβeqλi − δ, i ∈
{1, ...N}, where λi’s are the eigenvalues of the adjacency
matrix A. Therefore, assuming that

βeq

δ
<

1

ρ(A)
, (37)

the matrix(βeqA − δI) is Hurwitz (i.e., a matrix that all of
its eigenvalues have negative real parts). In addition, thetwo
nonlinear functionsG1 andG2 defined in (33) and (34) satisfy

Gj(0,0) = 0, ∇Gj(0,0) = 0, (38)

for j ∈ {1, 2}. Hence, the center manifold theory reviewed in
Section II-B may apply. The center manifold theorem suggests
that there exists a functionH(·) : R

N → R
N where the

dynamics (30) and (31) can be determined by

·
r̂ = G2(H(r̂), r̂). (39)

Differential equation (39) can be written in terms of its
entries as

·
r̂i = −κ(1 +

βa

κ
)r̂i
∑

j∈Ni

aijhj(r̂), (40)

for i ∈ {1, ..., N}, where hi(·) is the i-th component of
H(·) , [h1(·), ..., hN (·)]T .

Remark 5:Usually, it is not feasible to findhi(·) explicitly.
In the subsequent analysis, instead of explicit calculations, we
make use of the following property ofhi(·): Since the prob-
ability pi is non-negative, each functionhi(·) is necessarily
non-negative.

Lemma 1:The trajectories of (40) will asymptotically con-
verge to the set defined by

Ω = {r̂ ∈ R
N |r̂i

∑

j∈Ni

aijhj(r̂) = 0}. (41)

Proof: Define a continuously differentiable functionV as

V ,
1

2
r̂T r̂. (42)

Taking the derivative ofV with respect to time, we have

V̇ =

N
∑

i=1

r̂i
·

r̂i = −κ(1 +
βa

κ
)

N
∑

i=1



r̂2i
∑

j∈Ni

aijhj(r̂)



 . (43)
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It can be seen that the time derivativeV̇ is negative semi-
definite according to Remark 5. According to the LaSalle’s
invariance theorem (see [25]) the trajectories of (40) will
asymptotically converge to the setV̇ ≡ 0, i.e.,

Ω , {r̂ ∈ R
N |r̂i

∑

j∈Ni

aijhj(r̂) = 0}. (44)

Theorem 3:Consider the SAIS epidemic model (13) and
(14). Assume that the infection strength satisfies (37) where
βeq is defined in (32). Small initial infections die out asymp-
totically ast → ∞.

Proof: Since the infection strength satisfies (37), the
matrix (βeqA − δI) is Hurwitz. According to the property
(38) of G1(p, r), the system

ṗ = (βeqA− δI)p+G1(p,0),

which is system (30) withr = 0, is exponentially stable. In
addition, according to Lemma 1,̂ri

∑

j∈Ni
aijhj(r̂) → ∞

as t → ∞. Therefore, the termri
∑

aijpj in (26) can be
considered as a decaying disturbance for (30). Therefore,pi →
0 asymptotically ast → ∞.

Remark 6:From Theorem 2, the first epidemic threshold is

τ1c =
1

ρ(A)
, (45)

which is equal to the epidemic threshold in the classic SIS
epidemic network. If the infection rateβa is such that

βa

δ
<

1

ρ(A)
, (46)

the ratio
βeq

δ
can be larger or smaller than1

ρ(A) , depending on
the value ofβ0. Therefore, if (46) holds, Theorem 3 suggests
that there exists another epidemic thresholdτ2c . Using the
definition of βeq in (32), the condition (37) in Theorem 3
can be expressed as

βeq

δ
=

β0

δ

βa

κ

1 + βa

κ

+
βa

δ

1

1 + βa

κ

≤
1

ρ(A)
, (47)

which is equivalent to

β0

δ
≤

1
ρ(A) −

βa

δ
1

1+
βa
κ

βa
κ

1+
βa
κ

=
βa

κ
+ 1

βa

κ

1

ρ(A)
−

βa

δ

κ

βa

=
1

ρ(A)
+

κ

βa

(
1

ρ(A)
−

βa

δ
). (48)

The second epidemic thresholdτ2c can now be obtained from
inequality (48) as

τ2c = τ1c +
κ

βa

(
1

ρ(A)
−

βa

δ
). (49)

Notice that, according to (46),τ2c > τ1c .

D. Epidemic Persistence in the Steady State

The steady state is studied by letting the time derivativesṗi
and q̇i equal to zero, i.e.,

0 = β0(1− pssi − qssi )
∑

j∈Ni

aijp
ss
j

+ βaq
ss
i

∑

j∈Ni

aijp
ss
j − δpssi , (50)

0 = κ(1− pssi − qssi )
∑

j∈Ni

aijp
ss
j − βaq

ss
i

∑

j∈Ni

aijp
ss
j . (51)

From (51), it is inferred that

qssi =
1− pssi

1 + βa

κ

or
∑

aijp
ss
j = 0. (52)

Equivalently, according to (52), the following is true

qssi
∑

aijp
ss
j =

1− pssi

1 + βa

κ

∑

aijp
ss
j . (53)

Now, substitute forqssi
∑

aijp
ss
j terms in (50) using (53)

to get

β0

βa

κ

1 + βa

κ

(1− pssi )
∑

aijp
ss
j

+ βa

1− pssi

1 +
βa

κ

∑

aijp
ss
j − δpssi =

(

β0

βa

κ

1 + βa

κ

+ βa

1

1 + βa

κ

)

(1− pssi )
∑

aijp
ss
j − δpssi = 0.

(54)

Theorem 4:Consider the SAIS epidemic model (13) and
(14). The steady state values of the infection probabilities of
each individual in the SAIS model is similar to those of the N-
intertwined SIS epidemic model (6) with a reduced infection
rateβeq.

Proof: Based on the definition ofβeq in (32), the equation
(54) is simplified to

βeq(1− pssi )
∑

aijp
ss
j − δpssi = 0,

which can be expressed as

βeq

δ

∑

aijp
ss
j =

pssi
1− pssi

. (55)

Comparing (55) with (8) from the Proposition 2, it is ob-
served that the steady state values of the infection probabilities
in an SAIS epidemic network is similar to those of a SIS
epidemic network with reduced infection rateβeq.

Remark 7:The expression (32) forβeq can be rewritten as

βeq = β0 −
β0 − βa

1 + βa

κ

. (56)

The above expression suggests thatβeq is always less thanβ0

sinceβa < β0. It is insightful to look at the extreme cases
for the values ofβeq . Particularly, when the alerting rateκ is
very small,βeq → β0, indicating that alertness plays a trivial
role in the epidemic spread dynamics. When the alerting rate
is very large, the reduced infection rateβeq → βa. Another
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case, which is more important from the epidemiology point of
view, is that if βa is very small, the epidemic spread can be
completely controlled.

V. SIMULATION RESULTS

Three examples are provided in this section. In all of the
simulations, the curing rate is fixed atδ = 1 so that the
dimensionless timēt = δt is the same as the simulation time.

Example 1:Consider a contact graph as represented in
Fig. 2. For this network, the spectral radius is found to be
ρ(A) = 3.1385. The alerting rate is arbitrarily selected as
κ = 0.1. The infection rate of an alert individualβa is chosen
βa = 0.1. For the simulation purpose, nodes1, 5, and 10
are initially in the infected state. Other nodes are initialized
in the susceptible state. In each simulation, the total infection
fraction p̄(t) = 1

N

∑N
i=1 pi(t) is computed. In Fig. 3, three

trajectories are plotted. The trajectory (a) corresponds to the
N-intertwined SIS model, withβ0 = 2. Trajectory (b) is the
solution of the SAIS model (13) and (14) developed in Section
III. Trajectory (c) is the solution of the SIS model but with
the reduced infection rateβeq defined in (32). As is expected
from Theorem 1, the infected fraction in the SAIS model is
always less than that of the SIS model. In addition, as proved
in Theorem 4, the steady state infection fraction in the SAIS
in equal to that of the SIS model with the reduced infection
rateβeq.

Fig. 2. The contact graph in Example 1 and Example 2.

Example 2: In Fig. 3, it can be observed that in the SAIS
model the infection spreads similar to the SIS model at the
first stage. Then, the size of the epidemics is reduced due
to increased alertness in the network. In this example, for
the same network in the previous example, the steady state
value of the infected fraction and the maximum value of the
infected fraction are presented as a function of the infection
strengthτ = β0/δ. The simulation parameters are chosen as
κ = 1, βa = 0.1. Note thatβa/δ = 0.1 < 1/ρ(A) = 0.3186.
Therefore, as discussed in Remark 6, there exists two distinct
thresholdsτ1c andτ2c presented in (45) and (49), respectively.
Simulation results for this example are shown in Fig. 4.

Example 3:As is observed in Fig. 4, the steady state values
of the infected fraction̄p is zero before the second epidemic
thresholdτ2c . In addition, the maximum of the infected fraction
is equal to the initial infected fraction beforeτ1c . The reason
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Fig. 3. The infected population fraction in Example 1. (a) SIS model. (b)
SAIS model. (c) SIS model with reduced infection rateβ
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Fig. 4. The maximum infected fraction (blue line) and the steady state value
for the infected fraction (red line) in Example 2.

for this observation is that before the first thresholdτ1c , the
epidemics dies out exponentially; as stated in Theorem 2.
Between the two thresholds,maxt p̄(t) is greater than̄p(0)
but steady state valuēpss = 0. In other words, in this region
the epidemic spreads at the first stage but then is completely
controlled as a result of increased alertness. After the second
threshold,p̄ss < maxt p̄(t), i.e., alertness reduced the size of
the epidemic.

Example 4:Consider an epidemic network where the con-
tact graph is an Erdos-Reyni random graph withN = 320
nodes and connection probabilityp = 0.2. The initial infected
population is%2 of the whole population. The simulation
parameters areβ0 = 0.03, κ = 0.05. Three trajectories are
presented in Fig. 5. The trajectory (a) is for the SIS model, i.e.,
no alertness exists. Trajectory (b) is forβa = 0.02. In this case,
the epidemic size is reduced in the steady state. Trajectory
(c) corresponds toβa = 0.01, for which the epidemic dies
out asymptotically. For the sake of evaluating the model
development in Section III, a Monte-Carlo simulation is also
provided for each trajectory and shown in the figure in blue.
As can be seen, there is a reasonable agreement between the
proposed model (13) and (14) and the Markov process (9).
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VII. C ONCLUSION

In this paper, we add a new compartment to the classic SIS
model to account for human response to epidemic spread. Each
individual can be infected, susceptible, or alert. Susceptible
individuals can become alert with an alerting rate if infected
individuals exist in their neighborhood. An individual in the
alert state is less probable to become infected than an individ-
ual in the susceptible state; due to a newly adopted cautious
behavior. The problem is formulated as a continuous time
Markov process on a general static graph and then modeled
into a set of ordinary differential equations using mean field
approximation method and the corresponding Kolmogorov
forward equations. The model is then studied using results
from algebraic graph theory and center manifold theorem.
We analytically show that our model exhibits two distinct
thresholds in the dynamics of epidemic spread. Below the first
threshold, infection dies out exponentially. Beyond the second
threshold, infection persists in the steady state. Betweenthe
two thresholds, the infection spreads at the first stage but then
dies out asymptotically as the result of increased alertness in
the network. Finally, simulations are provided to support our
findings. Our results suggest that alertness can be considered
as a strategy of controlling the epidemics which propose
multiple potential areas of applications, from infectiousdis-
eases mitigations to malware impact reduction. Generalizing
the current results to time-varying weighted topologies isa
promising extension.
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