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Abstract—One of the popular dynamics on complex networks  Early results on epidemic modeling dates back td [12]. In
is the epidemic spreading. An epidemic model describes how [13] an epidemic model on a homogenous network was stud-
infections spread throughout a network. Among the compartnen- ied. Later on, results for heterogeneous networks weretegpo
tal models used to describe epidemics, the Susceptible-bdted- . ' . . . )
Susceptible (SIS) model has been widely used. In the SIS madde !n [14]. Pastor-Satorrast. aI.[lE?] StUd'ed_ epidemic spreading
each node can be susceptible, become infected with a givenin scale free networks, showing that in these networks the
infection rate, and become again susceptible with a given cimng  epidemic threshold vanishes with consequent concernfiéor t
rate. In this paper, we add a new compartment to the classic robustness of many real complex systems. Wahgal. [16]

SIS model to account for human response to epidemic spread. provided the first result for a non-synthetic contact togglo

Each individual can be infected, susceptible, or alert. Sueptible d studied th idemi dd . | stati
individuals can become alert with an alerting rate if infected and stuaie € epiaemic Spread dynamic on a general stalic

individuals exist in their neighborhood. An individual in t he alert  graph. Through a local analysis of a mean-field discrete iode
state is less probable to become infected than an individuah it was shown that the epidemic threshold is directly related

the susceptible state; due to a newly adopted cautious behiav o the inverse of the spectral radius of the adjacency matrix
The problem is formulated as a continuous-time Markov proces of the contact graph. More detailed proof was provided in

on a general static graph and then modeled into a set of .
ordinary differential equations using mean field approximation [17]. Ganashet. al. [18] proved the same result without

method and the corresponding Kolmogorov forward equations any mean-field approximations. A continuous-time epidemic
The model is then studied using results from algebraic graph model was studied by Van Miegheet. al. [19], where a set

theory and center manifold theorem. We analytically show tiat  of ordinary differential equations was extracted througram:
our model exhibits two distinct thresholds in the dynamics 6 field approximation of a continuous time Markov process

epidemic spread. Below the first threshold, infection dies ut . . .
exponentially. Beyond the second threshold, infection peists The relation between the epidemic threshold and the spectra

in the steady state. Between the two thresholds, the infecti radius was rigorously proved and further insights about the
spreads at the first stage but then dies out asymptotically athe steady state infection probabilities were analyticallyivis.

result of increased alertness in the network. Finally, simlations  Preciado and Jadbabale [20] studied the epidemic spread on
are provided to support our findings. Our results suggest tha geometric random networks and thenlinl[21], they investigat

alertness can be considered as a strategy of controlling the - . .
epidemics which propose multiple potential areas of appliations, the epidemic threshold on a general contact graph with céspe

from infectious diseases mitigations to malware impact redction. 0 the network structural information. _
A good review on existing results in the literature where

the human behavior is taken into account for epidemic mod-
eling can be found in[]2]. Polettet. al. [22] developed a
population-based model where susceptible individualddcou
Modeling human reactions to the spread of infectious dishoose between two behaviors in response to presence of
ease is an important topic in current epidemiology [L], [2]nfection. Funket. al.[8] showed that awareness of individuals
and has recently attracted a substantial attention [[3]-[1@bout the presence of a disease can help reducing the size
However, few papers are available in the literature whiabf the epidemic outbreak. In their paper, awareness and
consider the human response to the epidemic in a systemdisgease have interconnected dynamics. Theodorakopetilos
framework and the contributions to the problem are still ial. [3] formulated the problem so that individuals could make
an early stage. The challenges in this topic concern not omlgcision based on the perception of the epidemic size. Most
how to model human reactions to the presence of epidemio§the existing results are suitable for a society of welkadi
but also how these reactions affect the spread of the diseasdviduals, since the contact graph is usually consideoed
itself. In a general view, human response to an epidenie homogeneous (i.e. all nodes have the same degree). To
spread can be categorized in the following three types: the authors’ knowledge, the study of the human response in a
Change in the system state. For example, in a vaccinati@alistic network of individuals with a general contact ra
scenario individuals go directly from susceptible state twas not been reported so far.
recovered without going through infected state. 2) Changeln this paper, we model the human response to epidemic
in system parameters. For example, aslinl [11], individuals the following way. A new compartment is considered in
might choose to use masks. Those who use masks havaddition to susceptible and infected states. A suscepitiblie
smaller infection rate parameter, 3) Change in the contagtiual becomes alert with some probability rate if surroeshd
topology. For example, due to the perception of a serioby infected individuals. An alert node gets infected with a
danger, individuals reduce their contacts with other peofio lower rate compared to a susceptible node does with the
can potentially be infectious [2]. same number of infected neighbors. The contribution of this
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paper is two-fold. 1) Unlike most of the previous resultsyhere the eigenvalues o, € R™=*"s and A, € R™e*"e

no homogeneity assumption is made on the contact netwdrkve negative and zero real parts, respectively. The fumgti
and the human-disease interaction in this paper is modelgdandg, are twice continuously differentiable and satisfy the
on a general contact graph. 2) We show through analyticanditions

approaches that two distinct thresholds exist. The two are _

explicitly computed. To the authors’ knowledge the existen 9i(0,0) =0, Vgi(0,0) =0, i € {s,c}, ®)

of two distinct thresholds is reported for the first time inmsth where 0 is a vector or matrix of zeros with appropriate
paper, providing a fundamental progress on previous suliimensions. There exists a functibn R”s — R satisfying
Additionally, this result has the potential to be applied to

mitigate epidemics in several different complex systemanf h(0) =0, Vh(0) =0, 4)
human and animal infectious diseases, to malware promgat[ihat -
in computer and sensor networks.

The rest of the paper is organized as follows. In Sedfibn
some backgrounds on graph theory, center manifold meth
and the N-Infcertwir!ed SIS model (developed in [19]) are 2, = Acte + golZe, h(2e)). (5)
recalled. Sectiohdll is devoted to the problem formulatom
model derivations. Stability analysis results of the moatel The invariant manifoldz, = h(z.) is a center manifold for
provided in Sectiofi TV. Finally, results are examined tyiou the system[(1) and¥(2), i.e., every trajectory bf (1) apd (2)
numerical simulations in Sectidn] V. with the initial conditionz.(0) = 2.(0) andz,(0) = h(2:(0))
satisfiesz.(t) = 2.(t) and z5(t) = h(2.(t)). In addition,
small deviation from the center manifold is exponentially
attracted, i.e., if||z5(0) — h(2.(0))|| is small enough, then
A. Graph Theory lzs(t) — h(2:(¢))|| will go to zero exponentially.

Graph theory (see _[2B]s widely used for representing the
contact topology in an epidemic network. L6t = {V,£} C. N-Intertwined SIS Model for Epidemic Spread
represent a dlrecte_d gr?‘ph’ ‘md: {1,..., N} denote the set  \ye have puilt our modeling based on a newly proposed
of vertices. E_very individual is represented by a vertexe Th., o ous-time model for epidemic spread on a graph. Van
set_ Of_ edges IS dgnqtgd 53; VxV. Ar! edge IS an ordered Mieghem et. al. [19] derived a set of ordinary differential
pair (i,j) € & if individual j can be directly infected from o \ations, called the N-intertwined model, which represen
:ndm_duz;l i In tﬁlshpaper, we asjs\lfjrrle that there. IS NO S&he time evolution of the probability of infection for each
(;)op n t Egrap h:) aL'S(’Z(’jZ) ¢ g_f i={j¢€ E 1(7,9) e_dE} individual. The only approximation for the N-intertwined
benot? the Qe_:cgf orhoo dseF 0 verte>G(;ap .g.|s sald 0 5 gel corresponds to the application of the mean-field theor
© rl]”? we;:te é bor sny edge;, ) efE_, edge(j,i) € £. tf]t Consider a network ofV individuals. Denote the infection
lpat f|1$ “Ee”e y the ?eq‘;ence of its vertices. A ﬁﬁt probability of thei-th individual by p; € [0, 1]. Assume that
ength & etwienyo;vk 1S tkeDs_equegcévo, ""?”“} W erle the disease is characterized by infection jtec R* and cure
(vi—1,0;) € & fori = 1,... k. Directed graplg is strongly rate § € R*. Furthermore, assume that the contact topology

coinected ifﬁ% t(;NO verticr?s aJ_e linked With a patr:wgn is represented by a static graph. The N-intertwined model
A=la;j] €R enotes the adjacency matrix Gf where proposed in[[19] is

a;; = 1 if and only if (i,j) € € elsea;; = 0. The largest
magnitude of the eigenvalues of adjacency mattiis called

= h(z.) is an invariant manifold (see _[25] for the
definition) for [1) and[(R) near the origin. The dynamic syste
(@) and [(2) can be studied through the reduced system

Il. PRELIMINARILY AND BACKGROUND

spectral radius ofd and is denoted by(A). Di = Bo(1 — pi) Z a;jp; —0p;, 1€ {1,..,N}, (6)
JEN;
B. Center Manifold Theory wherea,;; = 1 if individual j is a neighbor of individuat,

. T . . . otherwisea;; = 0.
Linearization is a useful technique for local stability bsés Propositicj)n 1: Consider the N-intertwined moddIl(6). Ini-

of nonlinear systems. However, in the cases where Iineari%a . . o o . .
. ) . ; ) Ial infection will die out exponentially if the infectiortrength
tion results in a linear system with some negative real paidta_ A

ﬂ - e
some zero real part eigenvalues, the linearization methitsd f 7= 3 satisfies 3 1
In these cases, the local stability analysis can be perfdbimge — 70 < —, @)
analyzing a nonlinear system of the order exactly equalé¢o th p(A)
number of eigenvalues with zero real parts. This method gherep(A) is the spectral radius of the adjacency mattix
known as center manifold method. In this section, we haveofithe contact graph.
quick review on center manifold theory. More details can be Remark 1:The valuer, = ,%4 is usually referred to as
found in [24] and[[25]. the epidemic threshold. For any infection strength> 7,
For z, € R™ andz. € R", consider the following system infection will persist in the steady state. The followingu
discusses the steady state values for infection prohabilit
Zo = Aszs+9s(2 %) 1) Proposition 2: If the infection strength is above the epi-
2. = Acze+ 9elze, 2s)s (2) demic threshold, the steady state values of the infection



probabilities, denoted by;*® for the i-th individual, is the continuous-time Markov process:

non-trivial solution of the following set of equations
PrX[ 4% = 1|X} = 0] = oAt Y 1ixi—1y + o(Ab),

ﬁO p$s . JGN
— ayp;’ = ——, i €{l,...,N} (8) ‘
. - - Yy T . = p— = t+ [o] t

g ZN T lep Pr{XAt = 0[X] = 1] = 6AL + o(A1),

Pr[Xf+At = 2|)(;5 = O] = kAL Z 1{X}§:1} + o(At),
[1l. M ODEL DEVELOPMENT JEN:
Pr[Xf+At = 1|th = 2] = BaAt Z 1{Xt.:1} + O(At)a (9)
In this paper, we add a new compartment to the classic SIS jen:

model for epidemic spread modeling to propose a Susceptible - .
Alert-Infected-Susceptible (SAIS) model. The contactalep ' ¢ € {1,....N}. In (@), Pr[-] denotes probabilityAt > 0 is

ogy in this formulation is considered as a general statiplyra & {iMe step, and .} is one if ¥’ is true and zero otherwise.
Each node of the graph represents an individual and a lifkfunction f(At) is said to beo(At) if limae—o LE2 = 0.
between two nodes determines the contact between the two inA common approach for studying a continuous-time Markov
dividuals. Each node is allowed to be in one of the three staferocess is to derive the corresponding Kolmogorov forward
"S: susceptible’ ”I: infected” , and”A: alert” . A susceptible (backward) differential equations (see [26] ahd| [27]). Asic
individual becomes infected by the infection ratg times be seen from the above equations, the conditional transitio
the number of its infected neighbors. An infected individu@robabilities of a node are expressed in terms of the ac-
recovers back to the susceptible state by the curingiraten  tual state of its neighboring nodes. Therefore, each sthte o
individual can observe the states of its neighbors. A suitlep the Kolmogorov differential equations corresponding te th
individual might go to the alert state if surrounded by inéet Markov process[{9) will be the probability of being in a
individuals. Specifically, a susceptible node becomest alépecific configuration. In this case, we will end up with a
with the alerting rates € Rt times the number of infected Set of first order ordinary differential equations of the erd
neighbors. An alert individual can get infected in a procedd' . Hence, the analysis will become dramatically complicated
similar to a susceptible individual but with a reduced itime as the network size grows. In addition, it is more desirable
rate0 < 3, < fB,- We assume that transition from an alerto study the probability that each individual is suscepgtibl
individual to a susceptible state is much slower than othigfected, or alert. Using a proper mean-field approximation
transitions. Hence, in our modeling setup, an alert indigld it is possible to express the transition probabilities inme
never goes directly to the susceptible state. The compatthe Of infection probabilities of the neighbors. Specificaltie

transitions of a node with one single infected neighbor aterm1;x:_i, is replaced withPr[X? = 1] in (). Hence, the
depicted in Fig[L. following new stochastic process is obtained:

Pr(X[PA" = 1|X] = 0] = oAt Y Pr[X} = 1]+ o(At),
JEN;

Pr[X/TA1 = 0| X! = 1] = §At + o(At),

Pr{X/*4 = 2|X] = 0] = kAt > Pr[X} = 1] + o(At),

K ﬁ JEN;
a Pr(XHA = 1|X] = 2] = 8,At 3 Pr[X! = 1] + o(At).

JEN;
Po

(10)

Define a new stater; = [s;,p;,¢:]7, wheres;, p;, and
¢; denote the probabilities of individualto be susceptible,
infected, and alert, respectively. The Kolmogorov forward
differential equations of the stochastic procdsd (10) acam n

5 be found as
i =0T 2, ie{l,..,N}, (11)
Fig. 1. The infected population fraction in Example. (a) 8i8del. (b) SAIS Where
model with. (c) SAIS model with . The Monte-Carlo simulatiogsults are
shown in blue. -6 0 ]
a |Ba 2 aipi —Ba 2 aiip; 0
The epidemic spread dynamic is modeled as a continuous- 3 7%\“ aiip . fNa » Bo+r) S aip
) j ' 0 D ani —(Bo D
time Markov process. For each nodes {1,..., N}, define jenn jen jenn

a random variableX; : {S,I, A} — {0,1,2}. Denote X} (12)
a measure of the random variable at timefor node i. is the infinitesimal transition matrix. One property of the
The epidemic spread dynamics is modeled as the followinignamic systeni(11) is that+p; +g¢; is a preserved quantity.



Hence, the states, p;, andg; are notindependent. Omitting since 5, < [, by definition and therefore(5, —
in (L), the following set of differential equations is olod:  3,)q:(fo) Y- ;e n, @ijpj(to) is @ non-negative term. According

. to (18), there exists; > to so that
pi = Bo(l —pi — ;) Z aijp; + Badi Z aijpj — 0pi, !

JEN; JEN; (13) pi(t) <pi(t),i € {1,..,N} Vt € [to,ts]. (19)
1
. ‘ . o } o The theorem is proved if we show that inequality]l(19) holds
6 = #(1=pi—a) zj\; @jP; ~ Badi ZN @i () for everyt; € (to, 00). Assume that there exists > fo, SO
N IEN that [19) holds fort; = ¢, but it is not true for anyt; > t;.
forie{l,..,N}. Obviously, att = t1,

Remark 2:As can be seen using a mean-field approxima-
tion, the dimension of the differential equations is reduice 3 € {1, ..., N} so thatp;(t1) = p}(t:) andp;(t1) > p;(t1).
from 3% to 2V. However, some information is definitely lost (20)
and there is some error. For example, the Markov procdgsthe subsequent arguments, it is shown that no suekhists.
@) exhibits an absorbing state. However, no absorbing st&trom [17),p:(t:) is found to satisfy
can be observed based on the equatibn$ (13) add (14). In.
addition, as is discussed in ]19], the solution from the mean Pi(t1) = Bo(l —pi(t1)) > aips(ty)

field approximation is an upper-bound for the actual model. JEN:
—(Bo = Ba)ai(t1) > aip;(tr) — dpi(tr)
IV. BEHAVIORAL STUDY OF SAIS EPIDEMIC SPREAD JEN;
- MODEL | < Bl —p(t) S agps(h) — dpi(ty)
In this section, the dynamic systein (13) ahdl (14) derived JEN;

in the previous section is analyzed. It is shown that alegne
decreases the size of infection. In addition, in an SAIS epi-
demic model, the response of the system can be categorized in
three separate regions. These three regions are identified vaccording to[(20) and the fact th@t, — 3,)q:(t1) > aijp;(t1)
two distinct thresholds! andr2. Below the first threshold, the is @ non-negative term. Based dn|(19), € {1,..., N} we
epidemic dies out exponentially. Beyond the second thidshohavep;(t1) < p/(t1). Therefore, the inequality (1) is further
the epidemic persists in the steady state. Betweprand simplified as

72, the epidemic spreads at the first stage but then dies

c

/ / / Y
out asymptotically as the result of increased alerthessién t pi(t1) < Bo(1 —ps(t1)) Z aijp;(t) = op;(t) = p;(tr)-

= Bo(1=pi(t1) Y aijp;(tr) — 6pi(ta), (21)

JEN;

network. JEN (22)
) Having p;(t1) < pi(t1) contradicts with [(20). Therefore, no
A. Comparison between SAIS and SIS sucht, exists so that[{20) is true. As a result the inequality
In this section, the SAIS model and the SIS model are corfEd) holds for everyt; € (ty,c0). This completes the proof.
pared in the sense of infection probabilities of the indindts. ]

Specifically, we are interested to comparét), the response
of (I3) and [(I4), with infection probability;(¢) in the N-

intertwined SIS model, which is the solution of the system B. Exponential Epidemic Die-Out

Theorem 2:Consider the SAIS epidemic spread model (13)

o ! ! !
i = Bo(1 = pi) Xj; aijp; — Op;- (15)  and [1#). Assume that the infection strength satisfies
JEN;
It is shown that alertness decreases the probability otiite T = Po < L, (23)
for each individual. This result is stated as the following Y p(A4)
theorem. Then, initial infections will die out exponentially.

Theorem 1:Starting with the same initial conditions Proof: The solution ofp;(t) was proved in Theorer] 1
pi(to) = pi(to), i = {1,.., N}, the infection probabilities to he upper-bounded by,(¢). As described in Sectiop THC
of individuals in SIS model(15) always dominate those of thgnd based on Propositién 1, the N-intertwined mogdel (15) is
SAIS model [IB) and (14), i.e., exponentially stable if(23) is satisfied. As a consequenge)

pilt) < pit),i = {1,.., N} Vi€ [to, 00). (16) in (I7) is also exponentially stable [{23) .is satisfied. [ |
Remark 3:In the proof of Theoreriilly; is considered as

Proof: Rewrite the equation$ (I.3) as a non-negative time-varying term. Under the conditions of
i = Bo(1—ps) Z ai;pi—(Bo—B.)ai Z ai;p;—opi. (17) Theorem[P,q;(t) will regulate at some value depending on

the initial conditions.

. . _ " o Remark 4:Note that adding the alert compartment does not
Starting with the same initial conditions(to) = p;(to), itis  contripute to the epidemic threshold for exponential di¢. ou
concluded that This result is already concluded inl[8] for a homogeneous

pi(to) = phi(to) = pi(to) < pi(to), (18) network (i.e. all nodes have the same degree).

JEN; JEN;



C. Asymptotically Epidemic Die-Out with

According to [T#), gar) 2 —{By+ Bo+ 5@} S aip;
1— Di + K jGN
¢ = - /5_2’ ie{l,..,N}, (24) —(By — Ba)rs Z aijp;, (35)
e JEN;
is an equilibrium for[(IK). To facilitate the subsequentigsia, _ N k(1 + Pa 36
define a new state; as 92:(P,T) )i 7%\:/ @ijbj- (36)
re 2 g —qf =g — ﬂ_ (25) If we linearize the systeni (80) arld {31), the resulting syste
’ 1+ L has N zero eigenvalues. Therefore, linearization technique

fails to investigate the stability properties 6 {30) ahd])(3n
The derivativeg); andr; |n the new coordinate can be foungpe following arguments, we show that center manifold tieor

by substitutingg; = r; + 1+Ba - 1+Ba from (25) in (I3) and ¢an he employed to study the stability BFY30) ahd (31).

(I4) as The eigenvalues of matrik3,,A — 0I) are ., \; — 0,7 €
1 _ {1,...N}, where \;’s are the eigenvalues of the adjacency
pi = Bo(l—pi—{ri+ TR ] sz 1) Z a;jp; ~ matrix A. Therefore, assuming that
+ Le + _a 4 :
1 o Peq < L (37)
+B,4ri + } @ijpj — OP; 5 A)’
1+% 14 5 %:v " A4)

the matrix (8.,4 — 1) is Hurwitz (i.e., a matrix that all of

Ba
= {8, = } Z aiip; its eigenvalues have negative real parts). In addition e
1+ % 1+ ﬂ Jen o nonlinear function€?; andG- defined in[(3B) and (34) satisfy
{BO + ﬁ a }pl Z a”pj Gj (07 0) = 07 VGJ (03 O) = 03 (38)
JEN: for j € {1,2}. Hence, the center manifold theory reviewed in
Ba)ri Z aijpj — Opi, (26) Sectior II-B may apply. The center manifold theorem suggest
JEN; that there exists a functiod/(-) : RN — RY where the
and dynamics[(3D) and (31) can be determined by
, 1 F = Go(H(#), 7). 39
T “(1_pi_{”+1+&_1+5})Z%‘pa‘ AT E) 9
JEN; Differential equation[{39) can be written in terms of its
1 .
—B,{ri + /3 } Z aijpj entries as
1+ 7& L+ K JEN;
k(1 —|— =)y Z aijh; (40)
= ~)ri Y aipy. (27) Y
JEN for i € {1,..,N}, where h;(-) is the i-th component of
A
To facilitate the subsequent analysis, define H() = [P()s oo hN(')_]T_' ) ) o
Remark 5:Usually, it is not feasible to find;(-) explicitly.
2 [pi, ”_7pN]T e RY, (28) In the subsequent analysis, instead of explicit calcutatiove
r 2 [r,..,rn]T € RY. (29) make use of the following property df;(-): Since the prob-

ability p; is non-negative, each functiol(-) is necessarily
According to [26) and{27) and the definitiois](28) ahd (29)0n-negative.

the followings are true Lemma 1:The trajectories of (40) will asymptotically con-
verge to the set defined by
1.) = (ﬂqu - 5])1’) + Gl (pv I'), (30) ~ Nia ~
Q= RN |7 iihi(£) =0} 41
i' — OI' 4 Gg(p,r), (31) {I‘ € |T Z a VAR (r) } ( )
JEN;
where Proof: Define a continuously differentiable functidnas
B
Beg 2 Bo—"5 + Ba—5- 32 o lyrg
o i (32) Ve i (42)
and Taking the derivative ol with respect to time, we have
) 2 [gua()em g () (3) VoV i AR
1 . grat)s - JLN . V= Zrm =- ? Z Z aijh; . (43)
Ga(r) = [921()s - 92,8()]7, (34) i=1 i=1 JEN:



It can be seen that the time derivatiVe is negative semi- D. Epidemic Persistence in the Steady State

definite according to Remaikl 5. According to the LaSalle’s Tp¢ steady state is studied by letting the time derivatives
invariance theorem (seé [25]) the trajectories [ofl (40) wilfq ¢ equal to zero, i.e.,

asymptotically converge to the sEt= 0, i.e.,
0=By(1—p;* —¢*) Y ai;ps’

Q2 {# RN Y aiihy(f) =0}, (44) JEN;
JEN: + 8,45 Y aipi® — opi®, (50)
u JEN;
Theorem 3:Consider the SAIS epidemic mod€l[{13) and 0 = k(1 — p{® — ¢;*) Z aijp;® — Baq;® Z aijp;®. (51)
(I4). Assume that the infection strength satisfled (37) wher FEN; JEN;

B, is defined in[(3R). Small initial infections die out asymp- grom [51), it is inferred that
totically ast — oc.

Proof: Since the infection strength satisfids [(37), the q° = l_pﬁi or Zaijpf =0. (52)

matrix (3.,A — 1) is Hurwitz. According to the property L+ 5 '
(38) of G1(p, ), the system Equivalently, according td(52), the following is true

) — — ss ss 1- pfs ss

P = (BegA —dI)p + Gi(p, 0), q; Zaijpj = - ,8_: Zaijpj . (53)
which is system[(30) withr = 0, is exponentially stable. In . s s . .
addition, according to Lemmal ;3. aiihy(F) — oo , N(e)\t/v, substitute forg}* > a;;p3® terms in [50) using[(83)
ast — oo. Therefore, the termr; " a;;p; in (26) can be 9
considered as a decaying disturbance[fal (30). Therefpre, % o o
0 asymptotically ag — oc. [ | 07, B. (1—p; )Z aijPj

K

Remark 6:From T |I€OI’€FE]2, the first epiden ic threshold is 1 ss
b ss ss
+ ﬂai g aijpj - 5p1- =

ﬂa
=, (45) b
p(A) Ba 1
L o . . Bo—"5+ba 1=pi®) p_ aijp;” — op;® = 0.
which is equal to the epidemic threshold in the classic Sl ’14 B—; 1+ % (1-r )Z iPi P
epidemic network. If the infection rat@, is such that (54)
B, 1 Theorem 4:Consider the SAIS epidemic modél {13) and
5 < (A’ (46) (I4). The steady state values of the infection probatslicé

each individual in the SAIS model is similar to those of the N-
the ratio% can be larger or smaller thag-, depending on intertwined SIS epidemic moddll(6) with a reduced infection

. ¢ tegs.. .
the value ofg,. Therefore, if [46) holds, Theoreh 3 suggest?*€ Peq _ _ _ .
that there exists another epidemic threshefd Using the Proof: Based on the definition of,, in (32), the equation

definition of 3,, in (32), the condition[(37) in Theorefd 3(4) is simplified to

can be expressed as B.,(1—p*) Z%p?s _gpss =0,
B .
e e 1 1 which can be expressed as
Pea _ Bo s + b 7 < , @) P
6 6 1—|—?‘1 5 1—}-?‘1 p(A) ﬁe‘l S8 pzss
5 Zaijpj = T (55)

which is equivalent to
Comparing [(Bb) with[{8) from the Propositiah 2, it is ob-

By A~ T 5_; 111 B, x _served that the _steady state vaIu_es c_>f t_he infection protiedi
20 < 5 ==t T 5 3 in an SAIS epidemic network is similar to those of a SIS
0 5 ) p(4) Ba epidemic network with reduced infection rageg, . [ |

" Remark 7:The expressior (32) faB,., can be rewritten as
- 1 + K ( 1 ﬂa) (48) eq
o(A) B, pA) 5 _ . Bo—Ba e
ﬂeq ﬁO 1+ Ba ° ( )
The second epidemic threshotd can now be obtained from "

inequality [48) as The above expression suggests that is always less thar,
since 8, < f. It is insightful to look at the extreme cases

P21k ( o) (49) or the values of3,,. Particularly, when the alerting rateis

_ ko1 By for th I f3.,. Particularly, when the alerti i
¢ ¢ B, plA) 6 very small, 3., — f3,, indicating that alertness plays a trivial

. . ) ) role in the epidemic spread dynamics. When the alerting rate
Notice that, according td_(#6),; > 7.. is very large, the reduced infection rate, — 3,. Another



case, which is more important from the epidemiology point
view, is that if 3, is very small, the epidemic spread can b
completely controlled.

V. SIMULATION RESULTS

Three examples are provided in this section. In all of tr
simulations, the curing rate is fixed @ = 1 so that the
dimensionless time = §t is the same as the simulation time

Example 1:Consider a contact graph as represented
Fig. [2. For this network, the spectral radius is found to k
p(A) = 3.1385. The alerting rate is arbitrarily selected a:
x = 0.1. The infection rate of an alert individugl, is chosen
B, = 0.1. For the simulation purpose, nodés 5, and 10
are initially in the infected state. Other nodes are initid
in the susceptible state. In each simulation, the totalctida
fraction p(t) = % Zf;lpi(t) is computed. In Figll3, three
trajectories are plotted. The trajectory (a) correspoodthé
N-intertwined SIS model, with5, = 2. Trajectory (b) is the
solution of the SAIS model[(13) and (14) developed in Sectic
[ Trajectory (c) is the solution of the SIS model but with
the reduced infection ratg,, defined in[(3R). As is expected
from Theoren{dL, the infected fraction in the SAIS model i
always less than that of the SIS model. In addition, as prov
in Theoren{#, the steady state infection fraction in the SAI
in equal to that of the SIS model with the reduced infectio
rate g,

5

max; p(t),

Fig. 3.
SAIS model. (c) SIS model with reduced infection ratg, .
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Fig. 4. The maximum infected fraction (blue line) and theadiestate value
for the infected fraction (red line) in Examplel 2.

for this observation is that before the first thresheld the
epidemics dies out exponentially; as stated in Theokém 2.
Between the two thresholdspax; p(t) is greater tharmp(0)

but steady state valug®® = 0. In other words, in this region

the epidemic spreads at the first stage but then is completely
controlled as a result of increased alertness. After therskc
threshold,5°® < max; p(t), i.e., alertness reduced the size of
the epidemic.
Example 4:Consider an epidemic network where the con-
tact graph is an Erdos-Reyni random graph with= 320
Example 2:In Fig.[3, it can be observed that in the SAIS10des and connection probabiljty= 0.2. The initial infected
model the infection spreads similar to the SIS model at tf@pulation is %2 of the whole population. The simulation
first stage. Then, the size of the epidemics is reduced dugrameters arg, = 0.03, ~ = 0.05. Three trajectories are
to increased alertness in the network. In this example, fpresented in Fid.]5. The trajectory (a) is for the SIS mode), i
the same network in the previous example, the steady statealertness exists. Trajectory (b) is foy = 0.02. In this case,
value of the infected fraction and the maximum value of tHée epidemic size is reduced in the steady state. Trajectory
infected fraction are presented as a function of the indecti (c) corresponds t@, = 0.01, for which the epidemic dies
strengthr = j3,/6. The simulation parameters are chosen agit asymptotically. For the sake of evaluating the model
k=1, B8, = 0.1. Note that3,/d = 0.1 < 1/p(A) = 0.3186. development in Sectidn ]Il a Monte-Carlo simulation iscals
Therefore, as discussed in Remprk 6, there exists two distiprovided for each trajectory and shown in the figure in blue.
thresholdsr! and 7?2 presented in[(45) and_(49), respectivelyAs can be seen, there is a reasonable agreement between the
Simulation results for this example are shown in Fig. 4.  proposed mode[(13) an{|14) and the Markov prodess (9).
Example 3:As is observed in Fid.]4, the steady state values
of the infected fractiorp is zero before the second epidemic VI. ACKNOWLEDGEMENT
thresholdr2. In addition, the maximum of the infected fraction This research is supported by National Agricultural Biose-
is equal to the initial infected fraction before. The reason curity Center at Kansas State University. Authors woula als

Fig. 2. The contact graph in Examplg 1 and Example 2.
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