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Abstract— In this paper we study the resilience of a contin-
uous LTI system which is controlled remotely via a wireless
channel. An energy-constrained periodic (partially known)
jammer is corrupting the control communication channel
by imposing Denial-of-Service (DoS) attacks. We derive a
triggering time-sequence, addressing when to update the
control signal under the assumption that the period of
the jammer has been detected. Then, we show that, under
some sufficient condition, this triggering time-sequence
counteracts the effect of the jammer and assures asymptotic
stability of the plant. We prove our results theoretically, and
demonstrate their validity in a simulation example.

I. INTRODUCTION

Novel advances in communications and sensing tech-
nologies are allowing the remote control and moni-
toring of a variety of physical plants, spanning from
Unmanned Aerial Vehicles (UAVs) to power reactors.
These types of systems integrating computation, com-
munication, and physical processes are called cyber-
physical systems. Whilst their emergence has come along
with many advantages, there are some associated chal-
lenges, as well. One of them has to do with system
security, as vulnerability comes at the price of ease
of deployment and hard-to-supervise multiple system
components; see [8] and [1].

At the communication level, vulnerabilities can be
produced by external communication-signal jammers
or attackers. One can distinguish between two types
of attacks, namely Denial-of-Service (DoS) and Deceptive
attacks. In the former, the jammer tries to drop the
transmitted data, whereas, in the latter, the jammer
aims to change the transmitted data, see [26] and [18]
for more information. According to [7] and [3], DoS
is the most likely type of attack to control systems.
Amongst DoS jammers, a simple class is that of pe-
riodic or Pulse-Width Modulated (PWM) jammers. From
the point of view of the jammer, periodic signals are
motivated by energy constraints, and ease of imple-
mentation. It represents a main type of jamming sig-
nals studied in the communications literature [9], [4],
[24], [11]. Motivated by this, we focus on DoS attacks
imposed by PWM jammers whose periodic behavior
has already been detected. In particular, we propose
an event-triggering control sequence that is compatible
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with the jammer and study under which conditions the
strategy guarantees asymptotic stability.

The topic of security in cyber-physical systems is re-
ceiving wide attention from the controls community
and has been studied from different viewpoints in the
last years. In the framework of multiagent systems,
we refer the reader to [21], [16], [17]. In these papers,
the main problem is the identification of the malicious
agent, who is part of the network, and the cancellation
of its contribution. In [6] and [5], identification is
not the main issue, and the specific objective is how
to maintain connectivity of the network, despite the
presence of the malicious agents. In [27], the authors
develop an attack-resilient method subject to deceptive
attacks. Our problem formulation is related to the cited
previous work in the sense that we assume the jammer
has been detected and we propose an algorithm that
aims to counteract its effect.

Other references in the context of secure discrete LTI
systems are [10], [3]. In [10], the authors consider
deceptive attacks where deception occurs in the obser-
vation channel. In [3], the attack is DoS, the problem
is formulated in a stochastic setup,and moreover, the
attacker obeys an Identically Independent Distributed
(IID) assumption, similar to [20].

The references [2], [12], [23], and [19] model the secu-
rity problem as a (dynamic) zero-sum non-cooperative
game, so they can predict the behavior of the attacker.
The authors in [2], [23], and [19] study the vulnerability
of the network towards deceptive attacks which differs
from our problem. The closest reference to our work
is [12], which studies a similar problem in a game-
theoretic framework. However, a main limitation of [12]
is the restriction to scalar dynamics. As usually done
in Game Theory, a specific cost function modeling
the attacker is assumed, in addition to her omniscient
capabilities.

Another important topic when it comes to cyber-
physical systems, is that of achieving desired control
goals with economic communications. This has moti-
vated the topic of triggering control, i.e., control actions
triggered only when it is necessary. One can distin-
guish between related self-triggered control and event-
triggered control; see [22], [15] and [25], which study
LTI systems. The technique used in [25] is based on
Input-Output stability analysis, whereas, the technique
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used in [22] and [15] is based on Input-to-State Stability
(ISS) Lyapunov concept, which also inspires this work.
However, a main distinguishing feature is the fact that
communications may not be always feasible in our
formulation.

In this paper, we address the problem of system re-
silience in the context of event-triggering control. The
types of attacks considered are DoS attacks which we
assume have been partially identified. Other than this,
we consider a generic class of continuous LTI systems
and a generic class of PWM jammers. In particular, we
propose a novel triggering time-sequence to counteract
jammer effects and derive a sufficient condition under
which the asymptotic stability is ensured, i.e., the sys-
tem is safe and secure.

II. PROBLEM FORMULATION

In this section, we state, both formally and informally,
the main problem analyzed in the paper.

We consider a remote operator-plant setup, where the
operator uses a control channel to send wirelessly a
control command to an unstable plant, see Figure 1.
We assume that the plant has no specific intelligence
and is only capable of updating the control based on
the data it receives. We also assume that the operator
knows the plant dynamics and is able to measure its
states continuously.1 In this paper, we assume that the
type of jammer and the period of the jamming signal
has been identified. Future work will be devoted to
enlarge the triggering time-sequence for identification
purposes.

Let x ∈ R
n be the state vector and u ∈ R

m be the input
vector. We consider the following dynamics:

ẋ(t) = Ax(t) +Bu(t) , (1a)

u(t) = Kx(tk) , ∀t ∈ [tk, tk+1[ , (1b)

1This information can be obtained by using either local “passive”
sensors, e.g., a camera network or GPS, where no communication or
cheap and safe communication is required.

where A, B and K are matrices of proper dimensions,
and {tk}k≥1 is the triggering time-sequence to be de-
fined later. We denote e(t) = x(tk)−x(t), ∀t ∈ [tk, tk+1[.

We consider an energy-constrained, periodic jammer
whose signal can be represented as follows:

ujmd(t) =

{

1, (n− 1)T ≤ t ≤ (n− 1)T + Toff,

0, (n− 1)T + Toff < t < nT,
(2)

where n ∈ N is the period number, T ∈ R>0, and T =
[0, T ] is the action-period of the jammer. Also, Toff ∈
R>0, Toff < T , and Toff = [0, Toff] is the time-period
where it is sleeping, so communication is possible. We
further denote Ton ∈ R>0, and Ton = [Ton, T ] to be the
time-period where the jammer is active, thus no data
can be sent. Accordingly, it holds that Toff + Ton = T .
We also note that the parameter Toff need not be time-
invariant which recalls Pulse-Width Modulated (PWM)
jamming. Finally, we denote by T cr

off a uniform lower-
bound for Toff, i.e., T cr

off ≤ Toff which we assume holds
for all the periods and we have identified as well.

Putting these pieces together, we study the following
problem:

[Problem formulation]: Knowing T and T cr
off ≤

Toff, uniformly for all the periods, determine
an event-triggering strategy for the operator
that is sufficient for system stabilization de-
spite the presence of the jammer.

III. ATTACK-RESILIENT EVENT-TRIGGERED STRATEGY

In this section, we introduce an event-triggered strategy
which is resilient towards the jamming attack. To do so,
we make use of the ISS approach of [22] and [15].

Here, we assume that: (i) the system (1a) is open-loop
unstable, and (ii) the pair (A,B) is controllable. The
latter guarantees that there exists matrix K such that
A+BK is Hurwitz. This implies that for every matrix
Q = QT ≻ 0, there exists a unique matrix P = PT ≻ 0
such that the Lyapunov equation:

(A+ BK)TP + P (A+BK) = −Q , (3)

holds [13]. Given Q, we consider the Lyapunov func-
tion V (x) = xTPx. Note that V (t) = V (x(t)) =
x(t)TPx(t), so interchangeably, we shall use V (x) or
V (t). Since Q and P are symmetric, positive-definite
matrices, then by applying the Cholesky decomposi-
tion, we can express them as Q = LTL and P = UTU ,
for some L,U ∈ R

n×n. We also denote by ‖.‖ and |.|,
the Euclidean matrix and vector norms, respectively.

We introduce our ISS-Lyapunov function in the follow-
ing result.

Proposition 3.1: Consider the system (1), where (3)
holds. Let V (x) = xTPx be the Lyapunov function. If

2552



‖Q‖ > 1, then the following holds:

θ1 |x|
2 ≤ V (x) ≤ θ2 |x|

2
, (4)

V̇ (x) ≤ − (‖Q‖ − 1) |x|2 + ‖PBK‖2 |e|2 , (5)

where θ1, θ2 ∈ R>0. In other words, V is an ISS-
Lyapunov function for (1).

Proof: Due to space limits, we omit the complete
proof. It uses completion of squares bound, and the
Cholesky decomposition.

Similar to [22], one can use the ISS-Lyapunov function
of Proposition 3.1, together with a design parameter
σ ∈ (0, 1), to determine a stabilizing event-triggering
law when the jammer is absent:

Proposition 3.2: Consider the system (1a), along with
the Lyapunov function V (x) = xTPx associated with
‖Q‖ > 1. If the control (1b) is updated at times tk
governed by the following triggering law:

|e(tk)|
2 = σ

‖Q‖ − 1

‖PBK‖2
|x(tk)|

2
, k ≥ 1 , (6)

then the system is asymptotically stable.

Proof: Due to space limits, we omit the complete
proof. It is based on imposing V̇ (x) < 0 on (5).

In what follows, we shall study the asymptotic stability
of the system despite jammer presence under a simple
modification of the above triggering law. In what fol-
lows, we assume that the jammer is imposing a “worst-
case jamming scenario”, i.e., Toff = T cr

off.

Definition 3.3: We define the triggering time-sequence
despite jammer presence as follows:

t∗k,n =
{

tl satisfying (6)
∣

∣tl ∈ [(n− 1)T, (n− 1)T + T cr
off]
}

∪

{nT } , (7)

∀k ∈ N, ∀n ∈ N. In (7), k denotes the number of
triggering times occurring in nth jammer action-period.

In order to interpret the triggering law (7), let us
consider the nth action-period, i.e., t ∈ [(n− 1)T, nT ];
Then, we shall take the time-instants given by (6) which
also lie in the

[

(n− 1)T, (n− 1)T + T cr
off

]

time-period
along with nT . In this way, if ever it happens that:
{

tl satisfying (6)
∣

∣tl ∈ [(n− 1)T, (n− 1)T + T cr
off]
}

= ∅ ,

then the only triggering instant would be nT .

Remark 3.4: In the triggering law (7), the following
holds:

∃τ > 0, such that t∗k+1,n − t∗k,n ≥ τ, ∀k ∈ N .

This is based on Theorem III.1, presented in [22].
In other words, the time-sequence generated by the
triggering law (7) does not accumulate. This is an
important observation used in our analysis.

IV. ANALYSIS OF THE PROPOSED TRIGGERING LAW

Having introduced the triggering law (7), we present
our main result in this section which studies the asymp-
totic stability of the system under attack.

In [14], the author proves the following bound for a
matrix M ∈ R

n×n:

‖exp(M)‖ ≤ exp(µ(M)) , (8)

where the µ-operator is defined as follows:

µ(M) = max

{

µ |µ ∈ spec

(

M +MT

2

)}

,

We shall exploit this bound in the proof of our main
result.

Theorem 4.1: Consider the system (1), along with the
triggering law (7). The system is asymptotically stable
if the following conditions are satisfied:

(1− σ)T cr
off(‖Q‖ − 1)

2
> ‖P‖ ln(α) , (9)

where,

α , exp((T − T cr
off)µ(A+BK)) +

‖BK‖

µ(A+BK)
×

(

‖BK‖

‖A‖
+ 1

)

(1 − exp((T − T cr
off) ‖A‖))×

(1− exp((T − T cr
off)µ(A+ BK))) , (10)

and,

µ(A +BK) < 0 . (11)

Proof: We shall focus on the first jammer action-
period, i.e., 0 ≤ t ≤ T . We then show that under
the proposed sufficient condition, it holds that V (T ) <
ΥV (0), for some Υ ∈ (0, 1), which can be inductively
extended to show V ((n + 1)T ) < ΥV (nT ), ∀n ∈
N. From here we then demonstrate that asymptotic
stability can be guaranteed. For the sake of brevity,
we drop n = 1 in the t∗k,n annotation. Without loss
of generality, let {t∗1 = 0, t∗2, t

∗
3, . . . , t

∗
m} be the time-

sequence generated by the triggering law (7), where
it holds that t∗m ≤ T cr

off and t∗m+1 > T cr
off. We note that

there must exist such an m > 0, since according to
Remark 3.4, this time-sequence does not accumulate.

We consider the evolution of the Lyapunov function
in the time-interval

[

t∗i , t
∗
i+1

]

, where 0 ≤ t∗i , t
∗
i+1 ≤ t∗m.

According to (7), in this interval, equation (6) is not yet
violated, hence the following holds:

|e(t)|2 < σ
‖Q‖ − 1

‖PBK‖2
|x(t)|2 .

Upper-bounding (5), the latter equation yields:

V̇ (t) < −(1− σ) (‖Q‖ − 1) |x(t)|2 . (12)
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Now, we note that:

V = xTPx ⇒ V ≤ ‖U‖2 |x|2 ⇒ −|x(t)|2 ≤ −
V (t)

‖U‖2
,

with which we can further upper-bound equation (12)
as follows:

V̇ (t) < −
(1− σ) (‖Q‖ − 1)

‖U‖2
V (t) . (13)

By applying the comparison principle on (13), we get:

V (t) < V (t∗i ) exp

(

−
(1− σ) (‖Q‖ − 1)

‖U‖2
(t− t∗i )

)

, (14)

∀t ∈ [t∗i , t
∗
i+1]. Using (14) in an inductive way, we can

express the evolution of Lyapunov function for the
time-interval [0, t∗m], as follows:

V (t∗m) < V (0) exp

(

−
(1− σ) (‖Q‖ − 1)

‖U‖2
t∗m

)

, (15)

where we used the fact that t∗m =
∑m−1

i=1 (t∗i+1 − t∗i ).

At this stage, note that, according to the triggering
law (7), the control cannot be updated within the time-
interval [t∗m, T ]. As discussed in Claim 4.3, a sufficient
condition for asymptotic stability is given by V (T ) <
ΥV (0), with Υ ∈ (0, 1). To see why this holds, we firstly
develop an estimate for x (T ).

We recall the dynamics (1), which given the above ex-
planations and notations, can be written under either:

{

ẋ(t) = Ax(t) +BKx (t∗m) ,

x (t∗m) = x0 ,
(16)

or:
{

ẋ(t) = (A+BK)x(t) +BKe(t) ,

x (t∗m) = x0 ,
(17)

form. Let us consider (17), whose explicit solution
evaluated at t = T is given by:

x(T ) = exp ((T − t∗m)(A +BK))x(t∗m)+
∫ T

t∗
m

exp ((T − s)(A+BK))BKe(s)ds . (18)

By applying the triangular-inequality, equation (8), and
sup-operator on (18), we get:

|x(T )| ≤ exp ((T − t∗m)µ(A+BK)) |x(t∗m)|+

sup
s∈[t∗

m
,T ]

|e(s)| ‖BK‖

∫ T

t∗
m

exp ((T − s)µ(A+BK))ds .

(19)

We can solve the integral term in (19) which gives the
following bound:

|x(T )| ≤ exp ((T − t∗m)µ(A+BK)) |x(t∗m)| −

sups∈[t∗
m
,T ] |e(s)| ‖BK‖

µ(A+BK)
×

(1− exp ((T − t∗m)µ(A +BK))) . (20)

In order to further progress in our analysis, we need to
find an appropriate bound for sups∈[t∗

m
,T ] |e(s)|. This is

done in the following claim.

Claim 4.2: Consider (20), sups∈[t∗
m
,T ] |e(s)| satisfies the

following:

sup
s∈[t∗

m
,T ]

|e(s)| ≤ − |x(t∗m)|

(

1 +
‖BK‖

‖A‖

)

×

(1 − exp ((T − t∗m) ‖A‖)) . (21)

Proof of Claim 4.2: Due to space limits, we omit the
complete proof. •

Now, we plug (21) into (20) which then by some
simplifications yields:

|x(T )| ≤ α′ |x(t∗m)| , (22)

where the parameter α′ is defined as follows:

α′ , exp((T − t∗m)µ(A+BK)) +
‖BK‖

µ(A+BK)
×

(

‖BK‖

‖A‖
+ 1

)

(1 − exp((T − t∗m) ‖A‖))×

(1− exp((T − t∗m)µ(A +BK))) . (23)

It is worth to note that comparing the parameters α

and α′, introduced in (10) and (23), respectively, it
holds that α′ ≤ α, which is because t∗m ≤ T cr

off and
µ(A + BK) < 0, by assumption. According to this
observation, equation (22) can be written as:

|x(T )| ≤ α |x(t∗m)| . (24)

The value of the Lyapunov function at t = T , can be
estimated as follows:

V (T ) = x(T )TPx(T ) ≤ ‖U‖2 |x(T )|2 , (25)

which then according to (24), can be further bounded:

V (T ) ≤ α2 ‖U‖2 |x(t∗m)|2 . (26)

Besides, let us define the parameter γ to be:

γ , −
(1− σ) (‖Q‖ − 1)

‖U‖2
, (27)

where we note that γ < 0, based on the assumption of
this theorem. Then, we can rewrite (15) as in:

V (t∗m) < exp (γt∗m)V (0) . (28)

We note that as γ < 0 and t∗m ≤ T cr
off, we obtain

that exp (γT cr
off)V (0) ≤ exp (γt∗m)V (0), based on this

inequality, we can impose the following bound on (28):

V (t∗m) < exp (γT cr
off)V (0) ≤ exp (γt∗m)V (0) . (29)

Now, along the same reasoning for (25), we note that
V (t∗m) ≤ ‖U‖2 |x(t∗m)|2. A conservative bound can be
imposed as follows:

V (t∗m) ≤ ‖U‖2 |x(t∗m)|2 < exp (γT cr
off)V (0) . (30)
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Applying bound (30) on (26), we obtain:

V (T ) < α2 exp (γT cr
off)V (0) . (31)

Let Υ , α2 exp (γT cr
off), we note that Υ > 0, to wrap this

proof, we shall state the next result.

Claim 4.3: In (31), imposing Υ ∈ (0, 1) guarantees the
asymptotic stability, i.e., limn→∞ x(nT ) = 0.

Proof of Claim 4.3: Due to space limits, we omit the
complete proof. •

Therefore, according to Claim 4.3, a sufficient condition
for maintaining the asymptotic stability is given in the
following:

0 < Υ < 1 . (32)

Now, we recall the definition of parameter γ, presented
in (27), and that Υ > 0, by its construction. Also,
we note that ‖U‖2 = ‖P‖, plus given that exp is a
monotonically increasing function, we can rewrite (32)
in the form of (9). This, hence, completes the proof.

Remark 4.4: The result provided in the Theorem 4.1 can
be interpreted as a feasibility statement. In other words,
for a given system in the form (1), one has to find the
proper design parameters K , P , Q, and σ ∈ (0, 1) such
that the following constraints are satisfied:

(A+BK): Hurwitz , (33a)

(A+BK)TP + P (A+BK) = −Q , (33b)

(1− σ)T cr
off(‖Q‖ − 1)

2
> ‖P‖ ln(α) , (33c)

µ(A+BK) < 0 . (33d)

We note that, e.g., if T cr
off = T , i.e., the jammer is not

malicious at all, then α = 1 and so the constraint (33c)
holds for free. The same will be true for T cr

off ≈ T . Ad-
ditionally, note that more relaxed sufficient conditions
for stability can be obtained by imposing V (knT ) ≤
ΥV ((n − 1)T ) for some fixed k > 1, some Υ ∈ (0, 1),
and all n ∈ N.

V. SIMULATION

In Section III, we have developed a triggering time-
sequence and in Section IV proved that under some
sufficient conditions, the system under attack is asymp-
totically stable. In this section, we shall show the valid-
ity of these theoretical results on an academic example.

Let us consider the following system:
[

ẋ1

ẋ2

]

=

[

0 1
1.5 −1

] [

x1

x2

]

+

[

0
1

]

u , (34)

where u ∈ R. We note that, for this system, (A,B)
is a controllable pair. In addition, it is an open-loop
unstable system, provided that eigenvalues of A have
positive real-part. We pick the control gain:

K =
[

−2.6 −1
]

,

which renders the matrix A + BK Hurwitz. Then, we
consider the matrix:

Q =

[

1
2

1
4

1
4

3
2

]

.

We note that Q = QT ≻ 0, and that ‖Q‖ > 1. Given
these matrices, Lyapunov equation (3) gives us:

P =

[

1.1477 −0.25
−0.25 0.5125

]

.

We consider the jammer, imposing signal ujmd(t), where
T = 2 and T cr

off = 1.8.

We then refer to the Theorem 4.1. One can compute
that: α = 1.4413, ‖P‖ = 1.2343 and ‖Q‖ = 1.559. Thus,
the condition (9) would be translated into:

0.5036(1− σ) > 0.4512 =⇒ σ < 0.1041 .

It infers that the allowable range for the design param-
eter is σ ∈ (0, 0.1041). To realize, at this point, all the
assumptions of this theorem are satisfied, therefore, we
expect that the triggering time-sequence (7) render the
system asymptotically stable.

The temporal evolution of the states is shown in Fig-
ure 2. We can see that the control policy, along with
triggering time-sequence has counteracted the effect of
jamming attacks.

In order to further demonstrate the triggering time-
sequence, we have drawn the temporal evolution of

|e(t)|2 and σ(‖Q‖−1)

‖PBK‖2 |x(t)|2 in Figure 3. For the sake

of clarity, we have zoomed on the first four periods.
According to this figure, we note, e.g., that in the time-
interval t ∈

(

T cr
off, T

)

, where the communication is not
feasible, the error grows in an unbounded fashion. This
effect, however, is accounted for in the next period by
triggering more often.

The other interesting observation out of our simulation
is explained here. While preserving matrices P and Q,
for T cr

off ≤ 1.7996, there is no feasible σ. This is to note
that for these more malicious attackers, we cannot have a
feasible controller. A solution would be to tune matrices
P and Q which has not been studied in this simulation.

VI. CONCLUSIONS AND FUTURE WORK

We have considered a plant-jammer-operator setup,
where the control communication channel (from the
operator to the plant) is corrupted by a periodic jam-
mer. For the benefit of maintaining less communication,
we have adopted an event-triggering time-sequence to
restrict communications when necessary. We have then
shown, theoretically and in simulation, that this trig-
gering time-sequence is capable of counteracting the
jammer attack and also rendering the system asymp-
totically stable under some conditions.
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Fig. 2. Temporal evolution of the states
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Fig. 3. Temporal evolution of the triggering condition, zoomed over
the first four periods

As is explained in the manuscript, we assume the
jammer has been identified to the extent that it is
periodic and its characteristic parameters are known
by the operator. We are currently working on extending
our triggering strategy on two fronts: (i) allow for more
events so that learning and identification of the jammer
is possible, and (ii) exploiting the controllability proper-
ties of the linear system to beat a wider class of periodic
jammers. In the future we would like to consider more
malicious jammer classes.
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