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Abstract— In recent work it is shown that importance
sampling can be avoided in the particle filter through an
innovation structure inspired by traditional nonlinear filtering
combined with Mean-Field Game formalisms [9], [19]. The
resulting feedback particle filter (FPF) offers significant variance
improvements; in particular, the algorithm can be applied to
systems that are not stable. The filter comes with an up-front
computational cost to obtain the filter gain. This paper describes
new representations and algorithms to compute the gain in the
general multivariable setting. The main contributions are,

(i) Theory surrounding the FPF is improved: Consistency
is established in the multivariate setting, as well as well-
posedness of the associated PDE to obtain the filter gain.

(ii) The gain can be expressed as the gradient of a function,
which is precisely the solution to Poisson’s equation for
a related MCMC diffusion (the Smoluchowski equation).
This provides a bridge to MCMC as well as to approx-
imate optimal filtering approaches such as TD-learning,
which can in turn be used to approximate the gain.

(iii) Motivated by a weak formulation of Poisson’s equa-
tion, a Galerkin finite-element algorithm is proposed for
approximation of the gain. Its performance is illustrated
in numerical experiments.

I. INTRODUCTION

In a recent work, we introduced a new feedback control-
based formulation of the particle filter for the nonlinear
filtering problem [18],[17]. The resulting filter is referred
to as the feedback particle filter. In [18],[17], the filter
was described for the scalar case, where the signal and the
observation processes are both real-valued. The aim of this
paper is to generalize the scalar results of our earlier papers
to the multivariable filtering problem:

dXt = a(Xt)dt + dBt , (1a)
dZt = h(Xt)dt + dWt , (1b)

where Xt ∈ Rd is the state at time t, Zt ∈ Rm is the obser-
vation process, a( ·), h( ·) are C1 functions, and {Bt}, {Wt}
are mutually independent Wiener processes of appropriate
dimension. The covariance matrix of the observation noise
{Wt} is assumed to be positive definite. The function h is a
column vector whose j-th coordinate is denoted as h j (i.e.,
h = (h1,h2, . . . ,hm)

T ). For notational ease, the process noise
{Bt} is assumed to be a standard Wiener process. By scaling,
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we may assume without loss of generality that the covariance
matrices associated with {Bt}, {Wt} are identity matrices.

The objective of the filtering problem is to estimate the
posterior distribution of Xt given the history Zt := σ(Zs : s≤
t). The posterior is denoted by p∗, so that for any measurable
set A⊂ Rd , ∫

x∈A
p∗(x, t) dx = P{Xt ∈ A |Zt}.

The filter is infinite-dimensional since it defines the evolu-
tion, in the space of probability measures, of {p∗( · , t) : t ≥
0}. If a( ·), h( ·) are linear functions, the solution is given by
the finite-dimensional Kalman filter. The article [3] surveys
numerical methods to approximate the nonlinear filter. One
approach described in this survey is particle filtering.

The particle filter is a simulation-based algorithm to
approximate the filtering task [6]. The key step is the
construction of N stochastic processes {X i

t : 1≤ i≤ N}: The
value X i

t ∈Rd is the state for the ith particle at time t. For each
time t, the empirical distribution formed by, the “particle
population” is used to approximate the posterior distribution.
Recall that this is defined for any measurable set A⊂Rd by,

p(N)(A, t) =
1
N

N

∑
i=1

1{X i
t ∈ A}.

A common approach in particle filtering is called sequential
importance sampling, where particles are generated accord-
ing to their importance weight at every time step [1], [6].

In our earlier papers [18],[17], an alternative feedback
control-based approach to the construction of a particle filter
was introduced; see also [4], [14], [5], [12], [16] for related
approaches. The resulting particle filter, referred to as the
feedback particle filter, was described for the scalar filtering
problem (where d = m = 1). The main result of this paper is
to describe the feedback particle filter for the multivariable
filtering problem (1a)-(1b):

The particle filter is a controlled system. The dynamics of
the ith particle have the following gain feedback form,

dX i
t = a(X i

t )dt + dBi
t

+K(X i
t , t)dIi

t +Ω(X i
t , t)dt,

(2)

where {Bi
t} are mutually independent standard Wiener pro-

cesses, Ii is similar to the innovation process that appears in
the nonlinear filter,

dIi
t := dZt −

1
2
(h(X i

t )+ ĥ)dt, (3)

where ĥ := E[h(X i
t )|Zt ]. In a numerical implementation, we

approximate ĥ≈ 1
N ∑

N
i=1 h(X i

t ) =: ĥ(N).
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The gain function K is obtained as a solution to an
Euler-Lagrange boundary value problem (E-L BVP): For
j = 1,2, . . . ,m, the function φ j is a solution to the second-
order differential equation,

∇ · (p(x, t)∇φ j(x, t)) =−(h j(x)− ĥ j)p(x, t),∫
φ j(x, t)p(x, t)dx = 0,

(4)

where p denotes the conditional distribution of X i
t given Zt .

In terms of these solutions, the gain function is given by

[K]l j =
∂φ j

∂xl
. (5)

Note that the gain function needs to be obtained for each
value of time t.

Finally, Ω = (Ω1,Ω2, ...,Ωd)
T is the Wong-Zakai correc-

tion term:

Ωl(x, t) :=
1
2

d

∑
k=1

m

∑
s=1

Kks(x, t)
∂ Kls

∂xk
(x, t). (6)

The controlled system (2)-(6) is called the multivariable
feedback particle filter.

The contributions of this paper are as follows:

• Consistency. The feedback particle filter (2) is consistent
with the nonlinear filter, given consistent initializations
p( · ,0) = p∗( · ,0). Consequently, if the initial conditions
{X i

0}N
i=1 are drawn from the initial distribution p∗( · ,0) of

X0, then, as N→∞, the empirical distribution of the particle
system approximates the posterior distribution p∗( · , t) for
each t.

•Well-posedness. A weak formulation of (4) is introduced,
and used to prove an existence-uniqueness result for φ j in
a suitable function space. Certain apriori bounds are derived
for the gain function to show that the resulting control input
in (2) is admissible (That is, the filter (2) is well-posed in
the Itô sense).

• Numerical algorithms. Based on the weak formulation, a
Galerkin finite-element algorithm is proposed for approxima-
tion of the gain function K(x, t). The algorithm is completely
adapted to data (That is, it does not require an explicit
approximation of p(x, t) or computation of derivatives).
Certain closed-form expressions for gain function are derived
in certain special cases. The conclusions are illustrated with
numerical examples.
• Characterization of the feedback gain. The Smolu-
chowski equation models a d-dimensional gradient flow with
“noise”:

dΦt =−∇G (Φt)dt +
√

2dξt , (7)

where ξ is a standard Wiener process. It is regarded as
the original MCMC algorithm: Under general conditions it
is ergodic, with (unnormalized) stationary distribution e−G .
The BVP (4) can be expressed as an instance of Poisson’s
equation for this diffusion,

Dφ j =−(h j− ĥ j) , 1≤ j ≤ m , (8)

where D is the differential generator for the Smoluchowski
equation, with potential G = − log p. Subject to growth
conditions on h and p, this implies the mean-integral rep-
resentation for the vector-valued function,

φ j(x) =
∫

∞

0
E[h j(Φt)− ĥ j |Φ0 = x] dt. (9)

This representation also suggests an alternate proof of well-
posedness and construction of numerical algorithms; cf., [8].
This will be the subject of future work.

The outline of the remainder of this paper is as follows.
The nonlinear filter is introduced and shown to be consistent
in Sec II. The weak formulation of the BVP appears in Sec III
where well-posedness results are also derived. Algorithms
are discussed in Sec IV and a numerical example in Sec V.

II. MULTIVARIABLE FEEDBACK PARTICLE FILTER

Consider the continuous time filtering problem (1a, 1b) in-
troduced in Sec I.

We denote as p∗(x, t) the conditional distribution of Xt
given Zt = σ(Zs : s ≤ t). The evolution of p∗(x, t) is de-
scribed by the Kushner-Stratonovich (K-S) equation:

dp∗ = L † p∗ dt +(h− ĥ)T (dZt − ĥdt)p∗, (10)

where ĥ =
∫

h(x)p∗(x, t)dx and L † p∗ = −∇ · (pa) + 1
2 ∆p,

where ∆ denotes the Laplacian in Rd .

A. Belief state dynamics & control architecture

The model for the particle filter is given by,

dX i
t = a(X i

t )dt + dBi
t +u(X i

t , t)dt +K(X i
t , t)dZt︸ ︷︷ ︸

dU i
t

, (11)

where X i
t ∈ Rd is the state for the ith particle at time t,

and {Bi
t} are mutually independent standard Wiener pro-

cesses. We assume the initial conditions {X i
0}N

i=1 are i.i.d.,
independent of {Bi

t}, and drawn from the initial distribution
p∗(x,0) of X0. Both {Bi

t} and {X i
0} are also assumed to be

independent of Xt ,Zt . Note that the gain function K(x, t) is
a d×m matrix and u(x, t) ∈ Rd .

We impose admissibility requirements on the control input
U i

t in (11):
Definition 1 (Admissible Input): The control input U i

t is
admissible if the random variables u(x, t) and K(x, t)
are Zt = σ(Zs : s ≤ t) measurable for each t. And
for each t, E[|u|] := E[∑l |ul(X i

t , t)|] < ∞ and E[|K|2] :=
E[∑l j |Kl j(X i

t , t)|2]< ∞.
Recall that there are two types of conditional distributions

of interest in our analysis:
1) p(x, t): Defines the conditional dist. of X i

t given Zt .
2) p∗(x, t): Defines the conditional dist. of Xt given Zt .

The functions {u(x, t),K(x, t)} are said to be optimal if p≡
p∗. That is, given p∗(·,0) = p(·,0), our goal is to choose
{u,K} in the feedback particle filter so that the evolution
equations of these conditional distributions coincide (see (10)
and (12)).



Fig. 1. Innovation error-based feedback structure for (a) Kalman filter and (b) nonlinear feedback particle filter (see Remark (1)).

The evolution equation for the belief state is described in
the next result. The proof is identical to the proof in the
scalar case (see Proposition 2 in [17]). It is omitted here.

Proposition 1: Consider the process X i
t that evolves ac-

cording to the particle filter model (11). The conditional
distribution of X i

t given the filtration Zt , p(x, t), satisfies the
forward equation

dp = L † pdt−∇ · (pK)dZt

−∇ · (pu)dt +
1
2

d

∑
l,k=1

∂ 2

∂xl∂xk

(
p[KKT ]lk

)
dt.

(12)

B. General Form of the Feedback Particle Filter

The general form of the feedback particle filter is obtained
by choosing {u,K} as the solution to a certain E-L BVP
based on p. The function K is a solution to

∇ · (pK) =−(h− ĥ)T p, (13)

and the function u is obtained as

u(x, t) =−1
2

K(x, t)
(
h(x)+ ĥ

)
+Ω(x, t). (14)

The reader is referred to our earlier paper [17] for additional
justification regarding these choices.

Remark 1: Substituting (13)-(14) into (11) gives the feed-
back particle filter model (2)-(3) in Sec I.

In the Stratonovich form, the filter admits a simpler
representation,

dX i
t = a(X i

t )dt + dBi
t +K(X i, t)◦

(
dZt −

1
2
(h(X i

t )+ ĥ)dt
)
.

Given that the Stratonovich form provides a mathematical
interpretation of the (formal) ODE model [15, Section 3.3
of the SDE text by Øksendal], we also obtain the (formal)
ODE model of the filter. Denoting Yt

.
= dZt

dt and white noise

process Ḃi
t
.
= dBi

t
dt , the ODE model of the filter is given by,

dX i
t

dt
= a(X i

t )+ Ḃi
t +K(X i, t) ·

(
Yt −

1
2
(h(X i

t )+ ĥ)
)
.

The feedback particle filter thus provides a generalization of
the Kalman filter to nonlinear systems, where the innovation
error-based feedback structure of the control is preserved (see
Fig. 1). For the linear case, it is shown in Sec III-D that the
gain function is the Kalman gain. For the nonlinear case,
the Kalman gain is replaced by a nonlinear function of the
state.

If one further assumes that the control input U i
t is admissi-

ble, a short calculation shows that the feedback particle filter
is consistent with the choice of {u,K} given by (13)-(14).
This calculation appears in Appendix A.

C. Consistency with the Nonlinear Filter

To establish admissibility of the input U i
t requires addi-

tional assumptions on the density p and function h:

(i) Assumption A1 The probability density p(x, t) is of
the form p(x, t) = e−G (x,t), where G (x, t) is a twice
continuously differentiable function with

|∇G |2−2∆G → ∞ as |x| → ∞. (15)

(ii) Assumption A2 The function h satisfies,∫
|h(x)|2 p(x, t)dx < ∞,

where |h(x)|2 := ∑ j |h j(x)|2. For admissibility of u, our
arguments require additional assumptions:

(iii) Assumption A3 The second derivatives of G (x, t)
with respect to x are uniformly bounded at each t, i.e.,
| ∂ 2G

∂x j∂xk
(x, t)| ≤ c2(t) for all x ∈ Rd , t > 0.

(iv) Assumption A4 The first (weak) derivatives of h
satisfy ∫

|∇h(x)|2 p(x, t)dx < ∞,

where |∇h(x)|2 := ∑ jk |
∂h j
∂xk

(x)|2.

Under these assumptions, it is shown in Theorem 2 that the
gradient-form (4) of the E-L BVP (13) is uniquely obtained
to give φ and thence K.

The admissibility of the resulting control input is estab-
lished in Corollary 1. Theorem 2 and Corollary 1 are stated
and proved in Sec III.

The following theorem then shows that the two evolution
equations (10) and (12) are identical. The proof appears in
Appendix A.

Theorem 1: Consider the two evolution equations for p
and p∗, defined according to the solution of the forward equa-
tion (12) and the K-S equation (10), respectively. Suppose
that the gain function K(x, t) is obtained according to (4)-(5).
Then, provided p( · ,0) = p∗( · ,0), we have for all t ≥ 0,

p( · , t) = p∗( · , t).



III. EXISTENCE, UNIQUENESS AND ADMISSIBILITY

The aim of this section is to introduce a particular
gradient-form solution of the BVP (13). The gradient-form
solution is obtained in terms of m real-valued functions
{φ1( · , t),φ2( · , t), . . . ,φm( · , t)}. For j = 1,2, . . . ,m, the func-
tion φ j is a solution to,

∇ · (p(x, t)∇φ j(x, t)) =−(h j(x)− ĥ j)p(x, t),∫
φ j(x, t)p(x, t)dx = 0.

(16)

The normalization
∫

φ j(x, t)p(x, t)dx = 0 is for convenience:
If φ o

j is an solution to the differential equation (16), we obtain
the desired normalization on subtracting its mean.

In terms of these solutions, the gain function is given by,

Kl j(x, t) =
∂φ j

∂xl
(x, t) , x ∈ Rd . (17)

It is straightforward to verify that K thus defined is a
particular solution of the BVP (13).

A. Poisson’s Equation Interpretation

The differential equation (16) is solved for each t to give
the m functions {φ j( · , t) : 1 ≤ j ≤ m}. On dividing each
side of this equation by p, elementary calculus leads to the
equivalent equation (8), with generator D defined for C2

functions f via,

D f =−∇G ·∇ f +∆ f

and with G ( ·) =− log p( · , t). This is the differential gener-
ator for the Smoluchowski equation (7). It is shown in [10]
that this diffusion is exponentially ergodic under mild condi-
tions on G . Consequently, E[h j(Φt)− ĥ j |Φ0 = x] converges
to zero exponentially fast, subject to growth conditions on
h j, and from this we can conclude that (9) is well defined,
and provides a solution to Poisson’s equation (8) [8].

Poisson’s equation can be regarded as the value function
that arises in average-cost optimal control, and this is the
object of interest in the approximation techniques used
in TD-learning for average-cost optimal control [13]. The
integral representation (9) suggests approximation techniques
based on approximate models for the diffusion Φ.

The remainder of this section is devoted to showing
existence and uniqueness of the solution of (16), and ad-
missibility of the resulting control input, obtained using gain
function defined by (17).

B. Weak Formulation

Further analysis of this problem requires introduction of
Hilbert spaces: L2(Rd ; p) is used to denote the Hilbert space
of functions on Rd that are square-integrable with respect
to density p(·, t) (for a fixed time t); Hk(Rd ; p) is used to
denote the Hilbert space of functions whose first k-derivatives
(defined in the weak sense) are in L2(Rd ; p). Denote

H1
0 (Rd ; p) :=

{
φ ∈ H1(Rd ; p)

∣∣∣ ∫ φ(x)p(x, t)dx = 0
}
.

A function φ j ∈ H1
0 (Rd ; p) is said to be a weak solution

of the BVP (16) if∫
∇φ j(x, t) ·∇ψ(x)p(x, t)dx =

∫
(h j(x)− ĥ j)ψ(x)p(x, t)dx,

(18)
for all ψ ∈ H1(Rd ; p).

Denoting E[·] :=
∫
·p(x, t)dx, the weak form of the

BVP (16) can also be expressed as

E[∇φ j ·∇ψ] = E[(h j− ĥ j)ψ], ∀ ψ ∈ H1(Rd ; p). (19)

This representation is useful for the numerical algorithm
described in Sec IV.

C. Main Results

The existence-uniqueness result for the BVP (16) is de-
scribed next — Its proof is given in Appendix B.

Theorem 2: Under Assumptions A1-A2, the BVP (16)
possesses a unique weak solution φ j ∈H1

0 (Rd ; p), satisfying∫
|∇φ j(x)|2 p(x, t)dx≤ 1

λ

∫
|h j(x)− ĥ j|2 p(x, t)dx. (20)

If in addition Assumptions A3-A4 hold, then φ j ∈H2(Rd ; p)
with∫ ∣∣(D2

φ j)(∇φ j)
∣∣ p(x, t)dx≤C(λ ; p)

∫
|∇h j|2 p(x, t)dx,

(21)
where λ is (spectral gap) constant (see Appendix B) and

C(λ ; p) = 1
λ 3/2

(
‖D2(log p)‖L∞

λ
+1
)1/2

.
The apriori bounds (20)-(21) are used to show that the

control input for the feedback particle filter is admissible.
The proof is omitted on account of space.

Corollary 1: Suppose φ j is the weak solution of BVP (16)
as described in Theorem 2. The gain function K is obtained
using (17) and u is given by (14). Then

E[|K|2]≤ 1
λ

m

∑
j=1

∫
|h j(x)|2 p(x, t)dx,

E[|u|]≤
(

1
λ
+C(λ ; p)

) m

∑
j=1

∫ (
|h j(x)|2 + |∇h j|2

)
p(x, t)dx,

where C(λ ; p) is given in Theorem 2. That is, the resulting
control input in (17) is admissible.

D. Linear Gaussian case

Consider the linear system,

dXt = A Xt dt + dBt (22a)
dZt = H Xt dt + dWt (22b)

where A is an d×d matrix, and H is an m×d matrix. The
initial distribution p∗(x,0) is Gaussian with mean vector µ0
and covariance matrix Σ0.

The following proposition shows that the Kalman gain is
a gradient-form solution of the multivariable BVP (13):

Proposition 2: Consider the d-dimensional linear sys-
tem (22a)-(22b). Suppose p(x, t) is assumed to be Gaussian:
p(x, t)= 1

(2π)
d
2 |Σt |

1
2

exp
(
− 1

2 (x−µt)
T Σ
−1
t (x−µt)

)
, where x=



(x1,x2, ...,xd)
T , µt = (µ1t ,µ2t , . . . ,µdt)

T is the mean, Σt is the
covariance matrix, and |Σt | > 0 denotes the determinant. A
solution of the BVP (16) is given by,

φ j(x, t) =
d

∑
k=1

[ΣtHT ]k j(xk−µkt). (23)

Using (17), K(x, t) = ΣtHT (the Kalman gain) is the gradient
form solution of (13).

The formula (23) is verified by direct substitution in the
BVP (16) where the distribution p is multivariable Gaussian.

The gain function yields the following form for the particle
filter in this linear Gaussian model:

dX i
t = A X i

t dt + dBi
t +ΣtHT

(
dZt −H

X i
t +µt

2
dt
)
. (24)

Now we show that p = p∗ in this case. That is, the con-
ditional distributions of X and X i coincide, and are defined
by the well-known dynamic equations that characterize the
mean and the variance of the continuous-time Kalman filter.

Theorem 3: Consider the linear Gaussian filtering prob-
lem defined by the state-observation equations (22a)-(22b).
In this case the posterior distributions of Xt and X i

t are
Gaussian, whose conditional mean and covariance are given
by the respective SDE and the ODE,

dµt = Aµt dt +ΣtHT
(

dZt −Hµt dt
)

d
dt

Σt = AΣt +ΣtAT + I−ΣtHT HΣt

The result is verified by substituting p(x, t) =

(2π)−
d
2 |Σt |−

1
2 exp

[
− 1

2 (x−µt)
T Σ
−1
t (x−µt)

]
in the forward

equation (12). The details are omitted on account of space,
and because the result is a special case of Theorem 1.

In practice {µt ,Σt} are approximated as sample means and
sample covariances from the ensemble {X i

t }N
i=1:

µt ≈ µ
(N)
t :=

1
N

N

∑
i=1

X i
t ,

Σt ≈ Σ
(N)
t :=

1
N−1

N

∑
i=1

(X i
t −µ

(N)
t )2.

The resulting equation (24) for the ith particle is given by

dX i
t = A X i

t dt + dBi
t +Σ

(N)
t HT

(
dZt −H

X i
t +µ

(N)
t

2
dt

)
.

As N→ ∞, the empirical distribution of the particle system
approximates the posterior distribution p∗(x, t) (by Theo-
rem 3).

IV. FINITE-ELEMENT ALGORITHM

In this section, a Galerkin finite-element algorithm is
described to construct an approximate solution of (18). Since
there are m uncoupled BVPs, without loss of generality, we
assume scalar-valued observation in this section, with m = 1,
so that K = ∇φ . The time t is fixed. The explicit dependence
on time is suppressed for notational ease (That is, p(x, t) is
denoted as p(x), φ(x, t) as φ(x) etc.).

A. Galerkin Approximation

Using (19), the gain function K = ∇φ is a weak solution
if

E[K ·∇ψ] = E[(h− ĥ)ψ], ∀ ψ ∈ H1(Rd ; p). (25)

The gain function is approximated as,

K =
L

∑
l=1

κl χl(x),

where {χl(x)}L
l=1 are basis functions. For each l = 1, . . . ,L,

χl(x) is a gradient function; That is, χl(x) = ∇ζl(x) for some
function ζl(x) ∈ H1

0 (Rd ; p).
The test functions are denoted as {ψk(x)}L

k=1 and S :=
span{ψ1(x),ψ2(x), . . . ,ψL(x)} ⊂ H1(Rd ; p).

The finite-dimensional approximation of the BVP (25) is
to choose constants {κl}L

l=1 such that

L

∑
l=1

κlE[χl ·∇ψ] = E[(h− ĥ)ψ], ∀ ψ ∈ S. (26)

Denoting [A]kl = E[χl · ∇ψk], bk = E[(h − ĥ)ψk], κ =
(κ1,κ2, . . . ,κL)

T , the finite-dimensional approximation (26)
is expressed as a linear matrix equation:

Aκ = b.

The matrix A and vector b are easily approximated by using
only the particles:

[A]kl = E[χl ·∇ψk]≈
1
N

N

∑
i=1

χl(X i
t ) ·∇ψk(X i

t ), (27)

bk = E[(h− ĥ)ψk]≈
1
N

N

∑
i=1

(h(X i
t )− ĥ)ψk(X i

t ), (28)

where recall ĥ≈ 1
N ∑

N
i=1 h(X i

t ).

B. Example 1: Constant Gain Approximation

Suppose χl = el , the canonical coordinate vector with
value 1 for the lth coordinate and zero otherwise. The test
functions are the coordinate functions ψk(x) = xk for k =
1,2, . . . ,d. Denoting ψ(x) = (ψ1,ψ2, . . . ,ψd)

T = x,

κ = E[K] = E[(h− ĥ)ψ] =
∫
(h(x)− ĥ)ψ(x)p(x)dx

≈ 1
N

N

∑
i=1

(h(X i
t )− ĥ)X i

t . (29)

This formula yields the constant-gain approximation of the
gain function.

C. Example 2: Single-state Case

Consider a scalar example, where the density is a sum of
Gaussian,

p(x)≈
3

∑
j=1

λ
jq j(x),

where q j(x) = q(x; µ j,Σ j) = 1√
2πΣ j exp(− (x−µ j)2

2Σ j ), λ j > 0,
∑λ j = 1. The parameter values for λ j,µ j,Σ j are tabulated
in Table I.
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1 -10.2 0.25
2 00.5 0.25
3 10.3 0.25

Table 1
Parameter Values
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Fig. 2. (a) Parameter values and (b) (ψ1,ψ2) in the Example.

In the scalar case, a direct numerical solution (DNS) of
the gain function is obtained by numerically approximating
the integral

K(x) =− 1
p(x)

∫ x

−∞

(h(y)− ĥ)p(y)dy.

The DNS solution is used to provide comparisons with the
approximate Galerkin solutions.

The Galerkin approximation of the gain function is con-
structed on an interval domain D⊂R. The domain is a union
of finitely many non-intersecting intervals Dl = [al−1,al),
where a0 < a1 < .. . < aL.

Define for l = 1,2, . . . ,L and k = 1,2, . . . ,L:

Basis functions: χl(x) = 1Dl (x),

Test functions: ψk(x) = |x−ak|.

Figure 2 depicts the test functions {ψ1(x),ψ2(x)} for D =
[0,1] and a0 = 0, a1 =

1
2 and a2 = 0. The basis functions are

the indicator functions on [0, 1
2 ) and [ 1

2 ,1).
Figure 3 depicts a comparison of the DNS solution and the

Galerkin solution for h(x) = x2, D = [−2,2] and L = 1,5,15.
For a given L, the basis and test functions are constructed for
a uniform partition of the domain (That is, al = −2+ l

L 4).
The Galerkin solution is obtained using N = 1000 particles
that are sampled from the distribution p. The particles are
used to compute matrix A and vector b, using formulae (27)
and (28), respectively. Since the analytical form of p is
known, these matrices can also be assembled by using the
integrals:

[A]kl =
∫

χl(x) ·∇ψk(x)p(x)dx, (30)

bk =
∫
(h(x)− ĥ)ψk(x)p(x)dx. (31)

The figure also depicts the Galerkin solution based on the
integral evaluation of the matrix A and vector b.

For L = 15, the matrix A was found to be singular for the
particle-based implementation. This is because there are no
particles in D15. In this case, the Galerkin solution is obtained
using only the integral formulae (30)-(31). These formulae
are exact while the particle-based formulae (27) and (28) are
approximations. In the other two cases (L = 1 and L = 5),
the particle-based solution provides a good approximation.

V. NUMERICS

Consider a target tracking problem with two bearing-only
sensors [2]. A single target moves in a two-dimensional

30

40

20

10

0

0 10 20 30-30 -20 -10
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Fig. 4. Simulation results: Comparison of the true target trajectory with
the estimate obtained using FPF.

(2d) plane according to the standard white-noise acceleration
model:

dXt = AXt dt +ΓdBt ,

where X := (X1,V1,X2,V2)
T ∈R4, (X1,X2) denotes the posi-

tion and (V1,V2) denotes the velocity. The matrices,

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Γ = σB


0 0
1 0
0 0
0 1

 ,
and Bt is a standard 2d Wiener process.

The observation model is given by,

dZt = h(Xt)dt +σW dWt ,

where Wt is a standard 2d Wiener process, h = (h1,h2)
T and

h j(x1,v1,x2,v2) = arctan

(
x2− x(sen j)

2

x1− x(sen j)
1

)
, j = 1,2,

where (x(sen j)
1 ,x(sen j)

2 ) denote the position of sensor j.
Figure 4 depicts a sample path obtained for a typical

numerical experiment. The sensor and target locations are
depicted together with an estimate (conditional mean) that
is approximated using a feedback particle filter. The back-
ground depicts the ensemble of observations that were made
over the simulation run. Each point in the ensemble is
obtained by using the process of triangulation based on
two (noisy) angle measurements. The simulation parameters
are: The initial position of the target is depicted, the initial
velocity was chosen as (0.2,−5) and σB = 0.1; The two
sensor positions are depicted and σW = 0.017; The particle
filter comprised of N = 200 particles whose initial position
was chosen from a Gaussian distribution whose mean is
depicted. The gain function was obtained using the constant
gain approximation in (29). The simulation results show that
the filter can adequately track the target.

APPENDIX

A. Proof of Theorem 1

It is only necessary to show that with the choice of {u,K}
given by (13)-(14), we have dp(x, t) = dp∗(x, t), for all x and
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Fig. 3. Comparison of the DNS and the Galerkin approximations of the gain function for h(x) = x2 and: (a) L = 1, (b) L = 5 and (c) L = 15. The density
is depicted as the shaded curve in the background.

t, in the sense that they are defined by identical stochastic
differential equations. Recall dp∗ is defined according to
the K-S equation (10), and dp according to the forward
equation (12).

Recall that the gain function K is a solution of the
following BVP:

∇ · (pK) =−p(h− ĥ)T . (32)

On multiplying both sides of (14) by −p, we obtain

−up =
1
2

p(h− ĥ)K−Ωp+ pKĥ

=−1
2

K[∇ · (pK)]T −Ωp+ pKĥ
(33)

where (32) is used to obtain the second equality. Denoting
E := 1

2 K[∇ · (pK)]T , a direct calculation shows that

El +Ωl p =
d

∑
k=1

∂

∂xk

(
p[KKT ]lk

)
.

Substituting this in (33), on taking the divergence of both
sides, we obtain

−∇ · (pu)+
1
2

d

∑
l,k=1

∂ 2

∂xl∂xk

(
p[KKT ]lk

)
= ∇ · (pK)ĥ. (34)

Using (32) and (34) in the forward equation (12),

dp = L † p+(h− ĥ)T (dZt − ĥdt)p.

This is precisely the SDE (10), as desired.

B. Proof of Theorem 2

We omit the subscript “ j” in this proof, writing just φ and
h. We also suppress explicit dependence on time t, writing
p(x) instead of p(x, t) and φ(x) instead of φ(x, t).

Under Assumption A1, p is known to admit a spectral gap
(or Poincaré inequality) with constant λ ≥ c1 [11]: That is,
for all functions φ ∈ H1

0 (Rd ; p),∫
|φ(x)|2 p(x)dx≤ 1

λ

∫
|∇φ(x)|2 p(x)dx. (35)

Consider now the inner product

< φ ,ψ >:=
∫

∇φ(x) ·∇ψ(x)p(x)dx.

On account of (35), the norm defined by using the inner prod-
uct < ·, ·> is equivalent to the standard norm in H1(Rd ; p).

(i) Consider the BVP in its weak form (18). The integral
on the righthand-side is a bounded linear functional on
ψ ∈ H1

0 , since

|
∫
(h(x)− ĥ)ψ(x)p(x)dx|2

≤
∫
|h(x)− ĥ|2 p(x)dx

∫
|ψ(x)|2 p(x)dx

≤ (const.)
∫
|∇ψ(x)|2 p(x)dx,

where (35) is used to obtain the second inequality.
It follows from the Reisz representation theorem that
there exists a unique φ ∈ H1

0 such that

< φ ,ψ >=
∫
(h(x)− ĥ)ψ(x)p(x)dx,

for all ψ ∈H1
0 (Rd ; p). Thus φ is a weak solution of the

BVP, satisfying (18).
(ii) Suppose φ is a weak solution. Using ψ = φ in (18),∫
|∇φ |2 p(x)dx =

∫
(h(x)− ĥ)φ(x)p(x)dx

≤
(∫
|h(x)− ĥ|2 p(x)dx

) 1
2
(∫
|φ(x)|2 p(x)dx

) 1
2

≤
(∫
|h(x)− ĥ|2 p(x)dx

) 1
2
(

1
λ

∫
|∇φ(x)|2 p(x)dx

) 1
2

by (35). The estimate (20) follows.
(iii) For the final estimate (21), we need:

Lemma 1: Under Assumptions A1-A4, the weak solu-
tion φ of the BVP (18) belongs to H2(Rd ; p), with∫

|D2
φ |2 pdx≤

∫
∇φ ·Gpdx (36)

where the vector function G ∈ L2(Rd ; p) is defined by

G = D2(log p)∇φ +∇h

and where |D2φ |2 = ∑ j,k(
∂ 2φ

∂x j∂xk
)2.

Proof: First note that each entry of the Hessian
matrix D2(log p) is bounded, by Assumption A3, and
that ∇h ∈ L2(Rd ; p) by Assumption A4. Hence G ∈
L2(R; p).
Next, elliptic regularity theory [7, Section 6.3 of the
PDE text by Evans] applied to the weak solution φ ∈



H1(Rd ; p) says that φ ∈ H3
loc(R

d). Hence the partial
differential equation holds pointwise:

−∇ · (p∇φ) = (h− ĥ)p. (37)

We differentiate with respect to xk to obtain:

−∇ · (p∇
∂φ

∂xk
)−∇(

∂ log p
∂xk

) · (p∇φ)− ∂ log p
∂xk

∇ · (p∇φ)

=
∂h
∂xk

p+(h− ĥ)
∂ log p

∂xk
p.

The final terms on the left and right sides cancel, by
equation (37). Thus the preceding formula becomes

−∇ · (p∇
∂φ

∂xk
) = Gk p, (38)

where Gk denotes the kth component of G(x).
Let β (x)≥ 0 be a smooth, compactly supported “bump”
function, meaning β (x) is radially decreasing with
β (0) = 1. Let s > 0 and multiply (38) by β (sx)2 ∂φ

∂xk
.

Integrate by parts on the left side (noting the boundary
terms vanish because β has compact support) to obtain∫

∇[β (sx)2 ∂φ

∂xk
] · (∇ ∂φ

∂xk
)pdx =

∫
β (sx)2 ∂φ

∂xk
Gk pdx.

The right hand side RHS→
∫ ∂φ

∂xk
Gk pdx by dominated

convergence as s→ 0, since β (0) = 1. The left side,

LHS =
∫

β (sx)2|∇ ∂φ

∂xk
|2 pdx

+2s
∫

∂φ

∂xk
β (sx)(∇β )(sx) · (∇ ∂φ

∂xk
)pdx.

Clearly the second term is bounded by

2s‖∇β‖L∞(Rd)

∫
| ∂φ

∂xk
|β (sx)|∇ ∂φ

∂xk
|pdx

≤ s‖∇β‖L∞(Rd)

∫ [
(

∂φ

∂xk
)2 +β (sx)2|∇ ∂φ

∂xk
|2
]

pdx

and so

(1− s‖∇β‖L∞(Rd))
∫

β (sx)2|∇ ∂φ

∂xk
|2 pdx

−s‖∇β‖L∞(Rd)

∫
(

∂φ

∂xk
)2 dx≤ LHS.

Letting s→ 0 in LHS and RHS, and recalling that β (x)
is radially decreasing, we conclude from the monotone
convergence theorem that∫

|∇ ∂φ

∂xk
|2 pdx≤

∫
∂φ

∂xk
Gk pdx.

Summing over k completes the proof of the lemma.
Next we prove (21). We will use several times that∫
|∇φ |2 pdx≤ 1

λ

∫
|h− ĥ|2 pdx≤ 1

λ 2

∫
|∇h|2 pdx,

(39)
by (20) followed by (35) applied to the function h− ĥ∈
H1

0 (Rd ; p).

We have∫
|(D2

φ)(∇φ)|pdx≤
∫
|D2

φ ||∇φ |pdx

≤ (
1

λ 2

∫
|∇h|2 pdx)3/4(

∫
|G|2 pdx)1/4

by Lemma 1, Cauchy–Schwarz, and (39). The defini-
tion of G, the L2-triangle inequality and (39) show that

(
∫
|G|2 pdx)1/2

≤ ‖D2(log p)‖L∞(
∫
|∇φ |2 pdx)1/2 +(

∫
|∇h|2 pdx)1/2

≤
(
‖D2(log p)‖L∞

λ
+1
)
(
∫
|∇h|2 pdx)1/2.

The estimate (21) now follows.
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