Abstract:
A novel perturbation observer-based PDE boundary control law for beam bending is derived based on a combination of perturbation observers and polynomial trajectory planni...Show MoreNotes: PDF Not Yet Available In IEEE Xplore. The document that should appear here is not currently available. IEEE Xplore is working to obtain a replacement PDF. That PDF will be posted as soon as it is available. We regret any inconvenience in the meantime.
Metadata
Abstract:
A novel perturbation observer-based PDE boundary control law for beam bending is derived based on a combination of perturbation observers and polynomial trajectory planning. The perturbation observer consists of two components. The first stage employs the “particular” solution of the original dynamics with disturbances while its boundary conditions are set to zero. In contrast, the dynamics of the “homogeneous component” are independent of the beam dynamics, but its boundary conditions are identical to those of the beam. A tracking boundary control law, based on trajectory planning, is designed for the homogeneous component, and the same control signal is also applied to the beam. The stability of the adaptive perturbation-observer is proven by Lyapunov stability in the spatial L2 sense, while stability conditions are derived for a finite dimensional ODE analogue of the infinite dimensional closed loop PDE system. This paper also reports on one of the first experimental demonstrations of a controller designed entirely using a PDE boundary control formulation.
Notes: PDF Not Yet Available In IEEE Xplore. The document that should appear here is not currently available. IEEE Xplore is working to obtain a replacement PDF. That PDF will be posted as soon as it is available. We regret any inconvenience in the meantime.
Date of Conference: 10-13 December 2012
Date Added to IEEE Xplore: 04 February 2013
ISBN Information: