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Comparison of Feedforward and Model Predictive Control
of Wind Turbines Using LIDAR
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Abstract— LIDAR systems are able to provide preview infor-
mation of wind disturbances at various distances in front of
wind turbines. This technology paves the way for new control
concepts such as feedforward control and model predictive
control. This paper compares a nonlinear model predictive
controller and a feedforward controller to a baseline controller.
Realistic wind “measurements” are obtained using a detailed
simulation of a LIDAR system. A full lifetime comparison shows
the advantages of using the wind predictions to reduce wind
turbine fatigue loads on the tower and blades as well as to limit
the blade pltCh rates. The results illustrate that the feedforward Fig. 1. Degrees of freedom for the reduced nonlinear model.
controller can be combined with a tower feedback controller to
yield similar load reductions as the model predictive controller.

II. MODELING OF THEWIND TURBINE

The crucial part of a successful feedforward and model
An important design goal for large wind turbines is topredictive controller design is the adequate modeling of
reduce fatigue and extreme loads of the structure by tunirige dynamic system to be controlled. The model should be
the control. This is a challenging task because transieftmple enough to allow a partial system inversion (for the
events such as gusts represent an unknown disturbance tofgedforward controller design) and simulations in reabtma
control system. Conventional feedback controllers cary onicomputation time (for the NMPC), and at the same time it
provide delayed compensation for such excitations, singhould be accurate enough to capture the system dynamics
the disturbance effects must propagate through the entifeat are relevant for wind turbine control.
wind turbine before showing its effects in the measured Classically aeroelastic simulation environments for wind
outputs. This usually results in additional loads for thedvi turbines, such as FAST [9] (used later in this work), provide
turbine and requires high actuator rates for the disturbangnodels close to reality but far too complex to be used
compensation. Those effects can be avoided, if the wirf@r controller design. In addition, current remote sensing
ahead of the wind turbine is measured by remote sensifigethods such as LIDAR are not able to provide a wind
techniques such as LIDAR (LIght Detection And Ranging)ield estimate with comparable details to a generic wind
and the information is fed to the turbine controller. field used by aeroelastic simulations (generated in thikwor
While early work on LIDAR-assisted control was reportedvith TurbSim [10]). In this section, a turbine model with
in [1], this field of investigation has increased signifidpim  three degrees of freedom (see Figure 1) is derived from
recent years, and several feedforward and model predictip@ysical fundamentals, and the wind field is reduced to the
controllers have been proposed for load reduction or irssrearotor effective wind speed which is measurable with exgtin
ing the energy yield, see e.g., [2]-[8]. The present wotksill LIDAR technology.
trates that a good understanding of the relationship betwee The first tower fore-aft bending mode, the rotational
meteorology, LIDAR technology, and system dynamics cafotion, and the collective pitch actuator are based on [11]:

I. INTRODUCTION

lead to the desi_gn of a s?mple feedforwarc! c_ontroller that JQ+Mg/igb= Ma(%7,Q, 6,V0) (1a)

can compete with a nonlinear model predictive controller . . .

(NMPC). MrekT + CrX7 + krxt = Fa(%7,Q, 6,v0) (1b)
This paper is organized as follows. Section || summarizes 0+ 28 wh + w?(6 — 6;) = 0. (1c)

the modeling of the wind turbine. Section IIl describes th%quation (1a) models the drive-train dynamics, where
LIDAR sensing process, and the different controllers arR the rotor speedM, is the aerodynamic torqu'eMg is

ouglned Iln Section I(;/f ?ectlon \Ii presde_nts smgl_aﬂgn rtt_:'su'v he electrical generator torquey is the tower top fore-aft

and conciusions and future work are discussed In section isplacementf is the effective collective blade pitch angle,
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In this work, a pulsed system with a circular trajectory
is used, which is performed withiffgcagn= 2.4 s with 12
focus points in 5 focus distances equally distributed betwe
X1 = 63 m andxs = 189 m (see Figure 2). This trajectory
was realized by a real scanning LIDAR system installed
on the nacelle of a 5 MW turbine (see [12]). Effects from
the experiment, such as collision of the laser beam with
the blades and mechanical constraints of the scanner, are
considered to obtain realistic simulations.

Taylor's frozen turbulence hypothesis assumes that the
turbulent wind field moves with the average wind speed and
is unaffected when approaching the rotor. This hypothasis i
used in the simulation of the measurements and for the wind
v speed estimation. To account for the volume measurement
[, Tna o of the LIDAR system, the wind field is not only analyzed

t at the focus points, but also in the area around the focus

point along the laser beam. Here, a Gaussian shape weighting
Fig. 2. Scope of ;he wind prediction: The line-of-sight wia[ieeds_ are  fynction fL(a) is used, depending on the distaredo the
measured at fixed distances, corrected, averaged over ttigjastory, time . . . .
shifted, and combined to form a preview of the rotor effectivad speed. focus point with full width at half maximum (FWHM) of
W = 30 m, following the considerations of [13]. It is possible
to calculate the line-of-sight wind speed of each focus fpoin
with the LIDAR weighting functionf, (a) by

mass, structural damping, and bending stiffness, resjpdgti -

Finally, equation (1c) is a second-order model of the blade Vips = / (Ixu(a) +Iyv(a) +1,w(a)) fL(a)da, )
pitch actuator, wherev is the undamped natural frequency, e

¢ is the damping factor of the pitch actuator, afidis the where([lx Iy IZ}T is the normalized laser beam vector and

collective blade pitch control input. _ _ u@ v(a) w(a)]T is the wind vector at a distance to
The nonlinearity in the reduced model resides in thgyg focus point.

aerodynamic torque and thrust acting on the rotor with @diu oy each distancg, the longitudinal wind component is
R reconstructed assuming lateral and vertical wind compisnen

1 cp(A, 6 to be zero and by averaging over the last trajectory
M= Lorre®2:6) 2 (2a)

2 A 1 12
Fa= %anch (A, O)Va, (2b) Voui (1) = 75 3 Visii /b ©)

The obtained time seriegy j is time-shifted according to

Taylor's frozen turbulence hypothesis (see Figure 2). The

_OR ®) farthest right point of each line represents the newest mea-
Vrel surement of the corresponding focus distaxicend the time

to reach the first focus distance is assumed toxpe-x1) /v,

andcp andcr are the effective power and thrust coefficients, - > .
respectively. The nonlineatr and cr coefficients can be wherev is the mean wind speed. The LIDAR estimate of the

obtained from steady-state simulation. The relative winfotor effective wind speedy (t) is then calculated by

wherep is the air densityA is the tip-speed ratio

A

speedv,e is defined as a superposition of tower top speed 1253
and mean wind speed voL(t) = ¢ .zlvol-j(t — (Xj —X1)/V). (7)
]:
Viel = (Vo —XT) (4) If the requested preview is larger thap/v, the average is

made only over the last four distances and so on. The wind
speed previewy, is filtered by a low-pass filter, and the
I1l. SIMULATED LIDAR M EASUREMENTS time delay introduced by the filter has to be considered as

) ) explained in the next section.
LIDAR assisted controllers need a preview of the rotor

effective wind speed, which has to be extracted from three- IV. CONTROLLERDESIGN

dimensional wind fields. For better understanding of the In this section, the feedforward controller and the NMPC
preview provided by a real LIDAR system and to give arusing the wind speed preview information are derived. The
outlook of necessary algorithms needed in real applicationbaseline controller (FB) is based on feedback only and is
the scanning of the wind fields during the aeroelastic simulamplemented as described in [14]. It combines a variable
tions with a detailed LIDAR simulator and the reconstruatio speed generator torque controller and a collective pitch
of the rotor effective wind speed are presented in thisgecti controller.

and is used to model the aerodynamic damping.
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Fig. 3. Feedforward control: The feedforward controllsr tries to
compensate for the effects of the wind field to the rotor speed. L _ .
be similar overk = 2rtf /v, but different overf. Due to

its low pass behaviour and the preview provided by the

A. The Feedforward Controller LIDAR, the transfer function is approximated by a second-
The feedforward controller (FBFF, see Figure 3) is baseffder Butterworth filteiGirer and a time delay:
on the work in [4] and combines the baseline feedback GLRr ~ Gilter(S) glbufferS, (12)

controller with a feedforward update. The main control goal _ ) _ ) . _

of the collective pitch feedback controllgks is to maintain 1 he time delay is obtained from the following considerasion
the rated rotor speeBqeq by adjusting the pitch anglée. With Taylor’s hypothess, the wind needs thg time'vy to

A wind field 7 evolves tovo on its way to the turbine and travel from the first focus distance to the turbine. Due to the

disturbs the systersi. The measurement of the wind field in @verage over the full trajectoryp. is already delayed by
front of the turbine by a LIDAR syster, yieldsvo . The Iscan/2. The filter delay is approximated Byier. For using

disturbance could be perfectly compensated by a feedforwail® filtered wind in the feedforward controller (9) instedd o
Vp, the signal has to be synchronized witf reaching the

controller . .
L L rotor plane. Therefore the necessary time delay is
Zrr=—24p Zov 2E I, (8) . X1 1T . "
if the complete system is known arkhg, as well asZ buffer = - = 3 lscan— Hitter — T (12)

are invertible. Due to its complexity, the inversion Bhe, The time T compensates for small errors in the model
cannot be found for an aeroelastic model, but is computabteduction (see [3]).

for the reduced nonlinear model presented above. With the The same 1 h simulation is repeated with differkemind T
stationary pitch curveédss(Voss), which can be obtained from (see Figure 5) to evaluate if the feedforward controlletdge
simulations or measurements, the paﬁfgéc Zay, is: the best performance with the proposed filter and time delay.
The minimum in the standard deviatian(Q) of the rotor
speed is found &t = 0.06 ragm andt = 0.4 s, confirming

In reality, Vo cannot be measured perfectly due to théhe filter and time delay design.

limitation of the LIDAR system, andg is quite complex to In addition to the LIDAR assisted feedforward controller,
model. However, the transfer functi@® g from the LIDAR  a tower feedback controller is also added according to [16]
estimate of the wind speed to the rotor effective wind sped@ estimate the load reduction which can be achieved by
can be analytically modeled or estimated from simulatetheasuring the tower acceleratian &nd feeding the signal
or measured data via the auto correlation spectrum of tiie the control system.

measured wind speefl; and the cross correlation spectrumB The Nonlinear Model Predictive Controller

S| between the measured and the rotor effective wind speed: ) ) .
The wind speed preview provided by LIDAR can also

Glr= —. (10) be used by a Nonlinear Model Predictive Controller. The
S controller presented in this section is designed to eveltra

Figure 4 shows|Gg| for a 1h simulation with a full performance of the aforementioned feedforward controller
aeroelastic model and a turbulent wind field (mean windnd is based on [5].
speedv'= 16 m/s, turbulence intensity of 18%). The rotor NMPC is an advanced control tool which predicts the
effective wind speedyp is obtained from simulated turbine future behavior of a system using a nonlinear internal model
data by an estimator using (la) and (2a) similar to thand the current measurements. With this information, the
one presented in [15] andy from the LIDAR simulator control actions necessary to regulate the plant are compute
presented above. Because of the Kaimal wind spectra uskey solving an optimal control problem over a given time
for these simulations and the LIDAR weighting functionhorizon. Part of the solution trajectory for the control g
with fixed length, the shape diG r| for different v will s transferred to the system, new measurements are gathered

BrF = Bss( (Vo + 2& Wi + wVo) / w?). ©)



0.08

The set of constraintd, which can be organized in the form
H >0, is chosen as

0.07::7
E Q(T) <12 Qrated (153)
E 0.06 | Brmin < 6(T) < Bmax (15b)
£ 16(1)] < Bmax (15¢)
0.05}
The constraint (15a) limits the rotor speed to 1209%0af ¢4,
0.04 (15b) limits the pitch angle to its feasible positions, ah8ld)
0 constrains the pitch rate.

The optimal control problem is converted by the Direct
Multiple Shooting method [17] into a nonlinear program.
Fig. 5.  Standard deviation of the rotor speed using the teedfrd Here, the control inputs are discretizedKnpiecewise con-
tcﬁg trrgtléerrsvgcleﬂ;dd\lgﬁgingsi28(1&”3;2;:InZ: c<j:obn);rgl]leer_Standard deviation of tant stag_es. The ODEs of.th.e n"!odell are solved numerically

on each interval. The optimization is performed over the

set of initial values for all states and the control outputs.
and the optimal control problem is solved again at the nexdditional constraints are applied to ensure that the state
time step. Feedback is incorporated, since the currerg stahe end of each stage coincide with the initial conditions of
of the turbine is implemented as the initial condition of thehe subsequent stage. This method gives significant improve
optimal control problem [17] at the next time step. ments over the Direct Single Shooting approach, especially

Here, the NMPC controls the collective pitch and is onlywith respect to numerical stability.
active if the wind preview over the entire horizon is above The nonlinear program can be solved iteratively with
Vrated = 11.2 m/s. If one value of the preview falls below Sequential Quadratic Programming (SQP). The separation
this value, the baseline pitch controller is initializediwthe  of the optimization problem into multiple stages resultsin
current pitch angle and activated. faster solution. This is due to the better approximatiorhef t

The considered optimal wind turbine control problem cam agrangian Hessians of the nonlinear problem parts in each
be described as follows. The objective is to find the optimadtage by low rank updates [19].

control trajectoryu(-) minimizing the cost functionaloce, Here, Omuses [19] is used as a front-end to the large-scale

which is defined as the integral over the time horiZGR  SQP-type nonlinear optimization solver HQP. The predittio
of the objective functionaF from the actual timeg to the  pgrizon is set t0Tinal = 5.6 s as the minimal preview time
final time to + Tina), With the reduced nonlinear model andof the LIDAR (see [5]). The time steps are set equal to the
the set of constraintsl. The crux of designing the NMPC | |paAR update rate, resulting itk = Tina/(Tscan/12) = 28

is to translate the verbal formulation of the control goahto stages. The differential equations are solved with a fourth
mathematical formulation of andH. The optimal control ,qer explicit Runge Kutta method.

goal can be stated as “minimizing the damage equivalent, 5ig resonance cases, notch filters (Butterworth, 2nd
loads above rated wind speed without decreasing the ener&;ﬂer) with stop band ai0.9fsp, 1.1fsp] and [0.9fo, 1.1fq)

production”. In cla_s,s?c? wind turbine control [18], this is i are used, wheréy is the natural frequency of the tower, and
general done by limiting rotor speed and power above th{%P is the frequency at which the blades pass by the tower.

rated winql speed. . . The number of control steps applied in a feedforward control
The objective functional should be quadratic for COMPUz; the system after each optimization is chosei@s— 3 to

tational reasons. This implies the weights to be indepelndelnun in real time on a typical current PC. This implies that the

of the system states anq inputs, but they ar(; allowed to li’)?)timization is repeated with new measurements ea6ls 0
dependent on external disturbances. Hérés chosen to to close the control loop. The proof of closed-loop stapilit

F= Q1 (Q(1) erated)z of a nonlinear and constrained system solved by a model
+ Q2 %(1) _ (13) predictive controller is beyond the scope of this work and is
+  Ru(vo(1)) 62(1). fairly complex aslocp has to be a local Lyapunov function.

The first line of (13) penalizes the deviation from the rated "€ré are some theoretical approaches [20] and practical
rotor speed, and in the second line of (13) the tower fordécommendations [21], but the following results will show
aft velocity is penalized to minimize loads on the tower. Thdhat there is no evidence of any stability problem in thiscas
weight for the pitch rat®; (vo(1)) is designed to penalize the The NMPC qor?troliler negds the full-state vector at the
pitch actuator rate. To account for the higher sensitivitthe ~ Start of the optimization horizon. Only the rotor spe@d
pitch at higher wind speed, the static pitch angle overcstatfh® tower fore-aft-acceleratiorr,” the pitch angled, and
wind speeddsg(Vsg) is used together with the gain correctionthe pitch ratef can be considered as measurable signals.
factor GK(8) from [14] and the static weighR;: Therefore, an estimator is implemented to reconstsyct
and xy, combining a static nonlinear estimation of the
Ri(Vo(T)) = R1/GK(Bso(Vo(T)))- (14)  aerodynamic thrust and a linear Luenberger estimator [5].



C. Considerations for Real Applications

The presented feedforward controller has the advantage
that it can be easily integrated in state-of-the-art cdntro
systems. For real applications, it is beneficial to use ahpitc
rate update-r instead offrg, see [4]. This allows a gradual 20 _ﬁ"‘,\\
application of the feedforward controller. The maximum
wavenumberk can be estimated online from LIDAR and Bp \y\\//\\,\/ )\v//
turbine data. There are two main issues which have to be 19
considered for an implementation of the presented NMPC. 13
An intermediary result can far away from the optimum due =
to the Direct Multiple Shooting method, and the presented g 12 A v
approach leads to the iterative solution of a non-convex c M W
optimization problem and thus there is no guarantee to find ;4
the global minimum in the allotted time slot. However, 60

Vo, VoL [m/s]

6 [°]

these restrictions do not have a strong impact on the givent ,,| M\ﬁ A’ e m |
implementation. The time needed to execute the optimizatio £ Yl'* J \ d\ if j\ \y;‘h,\ A \‘f:\
is recorded for all 33 simulations of Section V. Only% 20 ”\ &m V ! 1AL \/\{
of the optimizations last longer than the allotted time. = 0 , , ,

30 40 50 60 80 2

V. SIMULATION RESULTS

Simulations are performed with an aeroelastic model of
a 5 MW three-bladed pitch-controlled variable-speed win@ig. 6. Top: rotor effective wind speed from turbine (gray)deLIDAR
turbine designed by the National Renewable Energy Labor ack). Below: pitch angle demand, rotor speed, and towse bare-aft
tory (NREL) as described in [14]. It is supplemented with aéjejmdmg moment for FB (dark gray), NMPC (black), and FBFF (igtay).
second-order linear model to account for the pitch actuator
dynamics, and the pitch rate limit i$ 8. There are a total

time [s]

of 34 dynamic states of the aeroelastic model. = 10°

To estimate the benefit for fatigue load reduction, var- £ b ]
ious 10 min-simulations for each controller with a set of — ‘ ‘ ‘ ‘ ‘ ‘
turbulent TurbSim wind fields are conducted, featuring A- .g 191 /\{\"\, -‘ :
type turbulence intensity according to IEC 61400-1 [22] 3
and a Rayleigh distribution witle = 12 m/s. The baseline % 103 : : : : : :
generator torque controller is enabled in all simulations. — 10 : : . . . .
The integral parameteT; of the collective pitch feedback & : : : : :
controller is modified toT rere = 3T;, when used with the € 10+ m\\ S R
feedforward update, to lower the tower loads (see [4]). The = el \J\M\/\/—\u_
NMPC coupled to the LIDAR simulator and the nonlinear % : : : : : :
estimator is tuned to have high load reduction on tower and & 1-5
blades together with low pitch activity. = 10 , , , , , ,

Figure 6 shows a sample simulation with mean wind speed %\ ‘ : : : : :
22 m/s and turbulence intensity 16 %. In the first plot, the £ 10"} ~_ /"M
rotor effective windvy estimated from turbine data and the = =~~~
measurementy_ from the LIDAR simulation are compared. § W02
In the second plot, the reduced pitch activity for all LIDAR 3 1010 , , , , , ,

& 0 01 02 03 04 05 06

assisted controllers can be observed compared to the taseli
controller. The remaining plots show that with the NMPC and frequency [Hz]

the feedforward controller, the variation in rotor speed an

tower base fore-aft bending momeml.r can be reduced. Eig. 7. Power spectral densities: FB (dark gray), NMPC (bland FBFF
The effect of the different controllers is more obvious in(IIght gray).
the frequency domain (see Figure 7). The NMPC and the

feedforward controller can reduce the influence of the wind TABLE |

disturbance to rotor speed and to the tower base fore-aft OVERALL PERFORMANCE FOR THE DIFFERENT CONTROLLERS
bending moment for frequencies up to the 1P frequency at :

0.2 Hz. The pitch rate is also reduced in this region. The [MNMnyﬁ [M'v,l\fr%p]l [Mk,/l;s]s [GWE]P F(,es)] gé%)]

tower feedback controller, which is active in the FBFF case,FB 87.66 12.87 2.80 54842 046 059
is able to further reduce the loads at the natural frequencyfMPC | 7258 11.62 281 54938 036 055

FBFF 69.88 11.36 271 55017 034 051
fo on the tower at the expense of higher pitch rates.
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Over all simulations, the NMPC and the feedforward
controller lead to satisfying control performance. Damage
equivalent loads (DEL) are calculated with Wohler exponentd®!
of 4 and 10, typical for steel and composite material [16]. (g
The distribution of the lifetime weighted DEL (20 years,
reference number of cyclesx210f) of the tower base fore- 7]
aft bending moment is shown in Figure 8.

Table | summarizes the results for all 33 simulations.[8]
For the LIDAR assisted controllers, the possible reduction
in DEL of the tower base fore-aft bending momevijr, 9]
the out-of-plane bending momemdyn of blade 1, and
the low-speed shaft torqubl ss can be estimated to be [10]
approximately 20%, 10%, and -36%, respectively. The |1y
standard deviation of the pitch rate and the rotor speed are
decreased by 25% and-713%, respectively. Furthermore,

the energy production (EP) can be increased slightly. [12]

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have compared two controllers tha{tls]
use LIDAR measurements of the wind inflow to a wind
turbine. One of the controllers is a feedforward controllef*!
designed based on an understanding of meteorology, LIDAR
technology, and system dynamics; while the other controlld15]
is a nonlinear model predictive controller designed from
theoretical mathematical principles. The controllers aver[ig]
evaluated with simulated measurements of a LIDAR system
on a complex stochastic wind field and compared to a
baseline controller. Promising load reductions on the towg17]
and blades as well as a reduction in the pitch activity were
achieved by both controllers. While the NMPC approacILfl
provides a theoretical framework for designing an “optimal [19]
controller given a set of assumptions and constraints, the
feedforward controller is less computationally complexian,,
hence provides implementation advantages while yielding
similar performance increases over the baseline controlle

The feedforward controller is currently being field tested?!!
on two 660 kW wind turbines at NREL. In future work,
we plan to apply the NMPC approach for more compleX2?]
wind turbine control scenarios, such as the control of fiwati
offshore wind turbines using wind and wave preview.
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