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Abstract— LIDAR systems are able to provide preview infor-
mation of wind disturbances at various distances in front of
wind turbines. This technology paves the way for new control
concepts such as feedforward control and model predictive
control. This paper compares a nonlinear model predictive
controller and a feedforward controller to a baseline controller.
Realistic wind “measurements” are obtained using a detailed
simulation of a LIDAR system. A full lifetime comparison shows
the advantages of using the wind predictions to reduce wind
turbine fatigue loads on the tower and blades as well as to limit
the blade pitch rates. The results illustrate that the feedforward
controller can be combined with a tower feedback controller to
yield similar load reductions as the model predictive controller.

I. I NTRODUCTION

An important design goal for large wind turbines is to
reduce fatigue and extreme loads of the structure by tuning
the control. This is a challenging task because transient
events such as gusts represent an unknown disturbance to the
control system. Conventional feedback controllers can only
provide delayed compensation for such excitations, since
the disturbance effects must propagate through the entire
wind turbine before showing its effects in the measured
outputs. This usually results in additional loads for the wind
turbine and requires high actuator rates for the disturbance
compensation. Those effects can be avoided, if the wind
ahead of the wind turbine is measured by remote sensing
techniques such as LIDAR (LIght Detection And Ranging)
and the information is fed to the turbine controller.

While early work on LIDAR-assisted control was reported
in [1], this field of investigation has increased significantly in
recent years, and several feedforward and model predictive
controllers have been proposed for load reduction or increas-
ing the energy yield, see e.g., [2]-[8]. The present work illus-
trates that a good understanding of the relationship between
meteorology, LIDAR technology, and system dynamics can
lead to the design of a simple feedforward controller that
can compete with a nonlinear model predictive controller
(NMPC).

This paper is organized as follows. Section II summarizes
the modeling of the wind turbine. Section III describes the
LIDAR sensing process, and the different controllers are
outlined in Section IV. Section V presents simulation results,
and conclusions and future work are discussed in Section VI.
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Fig. 1. Degrees of freedom for the reduced nonlinear model.

II. M ODELING OF THEWIND TURBINE

The crucial part of a successful feedforward and model
predictive controller design is the adequate modeling of
the dynamic system to be controlled. The model should be
simple enough to allow a partial system inversion (for the
feedforward controller design) and simulations in reasonable
computation time (for the NMPC), and at the same time it
should be accurate enough to capture the system dynamics
that are relevant for wind turbine control.

Classically aeroelastic simulation environments for wind
turbines, such as FAST [9] (used later in this work), provide
models close to reality but far too complex to be used
for controller design. In addition, current remote sensing
methods such as LIDAR are not able to provide a wind
field estimate with comparable details to a generic wind
field used by aeroelastic simulations (generated in this work
with TurbSim [10]). In this section, a turbine model with
three degrees of freedom (see Figure 1) is derived from
physical fundamentals, and the wind field is reduced to the
rotor effective wind speed which is measurable with existing
LIDAR technology.

The first tower fore-aft bending mode, the rotational
motion, and the collective pitch actuator are based on [11]:

JΩ̇+Mg/igb = Ma(ẋT ,Ω,θ ,v0) (1a)

mTeẍT +cT ẋT +kTxT = Fa(ẋT ,Ω,θ ,v0) (1b)

θ̈ +2ξ ωθ̇ +ω2(θ −θc) = 0. (1c)

Equation (1a) models the drive-train dynamics, whereΩ
is the rotor speed,Ma is the aerodynamic torque,Mg is
the electrical generator torque,xT is the tower top fore-aft
displacement,θ is the effective collective blade pitch angle,
and v0 is the rotor effective wind speed. Moreover,igb is
the gear box ratio, andJ is the overall sum of the moments
of inertia about the rotation axis. Equation (1b) describes
the tower fore-aft dynamics, whereFa is the aerodynamic
thrust, andmTe, cT , andkT are the tower equivalent modal
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Fig. 2. Scope of the wind prediction: The line-of-sight windspeeds are
measured at fixed distances, corrected, averaged over the last trajectory, time
shifted, and combined to form a preview of the rotor effectivewind speed.

mass, structural damping, and bending stiffness, respectively.
Finally, equation (1c) is a second-order model of the blade
pitch actuator, whereω is the undamped natural frequency,
ξ is the damping factor of the pitch actuator, andθc is the
collective blade pitch control input.

The nonlinearity in the reduced model resides in the
aerodynamic torque and thrust acting on the rotor with radius
R:

Ma =
1
2

ρπR3 cP(λ ,θ)
λ

v2
rel (2a)

Fa =
1
2

ρπR2cT(λ ,θ)v2
rel , (2b)

whereρ is the air density,λ is the tip-speed ratio

λ =
ΩR
vrel

, (3)

andcP andcT are the effective power and thrust coefficients,
respectively. The nonlinearcP and cT coefficients can be
obtained from steady-state simulation. The relative wind
speedvrel is defined as a superposition of tower top speed
and mean wind speed

vrel = (v0− ẋT) (4)

and is used to model the aerodynamic damping.

III. S IMULATED LIDAR M EASUREMENTS

LIDAR assisted controllers need a preview of the rotor
effective wind speed, which has to be extracted from three-
dimensional wind fields. For better understanding of the
preview provided by a real LIDAR system and to give an
outlook of necessary algorithms needed in real applications,
the scanning of the wind fields during the aeroelastic simula-
tions with a detailed LIDAR simulator and the reconstruction
of the rotor effective wind speed are presented in this section.

In this work, a pulsed system with a circular trajectory
is used, which is performed withinTscan= 2.4 s with 12
focus points in 5 focus distances equally distributed between
x1 = 63 m andx5 = 189 m (see Figure 2). This trajectory
was realized by a real scanning LIDAR system installed
on the nacelle of a 5 MW turbine (see [12]). Effects from
the experiment, such as collision of the laser beam with
the blades and mechanical constraints of the scanner, are
considered to obtain realistic simulations.

Taylor’s frozen turbulence hypothesis assumes that the
turbulent wind field moves with the average wind speed and
is unaffected when approaching the rotor. This hypothesis is
used in the simulation of the measurements and for the wind
speed estimation. To account for the volume measurement
of the LIDAR system, the wind field is not only analyzed
at the focus points, but also in the area around the focus
point along the laser beam. Here, a Gaussian shape weighting
function fL(a) is used, depending on the distancea to the
focus point with full width at half maximum (FWHM) of
W= 30 m, following the considerations of [13]. It is possible
to calculate the line-of-sight wind speed of each focus point
with the LIDAR weighting functionfL(a) by

vlos =
∫ ∞

−∞
(lxu(a)+ lyv(a)+ lzw(a)) fL(a)da, (5)

where
[

lx ly lz
]T

is the normalized laser beam vector and
[

u(a) v(a) w(a)
]T

is the wind vector at a distancea to
the focus point.

For each distancej, the longitudinal wind component is
reconstructed assuming lateral and vertical wind components
to be zero and by averaging over the last trajectory

v0L j(t) =
1
12

12

∑
i=1

vlos,i j/lxi. (6)

The obtained time seriesv0L j is time-shifted according to
Taylor’s frozen turbulence hypothesis (see Figure 2). The
farthest right point of each line represents the newest mea-
surement of the corresponding focus distancex j , and the time
to reach the first focus distance is assumed to be(x j −x1)/v̄,
wherev̄ is the mean wind speed. The LIDAR estimate of the
rotor effective wind speedv0L(t) is then calculated by

v0L(t) =
1
5

5

∑
j=1

v0L j(t − (x j −x1)/v̄). (7)

If the requested preview is larger thanx1/v̄, the average is
made only over the last four distances and so on. The wind
speed previewv0L is filtered by a low-pass filter, and the
time delay introduced by the filter has to be considered as
explained in the next section.

IV. CONTROLLER DESIGN

In this section, the feedforward controller and the NMPC
using the wind speed preview information are derived. The
baseline controller (FB) is based on feedback only and is
implemented as described in [14]. It combines a variable
speed generator torque controller and a collective pitch
controller.



 

−

V

v0v0L

θcθFB

θFFΩrated Ω
ΣFB

ΣFF

ΣΩθc

GLR

ΣΩv0

Σ

ΣL

ΣE

Fig. 3. Feedforward control: The feedforward controllerΣFF tries to
compensate for the effects of the wind fieldV to the rotor speedΩ.

A. The Feedforward Controller

The feedforward controller (FBFF, see Figure 3) is based
on the work in [4] and combines the baseline feedback
controller with a feedforward update. The main control goal
of the collective pitch feedback controllerΣFB is to maintain
the rated rotor speedΩrated by adjusting the pitch angleθc.
A wind field V evolves tov0 on its way to the turbine and
disturbs the systemΣ. The measurement of the wind field in
front of the turbine by a LIDAR systemΣL yields v0L. The
disturbance could be perfectly compensated by a feedforward
controller

ΣFF =−Σ−1
Ωθc

ΣΩv0 ΣE Σ−1
L , (8)

if the complete system is known andΣΩθc as well asΣL

are invertible. Due to its complexity, the inversion ofΣΩθc

cannot be found for an aeroelastic model, but is computable
for the reduced nonlinear model presented above. With the
stationary pitch curveθss(v0ss), which can be obtained from
simulations or measurements, the part−Σ−1

Ωθc
ΣΩv0 is:

θFF = θss((v̈0+2ξ ω v̇0+ω2v0)/ω2). (9)

In reality, v0 cannot be measured perfectly due to the
limitation of the LIDAR system, andΣE is quite complex to
model. However, the transfer functionGLR from the LIDAR
estimate of the wind speed to the rotor effective wind speed
can be analytically modeled or estimated from simulated
or measured data via the auto correlation spectrum of the
measured wind speedSLL and the cross correlation spectrum
SSL between the measured and the rotor effective wind speed:

GLR =
SLR

SLL
. (10)

Figure 4 shows|GLR| for a 1 h simulation with a full
aeroelastic model and a turbulent wind field (mean wind
speed ¯v = 16 m/s, turbulence intensity of 18%). The rotor
effective wind speedv0 is obtained from simulated turbine
data by an estimator using (1a) and (2a) similar to the
one presented in [15] andv0L from the LIDAR simulator
presented above. Because of the Kaimal wind spectra used
for these simulations and the LIDAR weighting function
with fixed length, the shape of|GLR| for different v̄ will
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Fig. 4. Black: Magnitude of the transfer functionGLR for a 1 h simulation.
Dark gray: Fitted filter. Light gray: maximum wavenumberk̂.

be similar overk = 2π f/v̄, but different over f . Due to
its low pass behaviour and the preview provided by the
LIDAR, the transfer function is approximated by a second-
order Butterworth filterGfilter and a time delay:

GLR ≈ Gfilter(s) eTbuffers. (11)

The time delay is obtained from the following considerations:
With Taylor’s hypothesis, the wind needs the timex1/v̄1 to
travel from the first focus distance to the turbine. Due to the
average over the full trajectory,v0L is already delayed by
Tscan/2. The filter delay is approximated byTfilter. For using
the filtered wind in the feedforward controller (9) instead of
v0, the signal has to be synchronized withv0 reaching the
rotor plane. Therefore the necessary time delay is

Tbuffer =
x1

v̄
−

1
2

Tscan−Tfilter − τ . (12)

The time τ compensates for small errors in the model
reduction (see [3]).

The same 1 h simulation is repeated with differentk̂ andτ
(see Figure 5) to evaluate if the feedforward controller yields
the best performance with the proposed filter and time delay.
The minimum in the standard deviationσ(Ω) of the rotor
speed is found at̂k= 0.06 rad/m andτ = 0.4 s, confirming
the filter and time delay design.

In addition to the LIDAR assisted feedforward controller,
a tower feedback controller is also added according to [16]
to estimate the load reduction which can be achieved by
measuring the tower acceleration ¨xT and feeding the signal
to the control system.

B. The Nonlinear Model Predictive Controller

The wind speed preview provided by LIDAR can also
be used by a Nonlinear Model Predictive Controller. The
controller presented in this section is designed to evaluate the
performance of the aforementioned feedforward controller
and is based on [5].

NMPC is an advanced control tool which predicts the
future behavior of a system using a nonlinear internal model
and the current measurements. With this information, the
control actions necessary to regulate the plant are computed
by solving an optimal control problem over a given time
horizon. Part of the solution trajectory for the control inputs
is transferred to the system, new measurements are gathered,
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Fig. 5. Standard deviation of the rotor speed using the feedforward
controller with differentτ and k̂ normalized by the standard deviation of
the rotor speed when using the baseline controller.

and the optimal control problem is solved again at the next
time step. Feedback is incorporated, since the current state
of the turbine is implemented as the initial condition of the
optimal control problem [17] at the next time step.

Here, the NMPC controls the collective pitch and is only
active if the wind preview over the entire horizon is above
vrated = 11.2 m/s. If one value of the preview falls below
this value, the baseline pitch controller is initialized with the
current pitch angle and activated.

The considered optimal wind turbine control problem can
be described as follows. The objective is to find the optimal
control trajectoryu( ·) minimizing the cost functionalJOCP,
which is defined as the integral over the time horizonTfinal

of the objective functionalF from the actual timet0 to the
final time t0+Tfinal, with the reduced nonlinear model and
the set of constraintsH. The crux of designing the NMPC
is to translate the verbal formulation of the control goal toa
mathematical formulation ofF and H. The optimal control
goal can be stated as “minimizing the damage equivalent
loads above rated wind speed without decreasing the energy
production”. In classic wind turbine control [18], this is in
general done by limiting rotor speed and power above the
rated wind speed.

The objective functional should be quadratic for compu-
tational reasons. This implies the weights to be independent
of the system states and inputs, but they are allowed to be
dependent on external disturbances. Here,F is chosen to

F = Q1 (Ω(τ)−Ωrated)
2

+ Q2 ẋ2
T(τ)

+ R1(v0(τ)) θ̇ 2(τ).
(13)

The first line of (13) penalizes the deviation from the rated
rotor speed, and in the second line of (13) the tower fore-
aft velocity is penalized to minimize loads on the tower. The
weight for the pitch rateR1(v0(τ)) is designed to penalize the
pitch actuator rate. To account for the higher sensitivity of the
pitch at higher wind speed, the static pitch angle over static
wind speedθss(vss) is used together with the gain correction
factor GK(θ) from [14] and the static weightR1:

R1(v0(τ)) = R1/GK(θss(v0(τ))). (14)

The set of constraintsH, which can be organized in the form
H ≥ 0, is chosen as

Ω(τ)≤ 1.2 Ωrated (15a)

θmin ≤ θ(τ)≤ θmax (15b)
∣

∣θ̇(τ)
∣

∣≤ θ̇max (15c)

The constraint (15a) limits the rotor speed to 120% ofΩrated,
(15b) limits the pitch angle to its feasible positions, and (15c)
constrains the pitch rate.

The optimal control problem is converted by the Direct
Multiple Shooting method [17] into a nonlinear program.
Here, the control inputs are discretized inK piecewise con-
stant stages. The ODEs of the model are solved numerically
on each interval. The optimization is performed over the
set of initial values for all states and the control outputs.
Additional constraints are applied to ensure that the states at
the end of each stage coincide with the initial conditions of
the subsequent stage. This method gives significant improve-
ments over the Direct Single Shooting approach, especially
with respect to numerical stability.

The nonlinear program can be solved iteratively with
Sequential Quadratic Programming (SQP). The separation
of the optimization problem into multiple stages results ina
faster solution. This is due to the better approximation of the
Lagrangian Hessians of the nonlinear problem parts in each
stage by low rank updates [19].

Here, Omuses [19] is used as a front-end to the large-scale
SQP-type nonlinear optimization solver HQP. The prediction
horizon is set toTfinal = 5.6 s as the minimal preview time
of the LIDAR (see [5]). The time steps are set equal to the
LIDAR update rate, resulting inK = Tfinal/(Tscan/12) = 28
stages. The differential equations are solved with a fourth-
order explicit Runge Kutta method.

To avoid resonance cases, notch filters (Butterworth, 2nd
order) with stop band at[0.9 f3P,1.1 f3P] and [0.9 f0,1.1 f0]
are used, wheref0 is the natural frequency of the tower, and
f3P is the frequency at which the blades pass by the tower.
The number of control steps applied in a feedforward control
to the system after each optimization is chosen asKFF= 3 to
run in real time on a typical current PC. This implies that the
optimization is repeated with new measurements each 0.6 s
to close the control loop. The proof of closed-loop stability
of a nonlinear and constrained system solved by a model
predictive controller is beyond the scope of this work and is
fairly complex asJOCP has to be a local Lyapunov function.
There are some theoretical approaches [20] and practical
recommendations [21], but the following results will show
that there is no evidence of any stability problem in this case.

The NMPC controller needs the full-state vector at the
start of the optimization horizon. Only the rotor speedΩ,
the tower fore-aft-acceleration ¨xT , the pitch angleθ , and
the pitch rateθ̇ can be considered as measurable signals.
Therefore, an estimator is implemented to reconstruct ˙xT

and xT , combining a static nonlinear estimation of the
aerodynamic thrust and a linear Luenberger estimator [5].



C. Considerations for Real Applications

The presented feedforward controller has the advantage
that it can be easily integrated in state-of-the-art control
systems. For real applications, it is beneficial to use a pitch
rate updatėθFF instead ofθFF, see [4]. This allows a gradual
application of the feedforward controller. The maximum
wavenumberk̂ can be estimated online from LIDAR and
turbine data. There are two main issues which have to be
considered for an implementation of the presented NMPC.
An intermediary result can far away from the optimum due
to the Direct Multiple Shooting method, and the presented
approach leads to the iterative solution of a non-convex
optimization problem and thus there is no guarantee to find
the global minimum in the allotted time slot. However,
these restrictions do not have a strong impact on the given
implementation. The time needed to execute the optimization
is recorded for all 33 simulations of Section V. Only 0.4%
of the optimizations last longer than the allotted time.

V. SIMULATION RESULTS

Simulations are performed with an aeroelastic model of
a 5 MW three-bladed pitch-controlled variable-speed wind
turbine designed by the National Renewable Energy Labora-
tory (NREL) as described in [14]. It is supplemented with a
second-order linear model to account for the pitch actuator
dynamics, and the pitch rate limit is 8◦/s. There are a total
of 34 dynamic states of the aeroelastic model.

To estimate the benefit for fatigue load reduction, var-
ious 10 min-simulations for each controller with a set of
turbulent TurbSim wind fields are conducted, featuring A-
type turbulence intensity according to IEC 61400-1 [22]
and a Rayleigh distribution withC = 12 m/s. The baseline
generator torque controller is enabled in all simulations.
The integral parameterTi of the collective pitch feedback
controller is modified toTi,FBFF = 3Ti , when used with the
feedforward update, to lower the tower loads (see [4]). The
NMPC coupled to the LIDAR simulator and the nonlinear
estimator is tuned to have high load reduction on tower and
blades together with low pitch activity.

Figure 6 shows a sample simulation with mean wind speed
22 m/s and turbulence intensity 16 %. In the first plot, the
rotor effective windv0 estimated from turbine data and the
measurementv0L from the LIDAR simulation are compared.
In the second plot, the reduced pitch activity for all LIDAR
assisted controllers can be observed compared to the baseline
controller. The remaining plots show that with the NMPC and
the feedforward controller, the variation in rotor speed and
tower base fore-aft bending momentMyT can be reduced.
The effect of the different controllers is more obvious in
the frequency domain (see Figure 7). The NMPC and the
feedforward controller can reduce the influence of the wind
disturbance to rotor speed and to the tower base fore-aft
bending moment for frequencies up to the 1P frequency at
0.2 Hz. The pitch rate is also reduced in this region. The
tower feedback controller, which is active in the FBFF case,
is able to further reduce the loads at the natural frequency
f0 on the tower at the expense of higher pitch rates.
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TABLE I

OVERALL PERFORMANCE FOR THE DIFFERENT CONTROLLERS.

MyT Moop1 MLSS EP σ(θ̇) σ(Ω)
[MNm] [MNm] [MNm] [GWh] [ ◦/s] [rpm]

FB 87.66 12.87 2.89 548.42 0.46 0.59
NMPC 72.58 11.62 2.81 549.38 0.36 0.55
FBFF 69.88 11.36 2.71 550.17 0.34 0.51
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Over all simulations, the NMPC and the feedforward
controller lead to satisfying control performance. Damage
equivalent loads (DEL) are calculated with Wöhler exponents
of 4 and 10, typical for steel and composite material [16].
The distribution of the lifetime weighted DEL (20 years,
reference number of cycles 2×106) of the tower base fore-
aft bending moment is shown in Figure 8.

Table I summarizes the results for all 33 simulations.
For the LIDAR assisted controllers, the possible reduction
in DEL of the tower base fore-aft bending momentMyT,
the out-of-plane bending momentMoop1 of blade 1, and
the low-speed shaft torqueMLSS can be estimated to be
approximately 20%, 10%, and 3− 6%, respectively. The
standard deviation of the pitch rate and the rotor speed are
decreased by 25% and 7−13%, respectively. Furthermore,
the energy production (EP) can be increased slightly.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have compared two controllers that
use LIDAR measurements of the wind inflow to a wind
turbine. One of the controllers is a feedforward controller
designed based on an understanding of meteorology, LIDAR
technology, and system dynamics; while the other controller
is a nonlinear model predictive controller designed from
theoretical mathematical principles. The controllers were
evaluated with simulated measurements of a LIDAR system
on a complex stochastic wind field and compared to a
baseline controller. Promising load reductions on the tower
and blades as well as a reduction in the pitch activity were
achieved by both controllers. While the NMPC approach
provides a theoretical framework for designing an “optimal”
controller given a set of assumptions and constraints, the
feedforward controller is less computationally complex and
hence provides implementation advantages while yielding
similar performance increases over the baseline controller.

The feedforward controller is currently being field tested
on two 660 kW wind turbines at NREL. In future work,
we plan to apply the NMPC approach for more complex
wind turbine control scenarios, such as the control of floating
offshore wind turbines using wind and wave preview.
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