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Maximizing System Throughput Using Cooperative Sensing in
Multi-Channel Cognitive Radio Networks

Shuang Li, Zizhan Zheng, Eylem Ekici and Ness B. Shroff

Abstract— In Cognitive Radio Networks (CRNSs), unlicensed incorrect individual decisions on throughput by explaitin
users are allowed to access the licensed spectrum when it is the spatial diversity of the SUs.
not currently being used by primary users (PUs). In this pape, While cooperative sensing improves sensing accuracy, it

we study the throughput maximization problem for a multi- . . . .
channel CRN where each SU can only sense a limited number also incurs sensing and reporting overhead at the SU side,

of channels. We show that this problem is strongly NP-hard, ad ~ €Specially when an SU senses multiple channels in a multi-
propose an approximation algorithm with a factor at least ;. channel CRN. In particular, requiring each SU to sense all

where p € [1,2] is a system parameter reflecting the sensing the channels in a CRN may lead to long sensing durations,
capability of SUs across channels and their sensing budgets ggpecially when the number of channels is large, which in
This performance guarantee is achieved by exploiting a nice d h h h f SUs. It is theref
structural property of the objective function and constructing turn reduces the ave_rage throug put_ o S. t_ Is there _Ore
a particular matching. Our numerical results demonstrate the ~ féasonable to put a limit on the maximum sensing duration
advantage of our algorithm compared with both a random and that an SU can afford, which translates to a budget on the
a greedy sensing assignment algorithm. number of channels that an SU can sense. Due to the hard-
ware constraints, this budget could be different for défer
SUs. In this paper, we study the throughput optimization
In the past decade, cognitive radio networks (CRNg)roblem for a multi-channel CRN subject to this sensing
have emerged as a promising solution for achieving bettepnstraint.
utilization of the frequency spectrum to satisfy the insing Various cooperative sensing protocols have been proposed
demand of wireless communication resources. In CRN§r maximizing system-wide performance metrics such as
secondary users (SUs) are offered the opportunity of accesensing accuracy [9] and system throughput [8], [16]. How-
ing the licensed channel when their activities do not causever, these works either focus on a single-channel setfilhg [
disruptions for primary user (PU) transmissions. To thid,en [8] or allow each SU to sense all the channels [7], [3], [16].
the Federal Communications Commission (FCC) [4] hak particular, an optimal Bayesian decision rule that maps a
opened the broadcast TV frequency bands for unlicens&éctor of local binary decisions made at SUs to a global
users such as WLAN and WiFi. Most recently, congressionalecision on PU activity has been found for maximizing
negotiators have reached the compromise to allow the auctieystem throughput in a single channel setting [8], which
of TV broadcast spectrum to wireless Internet provider$.[13achieves significantly better performance than linearsrule
IEEE has announced the IEEE 802.22 wireless network stasich as AND, OR, and majority rules. However, a direct
dard [12] that specifies how to utilize the unused resourcextension of the result in [8] to the multi-channel setting
between channels in the TV frequency spectrum. would require each SU to sense all the channels and incur
To guarantee a high system throughput in a CRN, the malrigh sensing duration. On the other hand, most works on
challenge is for the SUs to accurately detect the channtel stanulti-channel cooperative sensing put no explicit corstra
of PUs while exploiting transmission opportunities ovee th on sensing duration of SUs. Furthermore, these works ei-
white space. Sensing inaccuracies may lead to eitialsa ther use a simple linear decision rule [16] or require the
alarm, where a channel is detected to be occupied when it isansmission of the entire local sensing samples or sensing
actually idle, or amisdetectionwhere a channel is detectedstatistics at each SU. In our work, we choose to use a binary
to be idle when it is actually occupied. While the former Burt decision rule to avoid the high overhead involved in reparti
SU throughput, the latter hurts both PU and SU throughputomplete local sensing results. However, instead of using a
To improve sensing accuramgoperative spectrum sensing suboptimal linear rule as in [16], we use the optimal dedisio
schemes [6], [9], [10] have been recently developed, whererale proposed in [8] for each channel.
joint decision is derived from individual observations raad In this paper, we study the problem of maximizing the
by multiple SUs, which effectively alleviates the impact ofsystem throughput in a multi-channel CRN, by deciding
for each channel, a subset of SUs to sense the channel,
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a structural property, and based on this we proposevehich is common in cooperative sensing models [16], thus
matching-based algorithm, which achieves an approxihe expected number of SUs that sense a certain channel is
mation factor at Ieas%u wherep € [1,2] is a system at leastl. The sensing results of individual SUs are assumed
parameter depending on the sensing capability of SUe be independent. As mentioned earlier, due to practical
across channels and their sensing budgets. constraints, SUs can sense a limited number of channels.

This paper is organized as follows. The system modalVe denote; as the maximum number of channels that SU
and the problem formulation are introduced in Secfidn Ils; can sense in atime sldt,</; < M, foralli=1,--- , N
In Section[Tll, we prove that the optimization problem isand let/,,,. = max/’, ;. Note thatl; = 0 means that
NP-hard in the strong sense. We then prove the structutfe SU is in not in the sensing range of any channel,
property of the system throughput function, and propose thus it cannot do any sensing and only guess the PU state
matching based algorithm in SectibnlIV. In Sectfoh V, nurandomly. In cooperative sensing under the multi-channel

merical results illustrate the performance of our algongh ~Setting, multiple SUs choose to sense different channels an
The paper is concluded in Sectibnl VI. predict channel availability subject to the budget cornistra
and different sensing set assignments lead to differeiteisys
throughput across channels. We consider a centralizegmyst

In this section, we present the system model in two partsnodel, where a central controller is responsible for (1)
communication model and cooperative sensing model. Basathintaining system parameters for PUs and SUs (2) in each
on the models, we formulate our overall objective, which isime slot, deciding for each channel, a subset of SUs to sense
to decide the channel sensing assignment to maximize ttiee channel, and (3) making a global decision on channel
overall system throughput. availability based on the local binary decisions of SUs. Let
Sk denote the set of SUs that cooperatively sense channel

) ) - ) The set of all feasible channel sensing assignment policies
We consider a time-slotted cognitive radio network comare denoted byP, and defined as follows.

posed of M orthogonal channels (each corresponding to a Definition 2.1: Feasible assignment policyP: A set of

PUEl andN SUs. An SU may sense multiple PUs dependin . . : ; .
on its location. When the channel is idle, SUs that d%er};lng Set{ Sy, -++, Su} Is a feasible assignment policy

not interfere with each other can transmit over it. Sincé »_ 1(,cg,} </; for all i, i.e., all SUs must be assigned
scheduling and channel assignment for SU transmission ac[?kaﬁlmostl- channels to sense

not the focus of this paper, we employ a simple policy: an ! o

SU is randomly selected for transmission over each availabl -6t Zi(k) denote the observation of channelby SU
channel. Our model can readily be extended to practicdf © Si. Further,z;(k) = 1 represents thas; observes

models where conflict sets for a given interference mod@hannelk to be active, thlexi(k) = 0 represents that
are known. We denote the set of SUS By= {s1, ..., sx} s; observes channdl to be idle. We letz(Sy) denote the

with |S| = N, and the set of channels liy = {c1, ..., car} vector of observations for channkl Let Q = {0, 1}, and
with |C] = M T let f4 : Q141 — Q denote a general decision rule that maps

the local observations made by a set of SUsC S, to
B. Cooperative Sensing Model global decision on channel activity. As the domain fof

We assume that a binary decision is made at an SU fifill be clear from the context, we drop the subscript and
each channel it senses. LB} (k) represent therobability ~ use f instead. This decision rule applies per channel. Let
of false alarm, i.e., the probability that a SU, senses B(k) denote the activity of channélsuch thatB(k) = 1 if
channelk to be occupied when in fact it is idle. Similarly, channelk is occupied, and3(k) = 0 otherwise. According
Pi (k) represents therobability of mis-detection, i.e., 1O the definitions of false alarm and mis-detection, we define
the probability thats; senses channel to be idle when the conditional probability of sensing chanrietto be idle
it is actually occupied. Note that SUs outside the sensinghen it is indeed idle as follows, where vectprdenotes a
range, if selected for sensing, report random sensingtsesulparticular instance of an observation vector:
For instance,P!, (k) = 3 and Pj(k) = 3 if SU i is

Il. SYSTEM MODEL

A. Communication Model

2

outside the sensing range of PtJ We assume that these P(f(x(Sk)) = 0|B(k) =0)
probabilities can be learned using historical data [3], [6] _ P(x(S:) = ylB(k) = 0 1
[7]. For instance, given the location information of SUs y‘%_o (@(5k) = yIB(k) ) @)

and hardware parameters such as energy detection threshold
and time bandwidth product, etd;, (k) and P;(k) can be
calculated accordingly (see Section V-A for an example). Where

_ Multi-Channel Cooperativ_e Sensing SUs may sense the P(x(Sy) = y|B(k) = 0)

licensed channels cooperatively to reduce sensing eifors. i y

encourage cooperative sensing, we assumeMhdi > M, = Pi(k) H (1- Py (k)),
y;i=1,8,ESk ijO,SjGSk

10ur model can be generalized to the scenario where multigkea@cess
the same channel.



Similarly, we define the conditional probability of sensingrule f. In this paper, we apply the optimal Bayesian deci-
channelk to be occupied when it is indeed occupied: sion rule proposed in [8] to each channel respectively, to
- B obtain the optimal expected system throughput. Formally,

P(f(@(Sk)) =1|B(k) =1) for each channek and an observation vectay by Sy,

= > P@(S)=ylBk)=1), (2) if u(k)P(x(Sk) = y|B(k) = 1) > 0,(k)P(z(S;) =
y:f(y)=1 y|B(k) = 0), the decision on channél is “occupied”, and
where the contribution to throughput & (k) P(x(Sk) = y|B(k) =
1) ; otherwise, the decision on chanriels “idle” and the

P(x(Sy) = y|B(k) = 1) | contribution isé; (k) P(z(S)) = y|B(k) = 0).

= I a-r.) I PLGR
yi=1,5,ES% y;=0,5; €Sy, C. Problem Formulation
We assume that in each time slot, a control <btis We formulate the optimization problem to maximize the

assigned for cooperative sensing, during which time a akntSystem throughput, including PUs and SUs on all channels,
controller collectsP;, (k) and Pj(k) from SUs, determines as follows: "

the channel sensing assignment, collects sensing resutts f  problem (A):  max > Ur(Sk),

SUs, and notifies an SU per channel to transmit if that {81, Smy€P =1 = .
channel is cooperatively sensed to be “idle.” Note that eadlihere the Bayesian decision rule is implicit in the defimitio

SU ¢ only needs to send updates to the central controll&f Uk(: ) ) ) ) .

of Pi (k), P}l(k) when their values change, e.g, when Our goal is to decide the optimal channel sensing assign-
the location of the SU changes. Furthermore, the centrd]ent to maximize system throughput. We adopt a common
controller only needs to compute a new assignment On@,ssumptlo_n that PUs can tolerate interference _to a <_:erta|n
when Pi (k), P}(k) change. We assunig. to be a constant €xtent, which may appear in the form o_f a constraint as |n_[3],
in the paper. We further assume that SUs can transmit Bl @nd our earlier paper [8] for the single channel setting.
the same bit rate over each channel, and normalize tHf3 the future, we plan to extend our solution presented in
rate to 1. SUs are assumed to be always backlogged alBis paper to Problem (A) with explicit constraints on PU
only one of them is scheduled over chanelf sensed throughput.

available in each time slot. Let,(k) denote the probability We assume that the system is static and the optimization is
that channelk is idle, which is assumed to be acquireddone in a single time slot. Note that the solution_ of the stati
accurately over time. The capacity of chankels denoted assignment would apply to multiple time slots#f, (k) and

by ~(k) (after normalization)k = 1,---,M. We define P (k) do not change over time, or if changes occur over a
01(k) = (1 — T.)mo(k) and B3(k) = ~(k)(1 — mo(k)). ~much slower time scale.

Following the logic in [8] and extending to the multi-chahne

case, we define the expected SU throughput over channel I1l. HARDNESS OF THEPROBLEM
d bySy.
sensed by In this section, we will show that Problem (A) is strongly
UL(Sg) = (1-T.)P(B(k) =0, f(z(Sk)) = 0) NP-hard [14], by a reduction from Product Partition, which
= 0,(k)P(f(x(Sk)) =0/B(k)=0) (38) Iis NP-complete in the strong sense [1]. The Production
; . Partition problem is defined as follows: Give¥ positive
if Sy 75 ; . .
. ) integersay, as, ---, ay, is there a subsekX C N :=
Up(Sk) = 0if S, =0. {1,2,--- N} suchthat[] ai= [] a:?
ieX ieEN\X

where we assume that B, = @ no sensing 1S cond_ucte_d We reduce Product Partition to the following subproblem
for channelk and the channel is never accessed. Likewise . i i
the expected throughput of chanitetan be represented b Of Problem (A), with M = 2, Pi(1) = P;(2) = 0 for all

P gnp P Y i, Pi(1) = Pi(2) := Pi for all 4, andl; = 1 for all 4,

UR(SK) = 6:(k)P(f(2(Sk) = 1B(k)=1) () ~(1)=7(2) =7, m0(1) = m0(2) =m0, (1~ T.)mo := 61,
if Sk 7é (Z)y '7(1 — 7T0) = 92, and91 = 92.
U2(SK) = oK) if Sp = 0. Let (S1,S2) denote a solution to this subproblem. Without

loss of optimality, we can assun$g and.S; form a partition
of the set of SUs, i.e$; US> = S andS; NS, = 0. The ex-
Definition 2.2: System throughput For a channel assign- pected system throughput can then be easily determined us-
ment{S,---, Sy}, we define the throughput over channeing the Bayesian rule &g, (S;) = 61 +62(1— [] P¢)and
k to be the sum of SU and PU throughput over channel ; 8i€51 _
k, denoted ad/y(Sk) = UL(Sy) + U2(Sy). The system Us(S2) = 01 +02(1— ];[S P! ). Problem (A) then becomes:
M $iE€02
throughput is defined a3~ Uy (Sk). max {291 +0.2—( [I P, + TI P.))|, which is
k=1 1= s5;€S1 Si 1
Note that for a given channel sensing assignment, thgiher equivalent toinin( 11 ]ejsl\i [ Pi) since
achievable system throughput is determined by the decision S1CS g€5 | sies\si



20, + 26, is a constant. We then establish the strong NPAlgorithm 1 A maximum weighted matching based algo-
hardness of Problem (A) by showing that this new problerfithm for maximizing the system throughput across channels
is strongly NP-hard. Input: N, M, Te, mo(k), ~(k) for all k; I; for all i; Py, (k), Pj(k)

Proposition 3.1:Problem (A) is strongly NP-hard.

for all 7 andk

Proof: By the above argument, it suffices to prove thaDutput:U and .S, for all k

the subproblemmin ( [T P, + [[ FP.), is strongly  1: S, « 0 for all k
o 1SS ses s,€S\S1 N ) 22V {st,-- st sk, 8 YU {er, - e}
NP-hard. Given an instance of Product Partition with pa-3. g T U;Ll (s7,cx)}
rametersas, --- ,an, We reduce it to an instance of this 4 ¢« (V;E) =~
subproblem as follows: lef! = a;/10", i = 1,---,N, 5 w(s),er) «— Ug({si}),Vi=1,--- N, j=1,---,l;; k=
1,--- , M

wherer is the smallest integer such thaf, < 1 for all i = .
1,...,N. This reduction can clearly be done in polynomial 6:
time. Furthermore, if there is a subs&t C AN/, such that

[Tai = Tl a = /][] a then the optimal solution g
i€X PEN\X ieN 10:
to the subproblem i€ |/ [[ P}, and vice-versa. Hence if 11

s, €S :

there is polynomial time algorithm to the subproblem, thep.
Product Partition problem can be determined in polynomial
time as well, which contradicts the fact that Product Rartit 13
is strongly NP-complete. m 14
Since Problem (A) is strongly NP-hard, no pseudo-l®
polynomial time algorithms exist unless P = NP [14]. Wel®:
will propose a matching-based approximation algorithnt thal”:

M <+ a maximum weight matching it/

7: Sp  {si: (s],cx) € M}, Vk
8 R+ {s] : s] is not matched inM}

for all s/ € R do

k* « arg [Uk(sk U{si}) — Ur(Sk)

max
ke{l,--- M},s; Sk
Spx < Spx U {SZ}

M
U< > Uk(Sk)
k=1

if U1 > U then
U<+ Ux
N M
k <—argnk1_ai<Uk(S)
Spx < S, 8, + 0 Vk #k*

has theoretical lower bound in Section] V.

IV. APPROXIMATE SOLUTIONS

In this section, we propose an efficient approximatio
algorithm for Problem (A). We first prove an upper an
a lower bound on system throughput. We then propo
a matching-based approximation algorithm. By exploitin n
the structural properties of the problem and the bounds
system throughput, we show that the algorithm achieves an’

ﬁ, a vertexc;, is constructed, and for each Si, ; vertices

re constructed corresponding to thecopies of the SU,
deenoted as!,j = 1,..,1;, and for any pair of vertices’
S ; . .
dcy, there is an edge connecting them. The weight of an
ge(s!, cy) is then defined as(s!, cx) = Ux({s:}) (line

approximation ratio of at leasyu, wherep € [1,2] is a
system parameter and will be defined later.

A. Property of the System Throughput
We will show the range of the system throughpig(-)

A maximum weight matching in the bipartite graph is
then found (line 6), and for each edge’,c;) in the
matching, SUs; is assigned to sense chanmgl A greedy
heuristic is applied for determining the assignment of the
remaining copies of SUs to channels (lines 8-12). Basically

in the following lemma. the remaining copies are first sorted in an arbitrary order,
Lemma 4.1:For any SUs; and channelc;, we have and a copy of; is assigned to the channel that provides the
01 (k) + 02(k) > Up(s;) > max{el(k),eg(k)}. maximum marginal improvement of the system throughput
Proof: among all the channels not assignedstoyet. This scheme
_ is then compared with another scheme for which all SUs are
Ux({s:}) assigned to a single channel that gives maximum throughput
(line 13). The algorithm outputs whichever scheme provides
a larger system throughput.
We then analyze the complexity of AlgoritHoh 1, which is
Furthermore, it is clear from the definition &f(-) that dominated by computing the maximum weighted matching

01 (k) + 0(k) > U(s:), since at most both PU and SU candnd evaluating the throughput functidn(-). It is shown
achieve their full capacity. m N [8] that for a given sensing set;, Uy(Sk) can be eval-

uated using a dynamic programming algorithm in pseudo-

B. A Matching-Based Approximation Algorithm polynomial time. LetQ denote the time complexity for one

In this section, we propose a maximum weighted matchingva|uati0n ofUx(-). Note that the total number of such eval-
(MWM) [15] based algorithm to Problem (A). We first uations is bounded byl,,.. M. Therefore, the time com-
provided a detailed description of our algorithm (see Algoplexity of Algorithm isO(Nlyae MQ + (Nlias + M)?).
rithm D), and then establish its approximation factor. To establish the approximation ratio of Algorithid 1,

The algorithm starts with constructing a complete aneve first construct a maximal matching called Gtly that
weighted bipartite graph (lines 2-4), where for each channapproximates the MWM and captures two key aspects: 1)

max {Gl(k)(l — Pi(k)), Og(k)P,il(k:)}
max {Hl(k)P}(k:), 02 (k) (1 — P,;(k:))}

+
> max {91(’47)7 92(k)}



SUs may have different sensing abilities for each channel; 2hannels vary in a large range, or the sensing budgets of
channels are competing for SUs with limited sensing budgesUs are large, the ratio will be close tosince p;, A; will

We first prove a lower bound on the system throughput usinge large, respectively.

the sensing assignments determined hyEllly, which is then Remark 2In the proof of Propositionh 413, we have ignored
used to prove the approximation ratio of Algorittith 1. Thethe greedy heuristic applied to the copies of SUs not inaude
matching is constructed as follows: 1) Partition the channé the matching. Hence the result established above only
setC into groups indexed by SU, and each group is labelegrovides a lower bound on the performance of our algorithm.
asC; that includes all channelswith Uy ({s;}) > Ux({s;}) Proving a tighter bound for the algorithm that incorporates
where j # i. Ties are randomly broken. Let denote the the greedy heuristic is part of our future work.

size of C;. 2) Sort the channels in each groupC; by U}
in descending order, wheié) = min;cs Ux({s;}). 3) Pick
the firstl; channels from each group; (the set is labeled as  In this section, we study the performance of our algorithm
C') and assign SU to sense these channels. 4) Randomljhrough simulations by comparing Algorithid 1 (MWM)
assign an unused SU copy to each of the rest channels. Wih a random sensing assignment algorithm, and a greedy
will next show a lower bound on the system throughpualgorithm (defined next). In the random algorithm, the cepie
using M.Gdy in Lemmd4.P. We defin®;, = min{l;,r;}/r;, 0f SUs are randomly assigned to PUs. The greedy algorithm
pi = min, _ 1, Z_E where U} = max; Uy ({s;}). Note that works as follows: for each PW, the set of SUs are first

by Lemmal4lp, € [1,2] for all i. We have the following sorted byP;;?(k) + Pj(k) in a non-decreasing order as its
performance bound, whege= 1 + min;cs \i(p; — 1), and preference list. In each round, a random permutation of the

|M_Gdy| denotes the system throughput using the sensi t of PUs is applied. The algorithm then goes through the
assignrﬁents determined by._Sidy. list, and for each PW, a copy of the SU, say;, with

Lemma 4.2:M_Gdy achieves a system throughput no lesie lowestP;, (k) + Pi(k) among the remaining SUs, which
than . 3", U?. has not been assigned kdbefore and has remaining copies,

is assigned td. Repeat this procedure till all copies of SUs

V. SIMULATIONS

Proof: have been assigned.
* 0
|M—Gdg| - Lies [Zkecﬁi Ui +Ozk60i\cﬁi "} A. Simulation Setting
2 Ui 2k U The following parameters are fixed throughout the simu-
Dies [Zkecf Upi + Zkeci\cf U;?} lations. We consider &00 x 100 area, where the locations of
= S ies opec. UL M PUs are randomly generated. For eachiRis maximum
‘ 0 power level is randomly chosen betwekeand10, andm (k)
. Yies [(pi -1 Zkecji Uk} are randomly generated [fi, 1]. We also sefl,, = 0.2 fixed.
o . U n each of the runs of the simulation, we apply the mode
Yies kec, UR I h of the 100 f the I . ly th del
_ RN [0 prop_osed in [.11] to ger_lerathn(k) and P; (k). The details
> 14 Lies [(p i Ykec, k] are in our online technical report [17].

Yies Xrec; UK _ _

> 1+minhi(pi—1) =p B. Simulation Results
The simulation results are shown in Figlie 1. Note that

we do not restricty_, I; > M in our simulations. If PUk

% hot assigned any SU for sensin§i(= (), the system
Proposition 4.3: Algorithm [T achieves at least a fr:’;tctionthrom‘:]hput on channdl is 6, (k) (Definition[2.2). In all the

of 14 of the optimal system throughput for Problem (A). figures, we plofy_, {91(1{) + 92("“)} as the upper bound for
Proof: Let OPT be the optimal solution, and LG be  the optimal solution.

the solution by AlgorithnfilL to Problem (A). By Lemrfiay.1, !N Figure[1(@), we fix\/ = 20, /4, = 3, and varyN from
we know that 4 to 20. For each PU;, (k) in generated randomly ifi, 3]

and then fixed over all 100 runs. We choose this range since

Xy Ui Xymax{0i(k),02(k)} _ 1 5) the average PU throughput is usually larger than the unit SU
OPT = ., 0:(k)+02(k) 2’ throughput. For each SY [, is randomly generated between

Since ALG is an outcome at least as good as maximunh andl,,,.,. and fixed over all the runs. The simulations results
weight matching and Mady is a matching we construct in are averaged over all 100 runs. We observe that Algofithm 1
a greedy way, we have LG > |M _Gdy|. By Lemmal4.R, achieves significant improvement over the random and the
we can achievesLs > 1. m greedy algorithms for allV, although the gap shrinks a§

Remark 1 We note that wheil, (k) > 62(k) or 62(k) >  increases. For instance, the system throughput of Alguofiih
01(k), we can achieve a solution close to the optimal bys 24% larger than that of the greedy algorithm wh&n= 4
Algorithm [T since Equation{5) becomes closeltoOnly and it decreases tv6% when N = 20. When more SUs
when 6, (k) and 65(k) for all & are close, Equatior{(5) is join the network, the random and the greedy algorithms have
only right above%. Also, if SU’s sensing abilities across more chance to choose “good” SUs. The greedy algorithm

Based on Lemmads 4.1 ahdW.2, we show the approximati
ratio of Algorithm[1 in Propositiofi4]3.
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Fig. 1. System throughput achieved by our algorithm, gresdgrithm and random algorithm.

is comparable to the random algorithm whé&his small. to establish a tighter performance bound for our algorithm
However, it wins over the latter wheli > 12. This indicates enhanced with a greedy heuristic, and consider the system
that the sorting step in the greedy algorithm helps PUs pidkroughput maximization problem with extra constraints on
the “right” SUs, which is more useful wheW is large. the PU throughput.
Besides, the performance of Algorithoh 1 react9s$: of
the upper bound of the optimal solution whah= 20.

In Figur,M, N are fixed to b0 ands, respectively, [1] C. T. Ng, M.S.Barketau, T.C.E. Cheng and M. Y. Kovalyowréduct

. . Partition” and related problems of scheduling and systestiahility:
and we varylmaz from 1 to 5. V(k) IS again generated Computational complexity and approximatiofuropean Journal of

randomly in[1,3] and fixed over all 100 runs. Similar to Operational Researct207(2):601-604, dec 2010.
Figure[I(d), AlgorithniIL outperforms both the random andl2] fS DObZt')”Sk'v N-IN'Sa”' and 'V'h SChaIP'ra- A?Pff”g”(;'g“dgm'thmsf

. . or combinatorial auctions with complement-free bidddrsProc. o
the greedy algorithms, and the greedy algorithm outperform STOC 2005

the random algorithm wheb,,.. > 3. Whenl,,,. = 4, the  [3] R. Fan and H. Jiang. Optimal multi-channel cooperatieasing in
system throughput of AIgorith 1 5% better than that of cognitive radio networksIEEE Transactions on Wireless Communi-
th d | ith hich is the | t in the fi cations 9(3):1128-1138, 2010.

€ gree y_a gorithm, W_ Ic _IS € largest gap In the 'gure]ﬁ] Federal Communications Commission. Notice of proposgemak-
An interesting observation is that the expected number of * ing, in the matter of unlicensed operation in the tv broatitasds

SU copies whefl,,,.. = 4 (N = 8) is equal toM = 20, (docket no. 04-186) and additional spectrum for unlicendedices

thus every PU is assigned an SU on average. When there tzjglc?x.v 900 mhzand in the 3 ghz band (02-380), fcc 04-113. May
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posed with an approximation ratio that is at Ieéﬁt where
uw € [1,2] is a system parameter. Our numerical results
demonstrate that our algorithm performs significantly drett
than the a random channel sensing assignment algorithm and

a greedy algorithm. As part of our future work, we plan
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