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Abstract—In this paper, we investigate how to distribute multiagent systems. Each agent is equipped with at most
agents of different types in heterogeneous multiagent syams.  different “capabilities” (resources or facilities) fromgiven
Heterogeneity can for instance be related to various resoues set of unique capabilities. Every node performs a task that

and capabilities agents may have. We insist that every agent b e L
can find all different resources available in the network in is needs to utilize alt- facilities or resources within a network

closed neighborhood. The total number of different resoures Py interacting with its neighbors only. For a given system,
that can be accommodated within a system under this setting how can we get such a distribution of agents? An even more

depends on the underlying graph structure of the network. fundamental concern is if such a distribution is possible at
This paper provides an analysis of the assignment of multi@l 4| for a given network topology. We address these issues by

resources to nodes and the effect of these assignments on the - Lo . . .
overall heterogeneity of a network. We extend our analysisa analysing the role of individual nodes and interactionsim t

proximity graphs, a widely used interaction model in multi ~ context of heterogeneous distributions of capabilitie®agn
agent and wireless systems. In addition, we perform qualitive  agents within a network. In terms of the network topology of
and quantitative studies regarding the roles of individualagents multiagent system, these constraints can be related to a so-
and their interactions in such heterogeneous networks. called (r, s)-configuration of an underlying graph structure

| INTRODUCTION [11]. Here, the.goal is to assignunique colors (or Ia}bels)

) ~ to each vertex in a graph such that every vertexshasique
One of the challenges in heterogeneous networks is {jors in its closed neighborhood.

optimally distribute age_nts with diffe_rent capabilitiesthin If k different resource types can be accommodated in a
a network. In fact, the interconnection topology becomes getwork under the setting where every agent can find all
significant factor m_determmmg the system’s overall perf  esources in its closed neighborhood by having only one
mance and capability when the agents are non-homogenegisource by itself, then clearlys different resources can
and equipped with different resources. Several applinat®d  pe accommodated in the same network if each agent is
such syste_m_s have been studied in the literature, rangng fr 5)lowed to haves resource types. But it is shown in [11]
energy efficient sensor networks (e.g., [1], [2]), coveraggat it may be possible to incorporaterethanks resource
and optimization problems (e.g., [3], [4]), surveillanaeda types in a network under a similar setup. Thus, the ability of
monitoring systems (e.g., 5], [6]), facility location fiems  the network structure to accommodate heterogeneousesntiti

in operations research (e.g., [7]), and topology control igyay improve significantly with the leverage of assigning
wireless networks (e.g., [8], [9]), to name a few. All of tees myltiple resources to the nodes.

problems can be studied in terms of this broader issue of howThe organization of the rest of the paper is as follows:

to use the underlying network structure to optimally perfor | section 11, we introduce the notations used in the paper.
various complex group level tasks by distributing nodesiwitsection 111 provides an analysis of the, s)-configuration
various capabilities across the network. property of graphs for multiagent systems. A suffcicient
In [10], we employed graph theoretic methods to charagsondition for a graph to have afr, s)-configuration is
terize heterogeneity in multiagent systems from a networlresented in Section IV. In Section V, a special case of
topology view point. The analysis was performed undefs 2)-configuration forR-disk proximity graphs is discussed.

L different types available, and they are distributed such

that every agent can find all different types in its closed Il. PRELIMINARIES
neighborhood. In this paper, we continue to characteriee th | this section, we introduce the terms that are used
distribution of agents in heterogeneous multiagent sysiem throughout the paper. Also, we state the problem along with
a more general framework, allowing each individual agerdome preliminary results from [11].
to have multiple capabilities. In order to deal with such Throughout this paper, araphG(V, E), with a vertex set
situations, we can utilize the concept of assigning mutiply, and an edge sef, is a simple undirected graph. An edge
types of resources to a node instead of one [11]. between the nodes andv, is denoted by; ~ v,. Theopen

In this paper, we investigate this multiple resource assigmeighborhoodof a vertexv € V(G), denoted by\ (v), is
ment problem over a graph in the context of heterogeneouse set of vertices adjacent to Its closed neighborhoqd

denoted b , IS U . The degree of a vert
W. Abbas and M. Egerstedt are with a School of Electrical anth@uter W[U] N(U) {v} 9 %,

Engineering, Georgia Institute of Technology, Atlanta, GA332, USA deg(v), is the (fardina“ty of\(v). The minimum degree of
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Fig. 1. (a) The closed neighborhoods of nodeand 3 are missing labek, while node2 does not have labét in its closed neighborhood. (b) Node
is missingl in NV[3]. (c) All of the five labels are distributed to get(&, 2)-configuration.

degree of a graphA(G), is max{deg(v) | v € V'}. A set of resources any agent can have, ands the maximum
S is adominating setif for eachv € V(G), eitherv € S  number of resource types available within a network such
or v is adjacent to som& € S. In other words, the closed that every agent can find all these resource types in itsalose
neighborgood of eaclv € V(G) must contain at least a neighborhood.
vertex in S for it to be a dominating set. Thdomination Various network topology related aspects of heterogeneity
number is the cardinality of a dominating set with thein multiagent systems can be studied in terms of the frame-
minimum number of vertices. Alomatic partition D, is a work of (r, s)-configurations. For instance, does there exist
partition of V(G) into subsetsp = {Vi, V,---,Vi}, such an (r, s)-configuration of a grapit; for a givenr and s?
that, Ule Vi = V(G), and eaclV; € D is a dominating set For a givens, what is the maximum value offor an (r, s)-
in G. The maximum cardinality oD is thedomatic number configuration of G? How can we extend a given labelling
of G, denoted bylom(G). The difference of setsl andB, of a graph to an(r, s)-configuration by adding edges? We
denoted byA — B, is the set of elements iA that are not in address these problems in Seccions Il and IV. Firstly, we
B. Also, as-subset of a seR, is a subset oR containing illustrate these issues through an example below.
at mosts elements.

Let us model the underlying network topology of a mul-Example:
tiagent system by a grapl(V; E), Wher(_aV represen_ts Consider an industrial location where some manufactur-
the set of agents and represents_ the |nter-connect|0nsmg process depends on environmental conditions, inctudin
among_ggents. Assume there al_pn§5|bletypes of resourcestemperature(t), light (1), humidity (h), air pressure(p),
or facilities that need to be dlstr!buted among the nodegmd air flow (a). A specific environmental condition, say
such that every node gets a maximumsoflifferent types.

Each node i dto b formi “task’ that t,l,h,p,a), related to all of the above parameters needs
ach node Is assumed fo be performing a -as al NCeH% be maintained. Sensors for each of the above parameters
to utilize all » different resources by interacting with its

iahb v, E ver. h : h t,l,h,p,a are mounted at various data collection points
neignoors only. For a givelt-, Now can we get such a wherew(t, 1, h,p,a) is computed. Let there be a constraint

distribution of resources among the agents, if.it is poesibl(e'g” hardware) that a maximum of two sensors can be
at all? In mathematical terms, we can state this as follows. Sunted at every data collection point. Since, all five pa-
LetR = {1,2,---,r} be a set of labels. A functiofi rameters are needed for the computationudt, /, h, p, a),
f:V = [R], sensors need to be distributed such that all five sensor
’ types are available in the closed neighborhood of every data
is called an (r,s)-configuration of a graphi, where[R], isa collection point. So, the problem is to determing@?2)-
collection of all s-subsets ofR, such that U f(u) =R, configuration of the underlying network topology. Three
weENT] different cases are shown in the Fig. 1 for this set up. In the
VoveV(G). first case, the required distribution of sensors is not |essi
(r, s)-configurations of graphs are useful in studying hetas a (5, 2)-configuration does not exist for that particular
erogeneity in multiagent systems from a network topologgraph. In the second case, although%a2)-configuration
view point. In such networks, agents may be different fronexists, the sensors are not distributed to achieve it. In the
each other in terms of their resources or capabilities (fdast case, the right distribution of sensors is shown.
instance, sensing, actuation, software, computational-co Domination in graphs (see e.g., [14]) provides a basic
plexity). A unique label (or a color) can be associated withool for studying (r, s)-configurations of graphs. A graph
each resource type available in the network. All of the&~, having dom(G) = ~ has a(sy, s)-configuration. But
vertices in an underlying graph of the network are themterestingly, it may also have afr, s)-configuration, for
assigned labels (or colors) in accordance with the reseurceomes~y < r. So, an(r, s)-configuration of a graph allows us
contained by the corresponding agents. A vertex may hate explore and utilize its structure in a more profitable way.
multiple labels if the agent has more than one resource typdésr example, there are cycle graphs witmodes, denoted
In terms of (r, s)-configurationss is the maximum number by C,,, that have a domatic number of 2. So, they always



have a(4, 2)-configuration, but it is shown in [11] that every Lemma 3.1: [10] ®;; is the number of nodes with color
cycleC,,, wheren # 4,7, has a(5, 2)-configuration. Similar j in the closed neighborhood of node
is the case with the cubic graphsEvery cubic graph has a  Thus, for a given coloring®;; = 0 means that; is
(5,2)-configuration [11], although there are infinite numbemissing the color; in its closed neighborhood. Thus, an
of cubic graphs with a domatic number of 2. So, assigningxtra edge is needed to connegtwith somewv,, with a
multiple facilities to a node in a network may possiblycolor j. The upper and lower bounds on the number of extra
increase the overall capacity of the network to accommodaggiges required to get afr, s)-configuration from a given
a larger number of facilities. coloring of G are presented in the following result.
Throughout the paper, we will use the terms labels and Theorem 3.2: The number of extra edge$, needed to
colors interchangeably, depending on the context. Alse, tigyet an(r, s)-configuration from a given coloring af is,
node and agent terms are equivalent here.

[@] <£< o(®) 1)

I1l. ANALYSING NETWORKS FOR 2s

(r, s)-CONFIGURATIONS

In heterogeneous multiagent systems, agents with differ
resources or capabilities (for instance sensing, actuatice
interconnected with each other. Local tasks performed by an

where, z(®) is the number of O’s in the color distribution
eH1atrix, ®, for the given coloring.
Proof : Let v; ~ v; be an extra edge connecting vertex

. . . v; With colors k1, k9, -+ ,Kks, 10 vertex v; with colors
agent depends on the resources available in its neighbdrhoo L2t s J L
: T, T2, , Ts. SINCE, every vertex can have at meslistinct
Thus, we need a way to analyse how various types of agents

o . L . . colors, sov; ~ v; can add at most missing colors i ;
are distributed within a network? This information will be i~ U o . 9 . W[vl]
and also at most missing colors inN[v;]. This is pos-

useful to figure out the missing resources in the neighbathog; S :
: . . Sible whenevew; is missing colorsry, 72, - , 75 in N[v;]
of an agent along with the interactions needed to make theslt\e/en by By — 0 V7 € {m, - 7}, andw, is missin
resources available to that agent. In mathematical termS,\lﬁi . y Z ;1 Aos] ive1r71 o ;IJS ,Vn - {f{ S }9
need a formal way to get g, s)-configuration from a given | ‘2 " "¢ il 9 Y L Loy el
. ; . . In this case, the), ~ v; edge will change&s zero entries in
labelling of an underlying graph. This can be achieved b :

o o o . .“the ® matrix to ones. In any other case, i.e;,has at least
first identifying missing labels from the neighborhoodstef i y ofhet H

. L. . ne of ther;, m», -, 75 colors in its closed neighborhood
vertices, and then determining extra edges required to make

L . . 7 . orv; has at least one of the . colors in i,
these missing labels available in the vertices’ neighbodso Ui : 852,77 s N[%]
- > . the number of zeros i@ that will be converted to 1 will be
In addition, it is also valuable to characterize redunda

Z(_‘I’—‘ <
edges, i.e. edges whose removal will not matter for the sarll%ss thargs. Thus,[ % | <&

of the (, s)-configuration. We address all these issues in this '€ UPPer bound is straight forward &s, = 0 means
section. that v; is missing a colorr in Nv;], and the colorr can

Given a graph with: nodes, where each node has at mOsrce_lways be made available j/kf_[vi] through the_ addition of a
s distinct labels from a set of labels. Let thecolor matrix, ~ Single edgev; ~ v;, wherev; is any vertex with color. m

C € R™*" be given by, As an example, consid&¥ shown in Fig. 2, with a given
labelling of the nodes. Here, each node can have at most two
. { 1 if je f(v), wherej € {1,2,--- r} labels from a set of five labels, given Hy,2,3,4,5}. The
Y100 otherwise corresponding” and ® matrices are,

Here f(v) indicates the colors assigned to a verteXhe

column index ofC indicates the label (or the color), thus 10100 1111 2
C;; = 1 means that coloj has been assigned to the vertex 000 11 2 21 1 2
v;. Note that if a maximum ofs different colors can be C=1] 0 1 0 0 1 =111 2 2 2
assigned to a vertex, then there can be at marimber of 110 00 11011
1's in each row ofC. 001 10 01 111

We also define @olor distribution matrix ® as follows, . . L .
Since®,3 = ®5; = 0, vy is missing labeB in M [vy] and

d=AC+C vs IS missing labell in its closed neighborhood. By adding
) ) ) , &€ number of edges, where < £ < 2 (by Theorem 3.2),

where A IS the adjacencyxmatrlx of the graph adtlis the 5 (5,2)-configuration of G can be obtained. Note that by
color matrix. Here® € R™",. adding a single edgey, ~ vs, we get a(5, 2)-configuration,

The color distribution matrix gives information regarding,,nere every node has set of five distinct labels in its closed
the distribution of various colors within a network. In faitt neighborhood

tells us about the exact number of various colors available |
the closed neighborhood of any node in a network, as statgd

: _ Redundant Edges
in the following lemma.

In dynamic multiagent systems, edges may be lost.
1A graph whose every vertex has a degree 3 is a cubic graph. These edge deletions may take away certain resources from



V1 1,3 1,3 . . .
/3\ /3\ any node in the network, as shown in Fig. 3.

2,5 (%]

V2 (%] 4,5l 2,5 4,5 17/30\ ?O\
s s 12 34 L zi— 34 U2 U3 45 2,5 45 2,5
(a) (b) (c)
1,2 34

V4 Vs ) ) 12 3.4

Fig. 2. (a) A graphG. (b) Labelling of the nodes, wherg is assigned the

labels1 and 3, vz is assigned the label$ and 5, and so on. (Cps ~ vs (a) (b) (c)

edge is needed as label 3 is missing fravijvs] and label 1 is missing

from Avs]. Fig. 3. (a) A graphG. (b) Labelling of the nodes afy. (c) v2 ~ v3 edge
is redundant. Removing this edge will not increase the aefayi of any
node.

the neighborhood of an agent, thus affecting thes)-
configuration of the underlying graph. So, we need to charadV. SUFFICIENT CONDITION AND A LABELLING
terize all such edges whose deletion is not critical in tmsee SCHEME FOR AN(r, s)-CONFIGURATION

that their removal will preserve the number of resources |p,o underlying network topology of a system determines
available in the neighborhood of any agent. Let us define thge nymper of various capabilities or resource types that

deficiency of a node in a network as the number of colors .oy he incorporated within a system under the constraint
from a coloring se{1,2, - - -, v} missing in\[v;]. Similarly,  {hat every nodev can find every resource type [u].
thedeficiency of a networis the sum of all node deficiencies. The domatic number is the maximum number of disjoint
Now, based on this notion, we can defineedundant edge ,minating sets in a graph. Thus, under the restriction that
to be one whose deletion does not increases the deﬁuerg\yery node can have only one resource type, the maximum
of a network. _ _ number of resource types that can be distributed in the
If ®;; =1, it means thaw; has only one ”e'ghbor With hetwork is the domatic number of the underlying graph.
color j, and thus, an edge betweep and thatj colored |, other words, the maximum value of in an (r, 1)-
node isnot redundant. Similarlyp;; > 1 willimply that v;  configuration is the domatic number of the graph. Thus, a
has more than one node with colpn N[v;]. So, there may granh with a domatic number of at least always has an
be a redundant edge betwegnand some of |t§ neighbors. (r, s)-configuration forr = sy. However, there are many
Theorem 3.3: Let v; be a node with colors graphs withdom(G) = ~ that have(r, s)-configurations for
K1,K2, ks, and v; be its neighbor with colors ;. _ o . 1 For example, cycle graph&,, wheren is not
T, 72,00 7o AN edgev; ~ v; s redundant if and only 5 mytiple of 3 havedom(C,) = 2, but they still have a
if @iy, Piry,- oo, Pir, AN Dy, Dy, -+, Py, @€ Al (5 9)_configuration. Thus, the structure of the network can
greater than 1 at the same time. be used to incorporate more heterogeneous resources. Here,
Proof: («) Let v; ~ v; be a redundant edge. Then, byye present a sufficient condition for a graph with domatic
definition, it means that; has at least two neighbors for eaChnumbery to have an(r, s)-configuration withr = sy + 1.

of the colorsry, 7z, -+, 7 IN Nvi], i.€.@ir,, ®iry, -+, Pir, This will also outline a procedure to get a labelling scheme

are all greater than _1. Similarly, far; , the redundancy for an (r, s)-configuration, forr = s + 1.

of av; ~ v; edge implies that for each of the colors, Firsily, we define some terms that will be used to prove

K1, K2, 5 Ks, VETEXy; has at least two neighbors.M[v;],  Theorem 4.1, which is the main result of this section.

implying that ® ., , Dy, -~ , s, are all greater than 1. pefinition 4.1: (Minimal Partition of G): Let G be a
(=) Now assumev; ~ v; is not redundant, then at leastgraph with domatic numbey and vertex se¥’. A minimal

one of the following is true. partition of G, denoted byll, is a partitioning ofV into
(a) there exists a € {71, 7, -+, 7}, such thatv; has 4 1 disjoint sets such that,

only v; as ar colored vertex inN[v;], i.e., ®;; = 1 for

somer € {1y, 7o, - ,Ts}. I=DyUDyU---D, UV 2
(b) there exists & € {k1, Ko, ,,{S},_ such thatv; has whereD; is a minimal dominating setii € {1,2,--- ,~},

only v; as ax colored vertex in\[vj, i.e., & = 17or 54y y - (U7_,D;) is the set of vertices that are not

somer € {K1, kg, , K} included in any minimal dominating séd;. n
In both cases, D, Dir,, -, Pir. and

D), Pjry, -+, Pk, are not all greater than 1 We termVy in (2) as the set ohon-critical verticeswith

simultaneously, proving the required result. m respect to a minimal partitiodl, and we note thalq N

(U_,D;) =0.

Consider again the example shown in Fig. 2. Herehas
labels 4,5, and v3 has labels2 and 5. Also, note that in
the color distribution matrix®ss, ®o5, P34 and @35 are all
greater than 1. Thus, by Lemma 3.3, the ~ v3 edge is
redundant and its deletion is not increasing the deficiericy o Dy =VaUln

Now, consider a minimal partitioll of G and letD,; be
a dominating set such th&i; € D,,. Sincedom(G) = v
and V1 is not a dominating set, we have



where Iy C (U]_,D;). We term a sefl;; with the smallest ~ As an example, consider &,2)-configuration of Cs.
cardinality, a set ofcommon verticeswith respect to a Since the domatic number @y is 2, let us takey = 2.
minimal partitionII. We consider two minimal partitions of’s, denoted byl
The notions of minimal partition]I, set of non-critical andII respectively. We také&l as shown in Fig. 4. FofI,
vertices with respect to a minimal partitidh, and a set of we takeIl = S; U Sy U V&, as shown in Fig. 5(a). Since
common vertices with respect 1@ are shown in Fig. 4. It C Vg, (r, s)-configuration exists foC’s, wherer = 5 if
we takes = 2.

PN
v v
? 8 In = {vs}

V3 v7

Fig. 4. A cycle graph(Cs having a domatic numbey = 2. A minimal

partition II = D; U D2 U Vi1, where D1 = {v1,v4,v7} and Dy =

{v2,v5,v8} are minimal dominating sets, arid; = {vs,vs} is the set

of non critical vertices with respect fid. We can take another dominating N

setDs as D3 = Viy U Iy, wherel;; = {vs} is a set of common vertices Fig- 5. (@Il = 1 U S3 U Vg, where Sy = {v1,v4,v6} and S =

with respect to a minimal partitiof. {v2, vs, v7} are disjoint minimal dominating sets, whilg; = {vs,vs} is
the set of non-critical vertices with respectIib (b) A (5, 2)-configuration

. . of Cg is shown, where each vertex has two labels from a set of fivedab
Theorem 4.1: Let G be a graph with domatic number{172f3747 5.

~. Let II be a minimal partition ofG and Iy be a set of
common vertices with respect fd. If there exists another
minimal partition of G, sayII # II, such thatly C Vi,
where Vj is the set of non-critical vertices with respect to
II, thenG has an(r, s)-configuration withr = sy + {%J
Proof: Let IT — CJ D; U Vi1, whereVi is the set of non- The R—dis_k proximity g.raph model is frequer_ltly employed
j to model inter-connections among nodes in multi agent
networks. In such a model, a disk of radifsis associated
with every nodev that lies at the center of the disk. This
disk represents the interaction range of a node, which is
bssumed to be same for all the nodes. A node forms an edge
with others if and only if they exist within thak radius
disk of the node [12]. Applications of such a model include
ad hoc communication networks, wireless sensor networks
(e.g. [18]), multi agent and multi robot systems (see e.g.,
[15]), and other broadcast networks with a limited range
transmitters and receivers, to name a few.
The analysis of &5, 2)-configuration ofR-disk proximity
~ graphs is of significance, particularly in the context of
U Si U Vg, with V; being the set of non-critical vertices heterogeneous multiagent systems. Here, we show Rhat
:fiiih respect tdl, and eacts; being a minimal dominating disk _g_raphs hgve &5, 2)-configuration under certgin mild_
set. LetTl be such thatly C V-. It means that every condﬂons. It is .assumed that the ag_ents. equipped with
ottex NV 1~ has FJ labols HSince,S‘» C (V- V) mult!ple capabnmes or resources are lying in a pIar!e, and
1 2 ' = 1 the interactions among them are modelled by fRalisk

for anyi € {1,2,---,7}, every vertexv € S; has || proximity graph model,

o B e Wie start by translating the geometric_ property of such

v €V has a set ofg] + unique labels in\']v]. Noting that graphs into a graph-theoretic one by first deﬂnmg th_e fol-
R ) . ; lowing special graphs. A grapy is a complete bi-partite
|£] (v 4+ 1) unique labels are already available in the closed hif th ot ition of it tox SEt— X LY

neighborhood of every vertex, we get that all the vertices iﬁraﬂ Iht ere e(;qs S & partiion cr)] IS ver ex; _d UY’

V have now|$| (v + 1)+ [$] v = sy + | ] distinct labels sfuc t it an ed ge ~Y eXL?]ts w eneve:z < b andv € . h

in their closed neighborhoods. Since each vertex is asstignle | X |= = and] Y |=y, then a complete bi-partite grap

at mosts distinct labels, we have afr, s)-configuration of I(;lse?iﬁzogeddosﬁ(emygnga;g;s dirneo:cseh(;)vl\;; Cl*n f'% 6.a\gVetha;so
GWithr:sv—i—L%J. ™ 4 b

one obtained by identifying a vertex @f, with a vertex of

ZL%J labels assigned to the vertices bf; are different from the ones anotherC4, as Shown .'n F|g' 6. _AlSO' a gapﬁ is said to be
assigned to the vertices iP; wherei # ;. an H-free graph if H is not an induced subgraph 6f.

V. MULTIPLE RESOURCE ASSIGNMENT IN
R-DISK GRAPHS

critical vertices Wiltﬁlrespect to a minimal partitidh Also,
let D, be a dominating set wit., ., = Vi1 U I1, where
I; is a set of common vertices with respectIio Assign
|£] distinct labels to all the vertices in a dominating se
D;, for everyi € {1,2,---,v + 1}2. Under this labelling
scheme, the vertices ifiy will have (2 | £ |) distinct labels as
they are included in two different dominating sets, inchgli
D, 41 and some otheb; fori € {1,2,---,~}. Note that the
vertices inIy; are the only ones with{2 | £]) labels. Also,
everyv € V has the set of £| (v + 1) labels in its closed
neighborhood.

Now, consider another minimal partition of, II =



% O

01 ° C,1

é

Fig. 6.
graph,Cy e C4, obtained by identifying a vertex of @, with a vertex of
anotherCy.

1(2 .3

It is shown in [17] thatK» 3 cannot be arRk-disk graph.

In the following Lemma, it is shown thaR-disk graphs are

always K ¢-free.
Lemma 5.1: An R-disk proximity graph isK ¢ free.

Proof: Let G(V, E), be anR-disk proximity graph. Let

v € V such thatNV'(v) = {v1,v2, -+ ,v,}, Wherep > 6.
Also, let f,,..;) be the anglew makes withv; andv;, as

shown in Fig. 7. If|jv;, v;]| is the euclidean distance between

the nodesy; andv;, then it is easy to see th@jv;, v;|| >

R, wheneverd,,, .,y > 60°. Thuswv;,v; € N(v) are non-

adjacent if and only i)(,,,..,;) > 60°. ForG to haveK; ¢ as

an induced subgraph, there must be a subégt) C N (v),

with | N'(v) |= ¢ > 6, such thatd,,,,,) > 60°, Va;,z; €
q—1

N(v). But this will give Y 0u.ue,,) + Oxom, > 360°,

which is not possible. Thiu:s1 aR-disk graph isK ¢-free.m

Uy U1 T L1
(%A

U3
T3

Us T4
|| va, 05 ||[< R 000, > 60°, Va;, 25 € N (v)

Buion; < 60° N (v) = {v1, 03, v3,v5, v}
N ) = {v,ve,+ -, v7} = {21, 39, -, 75}

Fig. 7. An R-disk graph can never hav&; ¢ as an induced subgraph.

A result regarding a(5,2)-configuration of K ¢-free
graphs has been recently reported in [16].

Theorem 5.2: [16] A K, ¢-free graphG with a minimum

degree of at least two has (&, 2)-configuration, whenever 116]

Gis notC4,C7,K2,3 orCyeCy.

An O(n?) algorithm is also provided in [16] to achieve a
(5,2)-configuration of a graph, if it exists. Using Theorem(t”]
5.2, Lemma 5.1, and the fact that &adisk graph can never

be aK, 3 graph, we get the following result directly,
Theorem 5.3: An R-disk proximity graphG with a mini-

mum degree of at least 2 hag@ 2)-configuration whenever

G 75 C4,C7 or Cye(Cy.

Complete bi-partite graphgy1 ¢ and K2 3. The double cycle

VI. CONCLUSIONS

In this paper, we studied heterogeneity in multiagent
systems from a network topology view point using concepts
from graph theory. The notion dfr, s)-configurations of a
graph is used to characterize the distribution of agents wit
multiple capabilities (or resources). In such a distribofi
every agent can find all types of resources available in the
network in its closed neighborhood. The role of individual
agents and interactions in attainirig, s)-configurations is
also examined. This study not only analysed the role of
network topology in the context of heterogeneous multiagen
systems, but also provided ways to design network strusture
where agents equipped with various resources coordinate
with each other to accomplish complex tasks.
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