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Noise-Induced Spatial Pattern Formation in

Stochastic Reaction-Diffusion Systems ∗

Yutaka Hori Shinji Hara †

Abstract

This paper is concerned with stochastic reaction-diffusion kinetics governed by the

reaction-diffusion master equation. Specifically, the primary goal of this paper is to

provide a mechanistic basis of Turing pattern formation that is induced by intrinsic

noise. To this end, we first derive an approximate reaction-diffusion system by us-

ing linear noise approximation. We show that the approximated system has a certain

structure that is associated with a coupled dynamic multi-agent system. This obser-

vation then helps us derive an efficient computation tool to examine the spatial power

spectrum of the intrinsic noise. We numerically demonstrate that the result is quite

effective to analyze noise-induced Turing pattern. Finally, we illustrate the theoretical

mechanism behind the noise-induced pattern formation with a H2 norm interpretation

of the multi-agent system.

1 Introduction

The auto-regulation mechanism of the biological pattern formation is a long standing ques-
tion in biology. It was Turing [1] who first presented a mathematical model that possibly
accounts for the pattern formation in embryonic development. Specifically, it was shown
that a pair of reaction-diffusion equations can spontaneously exhibit spatial structure after
a small perturbation to a spatially homogeneous equilibrium. Nowadays, such patterns are
called Turing pattern, and analysis ranges to a wide variety of biological applications (see
[2] for example).

Although many existing studies rely on deterministic reaction-diffusion models, intrinsic
noise is often a unignorable factor leading to a drastic change of the dynamics [3]. It is
known that the dynamics of stochastic chemical reactions in a cell follows the chemical
master equation (CME) [4]. A standing assumption of the CME is that reactants are well-
mixed in a cell. However, recent studies revealed that molecules can localize inside a cell,
and the localization plays an important role, for example, in cell division [5]. Hence, it is
important to analyze the stochastic dynamics of biochemical reactions under the spatially
inhomogeneous environment.
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The reaction-diffusion master equation (RDME) [6] describes the dynamics of the molec-
ular copy numbers under the stochastic reaction-diffusion process. In this formulation, the
spatial domain is partitioned into small voxels so that the molecules are well-mixed inside
each voxel, but the copy numbers of molecules are small enough to preserve the stochastic-
ity. Thus, the dynamics of reactions inside each voxel is governed by the chemical master
equation (CME) [4], while the diffusion is modeled as the exchange of the molecules between
voxels.

In [7], the stochastic pattern formation was studied for Brusselator [8] based on the RDME.
Interestingly, it was observed that Brusselator can exhibit spatial patterns even when the
deterministic reaction-diffusion model converges to a homogeneous equilibrium. This implies
that intrinsic fluctuation drives a particular spatial mode, and results in inhomogeneous
spatial structure. This research thereafter inspired the investigation of the noise-induced
Turing patterns in Levin-Segel model [9] and the noise-induced spatio-temporal oscillations
in Brusselator [10].

In these papers [7, 9, 10], an approximate model obtained by linear noise approximation
(LNA) [11] was used to compute the spatial power spectrum of the patterns. Later, the
LNA for reaction-diffusion systems was formulated in a more general form in [12], and
the analytic results obtained by the approximation agreed with the stochastic simulations.
Although these methods were shown to give a good approximation, the mechanistic basis of
the stochastic pattern formation is not necessarily revealed. Hence, it is desirable that the
system be analyzed from a system theoretic viewpoint to understand the mechanism behind
the phenomenon.

The goal of this paper is to provide a mechanistic understanding of the stochastic reaction-
diffusion system, and to reveal the mechanism of the noise-induced Turing pattern from a
control theoretic viewpoint. Specifically, it is shown that the computation of the covariance
of intrinsic noise can be viewed as the H2 norm computation of a coupled dynamic multi-
agent system, where disturbance inputs are injected to each agent’s states and sensed out-
puts. Then, an efficient method to compute the spatial power spectrum is derived by using
the characteristic structure of the reaction-diffusion system. Using these analytic tools, we
analyze noise-induced Turing patterns observed in the celebrated Gray-Scott model [13, 14].
It should be remarked that to the authors’ knowledge, this paper gives the first presentation
of the noise-induced Turing pattern in the Gray-Scott model [13, 14]. Finally, we reveal the
mechanism of the noise-induced pattern formation with the H2 norm interpretation of the
multi-agent system.

This paper is organized as follows. In the next section, the RDME is briefly presented.
Then, an approximated system of the RDME is derived by using the LNA in Section III.
In Section IV, the characteristic structure of the approximated system is revealed, and its
control theoretic interpretation is presented. Furthermore, an efficient method to compute
spatial power spectrum is obtained. In Section V, noise-induced Turing patters are demon-
strated with the Gray-Scott model, and their mechanism is illustrated. Finally, the paper
is concluded in Section VI.

2 Model description of stochastic reaction-diffusion sys-

tems

In this section, the dynamics of stochastic reaction-diffusion system, which we call reaction-
diffusion master equation (RDME) [6] is introduced.

2



Voxel i with volume Ω 

diffusion

Figure 1: The reaction-diffusion scheme considered in the RDME formulation.

Consider a set of chemical reactions that consists of nmolecular species,M1,M2, · · · ,Mn,
and m0 reactions, R1,R2, · · · ,Rm0

, in a spatial domain. Suppose the domain is partitioned
into N voxels, V1,V2, · · · ,VN with the same volume Ω. It is assumed that molecules are
well-mixed within each voxel, and can react with those in the same voxel. Figure 1 shows
an example of the situation for one dimensional case.

Let an integer vector Xi ∈ Z
n
+ denote the copy number of molecular species inside the

voxel Vi (i = 1, 2, · · · , N). Stacking the vector Xi, we define

X := [XT
1 ,X

T
2 , · · · ,X

T
N ]T ∈ Z

nN
+ . (1)

It is known that the stochastic time development of the molecular copy number follows the
chemical master equation (CME) for well-mixed chemical systems [4]. Thus, the dynamics
of chemical reactions inside the voxel Vi is given by

∂P (Xi, t)

∂t
=

m0
∑

r=1

(wr(Xi−sr)P (Xi − sr, t)

−wr(Xi)P (Xi, t)) = AiP (Xi, t), (2)

where P (Xi, t) denotes the conditional probability that there are Xi molecules in Vi at time
t for a given initial state and time 1. The function wr(·) : Zn

+ → R+ (r = 1, 2, · · · ,m0) and
the vector sr ∈ Z

n denote the propensity function and stoichiometry for the reaction Rr

(see [15] for details). We define Ai as an infinitesimal generator describing the development
of P (Xi, t).

The diffusion of molecules can be modeled by the exchange of molecules between voxels (see
Fig. 1). When one molecule ofMk moves from the voxel Vi to Vj , the number of moleculesX
changes to [XT

1 , · · · ,X
T
i −eTk , · · · ,X

T
j +eTk , · · · ,X

T
N ]T , where ek := [0, · · · , 0, 1, 0, · · · , 0] ∈

Z
n is the standard unit vector with 1 at the k-th entry. Let Ii (i = 1, 2, · · · , N) denote a

set of adjacent voxels of Vi, i.e.,

Ii := {j ∈ {1, 2, · · · , N} | Vj is adjacent to Vi.}. (3)

In general, X is updated as

X + vij ⊗ ek, (4)

1More precisely, P (Xi, t) should be written as P (Xi, t|Xi0
, t0) with the initial state Xi0

and time t0.
In this paper, however, we omit the condition, and simply write P (Xi, t) to avoid notational complexity.
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for each diffusion event, where the vector vij ∈ Z
N has −1 at the i-th entry, +1 at the j-th

entries (j ∈ Ii) and 0 at the other entries. Thus, the dynamics of diffusion is written as

∂P (X, t)

∂t
=

N
∑

i=1

∑

j∈Ii

n
∑

k=1

(δk(Xi+1)P (X−vij ⊗ ek, t)

−δkXiP (X,t))=DP (X,t), (5)

where P (X, t) is the conditional probability that there are X molecules at time t for a given
initial state and time. The diffusion constant of the molecule Mk is defined by δk := dk/ℓ

2

with a deterministic diffusion rate dk > 0 and the characteristic length of each voxel ℓ. The
probability that one molecule of Mk moves from Vi to an adjacent voxel within a small
time interval [t, t+∆t] is given by δkXi∆t. We define D as the infinitesimal generator that
accounts for diffusion.

From (2) and (5), we have the following reaction-diffusion master equation (RDME).

∂P (X, t)

∂t
=

N
∑

i=1

AiP (Xi, t) +DP (X, t). (6)

Although the RDME describes the dynamics of intrinsic noise in stochastic reaction-
diffusion systems, it is known that the RDME is hard to solve analytically in most cases.
Hence, in the next section, we introduce an approximation method to understand the prop-
erties of the intrinsic noise in an analytic way. We hereafter restrict our attention to one
dimensional spatial domain for simplicity. The theoretical results, however, can be extended
to higher dimensional cases in a similar approach.

3 Linear noise approximation

In this section, we briefly describe the idea of linear noise approximation [11], and derive
the approximated dynamics of (6).

Let xΩ := X/Ω ∈ R
nN
+ denote the concentration of molecules. Note that the molecular

copy number X divided by the volume Ω is the concentration. It is known that xΩ converges
to a deterministic solution in the thermodynamic limit Ω → ∞ [16, 17]. Specifically, let

xi := lim
Ω→∞

Xi

Ω
(i = 1, 2, · · · , N), (7)

and x := [xT
1 ,x

T
2 , · · · ,x

T
N ]T ∈ R

nN
+ . Then, x(t) follows the spatially discretized reaction-

diffusion equation

ẋ =







f(x1)
...

f(xN)






+ (L ⊗D)x (8)

with the initial value x(0) := limΩ→∞ xΩ(0), where L is defined by a discretized Laplacian
matrix

L :=

















−1 1 0 · · · 0

1 −2 1 · · ·
...

...
. . .

. . .
. . .

...
0 · · · 1 −2 1
0 · · · 0 1 −1

















∈ R
N×N (9)
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and D is the deterministic diffusion rate matrix defined by

D := diag[d1, d2, · · · , dn] ∈ R
n×n (10)

with di := δiℓ
2. In (9), the Neumann boundary condition with zero flux is assumed. Though

the following argument can also be applied to the case where the boundary is periodic, we
hereafter assume the Neumann boundary for simplicity.

As we have seen in (7), the variance of molecular copy number Xi becomes less significant
as the volume Ω becomes larger, and eventually converges to zero. Thus, one would expect
from this observation that Xi is approximated around the deterministic solution xi as

Xi ≃ Ωxi +Ω
1

2ηi (i = 1, 2, · · · , N), (11)

where ηi is a noise term whose properties are specified later. It should be noted that Ωxi is
dimensionless, and the noise grows with O(Ω1/2).

Let η ∈ R
nN be defined by

η := [ηT
1 ,η

T
2 , · · · ,η

T
N ]T ∈ R

nN . (12)

Note that the subscript of η stands for the index of a voxel. Since xi is a determinis-
tic value obtained from (8), η is the only random variable that determines the stochastic
fluctuations. Thus, defining Π(η, t) as the probability distribution of η at time t, we have

P (X, t) ≃ Ω
−nN

2 Π(η, t), where the scaling term comes from the change of variable of prob-
ability distribution. We see that the probability distribution Π(η, t) contains the property
of intrinsic noise.

The idea of linear noise approximation [11] is that we replace X in the equation (6) with
the right-hand side of (11), and expand around the deterministic value Ωx with Taylor
expansion. Sorting with the power of Ω, we have the deterministic model (8) in the term
of Ω1/2, and a Fokker-Planck equation of Π(η, t) in the term of Ω0. Since O(Ω−1/2) terms
become less significant as Ω becomes large, we can approximately adopt the Fokker-Planck
equation as the dynamics of Π(η, t). Then, the standard argument of stochastic systems
allows us to see that η satisfies the following dynamic equation.

dη = J
x(t)ηdt+ SW

1

2

x(t)dB(t), (13)

where B(t) is a vector of R := m0N + m1n independent standard Wiener process with

m1 :=
∑N

i=1 |Ii|. The matrix J
x(t) ∈ R

nN×nN is Jacobian of (8) at x(t). S and W
x(t)

are defined as stoichiometry matrix and a diagonal matrix with the propensity functions at
diagonal entries, which are specified from (6), respectively [15].

In the following section, we consider the stochastic fluctuation around a spatially homo-
geneous equilibrium point, at which stochastic Turing pattern is expected. In particular, a
characteristic structure of the stochastic system (13) is revealed based on properties of the
reaction-diffusion system.

4 Analysis of noise-induced spatial patterns

4.1 Structure of the stochastic system and noise covariance

Let xe ∈ R
n denote an equilibrium of ẋi = f(xi), where f(·) is given in the deterministic

model defined in (8). We can see that x∗ := [xT
e ,x

T
e , · · · ,x

T
e ]

T ∈ R
nN
+ is a spatially

homogeneous equilibrium point, i.e., the values are the same between voxels.

5



Table 1: Meaning of the matrices

S0 Stoichiometry matrix for R1,R2, · · · Rm0

S1 Incidence matrix of voxels
W0 Diagonal matrix whose entries are propensity functions for

R1,R2, · · · ,Rm0
.

W1 Diagonal matrix whose entries are the equilibrium concentrations of
N1,N2, · · · ,Nn.

D Diagonal matrix whose entries are the diffusion rate of N1,N2, · · · ,Nn.

reaction

diffusion

Figure 2: Block diagram of the stochastic system (13).

Using the structure of (6), it can be shown that the matrices in (13) are given by

Jx∗ := IN ⊗K + L⊗D ∈ R
nN×nN ,

S := [IN ⊗ S0, S1 ⊗ In] ∈ Z
nN×R,

Wx
∗ :=

[

IN ⊗W0 O
O Im1

⊗DW1

]

∈ R
R×R
+ ,

where

K :=

(

∂f

∂x

) ∣

∣

∣

∣

x=x
∗

∈ R
n×n

S0 := [s1, s2, · · · , sm0
] ∈ Z

n×m0

S1 := [v1,v2, · · · ,vN ] ∈ Z
N×m1

W0 := diag(ŵ1(xe), ŵ2(xe), · · · , ŵm0
(xe)) ∈ R

m0×m0

W1 := diag(x(1)
e , x(2)

e , · · · , x(n)
e ) ∈ R

n×n.

The vector vi is vi := [vij1 ,vij2 , · · · ,vij|Ii |
] ∈ Z

N×|Ii| with jk ∈ Ii. The function ŵi(·) :

R
n
+ → R+ is defined as the deterministic reaction rate for reaction Ri, and x

(i)
e is the i-th

entry of xe (i = 1, 2, · · · , n). The meanings of each matrix are summarized in Table 1.

Substituting the above definition into (13), we see that the overall system has the structure
shown in Fig. 2. Since the matrices S0,W0 and K are associated with the reactions inside
each voxel, B0 excites the intrinsic noise arising from intravoxel reactions. On the other
hand, B1 excites the one arising from diffusion (see Fig. 2).
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It follows from (13) that the covariance of the noise E[ηηT ] at the steady state x∗ is given
by the Lyapunov equation

Jx∗Σ+ ΣJT
x

∗ + SWx
∗ST = 0. (14)

Thus, we have the following proposition.

Proposition 1. Consider the system (13). Suppose the spatially homogeneous equilibrium
x∗ is locally stable. The steady state covariance of the noise Σ := E[ηηT ] is given by the
positive definite solution of the Lyapunov equation

(IN ⊗K + L⊗D)Σ + Σ(IN ⊗KT + L⊗D)

+(IN ⊗ S0W0S
T
0 − 2L⊗DW1) = 0 (15)

This proposition provides an approximation of the covariance of the intrinsic noise whose
dynamics is given by (13). The i-th n by n diagonal block of Σ stands for the covariance
inside the voxel Vi, i.e., E[ηiη

T
i ]. The covariance between voxels appears in off-diagonal

entries, where the (i, j) off-diagonal block is defined by E[ηiηj ]. It should be noted that
Tr(Σ) in Proposition 1 provides H2 norm of the system in Fig. 2.

Remark 1. It is interesting to observe the system in Fig. 2 from a viewpoint of dy-
namical multi-agent systems. In Fig. 2, the blocks in the reaction part (upper blocks) are
homogeneous block diagonal matrices, and each block diagonal entry H(s) := (sI −K)−1

corresponds to the linearized dynamics of intravoxel reactions. It is clear that B0 is the
noise that perturbs the states of each subsystem H(s). The blocks in the diffusion part
(lower blocks), on the other hand, describes the structure of information exchange between
H(s). Since S1 is the incidence matrix associated with the graph Laplacian L, B1 can be
considered as a perturbation to the sensed output ηi−1−ηi. Thus, one might expect that
the study of this class of system is useful for engineering applications as well. �

4.2 Spatial power spectrum analysis of the intrinsic noise

Although the matrix Σ in (15) contains all information about the spatial covariance of η, it
is not easy to see the existence and profiles of spatial pattern at a glance. Hence, we here
consider spatial spectrum analysis based on Proposition 1.

The following theorem presents an efficient computation method of the spatial power
spectrum of the noise.

Theorem 1. Consider the system (13). Suppose the spatially homogeneous equilibrium
x∗ is locally stable. Let ξi (i = 1, 2, · · · , N) denote the spatial frequency components of the
steady state noise ηi, i.e.

ηi=

√

1

N
ξ1+

√

2

N

N
∑

k=2

cos

(

(k−1)π

N

(

i−
1

2

))

ξk. (16)

Then, the power spectral density Ξk := E[ξkξ
T
k ] ∈ R

n×n at the frequency ωk := (k −
1)π/N (k = 1, 2, · · · , N) is given by the positive definite solution of

(K + λkD)Ξk + Ξk(K
T + λkD) + S0W0S

T
0

−2λkDW1 = 0, (17)

7



reaction

diffusion

Figure 3: The decomposed subsystem obtained from the large system in Fig. 2.

where

λk := −4 sin2
(

(k − 1)π

2N

)

. (18)

We see from Theorem 1 that the spatial power spectral density of the molecule Mi is
obtained as the (i, i)-th entry of the matrices Ξk (k = 1, 2, · · · , N). In fact, Ξ is obtained
by applying discrete cosine transform to the covariance matrix Σ. It should be noted that
Ξk (k = 1, 2, · · · , N) are obtained by solving N Lyapunov equations of the size n by n,
which is more computationally efficient than solving nN by nN Lyapunov equation (15)
and applying discrete cosine transform.

From a control theoretic viewpoint, the transformation presented in Theorem 1 cor-
responds to the decomposition of the system into N subsystems as shown in Fig. 3,
where λ = λ1, λ2, · · · , λN . We see that the feedback gain λ corresponds to frequency
ωk (k = 1, 2, · · · , N), and the spatial spectral density Ξk varies in terms of λ. Thus, the
computation of the spatial power spectrum is essentially the same as H2 norm computation
for various feedback gains λ.

Since the noise B0 and B1 are decoupled in Fig. 3, the H2 norm can be independently
computed for each input. Thus, we have the following proposition.

Proposition 2. The Lyapunov solution Ξk in (17) can be decomposed into Ξk = Ξk1 +
Ξk2 (k = 1, 2, · · · , N), where Ξk1 and Ξk2 are the positive definite solutions of

(K + λkD)Ξk1 + Ξk1(K
T + λkD) + S0W0S

T
0 = 0, (19)

(K + λkD)Ξk2 + Ξk2(K
T + λkD)− 2λkDW1 = 0. (20)

It should be noted that Ξk1 and Ξk2 represent the spectral density of the noise originating
from intravoxel reactions and diffusion, respectively. Thus, Proposition 2 implies that we
can independently analyze the contribution of these noises.

Remark 2. Theorem 1 and Proposition 2 can be applied for systems with the periodic
boundary condition. In that case, the Laplacian eigenvalues should be alternatively defined
as λk = −4 sin2((k−1)π/N), and the solution Ξ corresponds to the discrete Fourier transform
of Σ. �
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Table 2: Reactions of the Gray-Scott model
Reaction Propensity wi(·)

R1 Ui + 2Vi → 3Vi k1[Ui][Vi]([Vi]− 1)/2Ω2

R2 Vi → Pi k2[Vi]
R3 φ → Ui kau0Ω
R4 Ui → φ ka[Ui]
R5 Vi → φ ka[Vi]

Ui → Uj (if j ∈ Ii) d1/ℓ
2

Vi → Vj (if j ∈ Ii) d2/ℓ
2

5 Numerical Simulations

In this section, we first illustrate stochastic Turing patterns induced by intrinsic noise with
the well-known Gray-Scott model [13, 14]. Then, we show that the spatial power spectrum
analysis presented in the previous section can capture the noisy spatial patterns. Fur-
thermore, we present underlying mechanism of noise-induced Turing patterns based on the
system theoretic interpretation given in the previous sections. Due to the limitation of the
space, some details are left for our future publication.

5.1 Noise-induced Turing patterns with the Gray-Scott model

The Gray-Scott model consists of the five chemical reactions in Table 2. In reaction R1,
U is converted into V , where V catalyzes the production of itself. Then, the reaction R2

changes V into the final product form P . The reactions R3,R4 and R5 describe the inflow
of U from outside, degradation of U and degradation of V .

The deterministic reaction-diffusion model of the Gray-Scott model is given by

∂u

∂t
= −uv2 + a(1 − u) + d∇2u

∂v

∂t
= uv2 − (a+ k)v +∇2v,

(21)

where u ∈ R+ and v ∈ R+ are normalized concentrations of U and V . The dimensionless
constants a, k and d are normalized reaction rates and a diffusion rate defined with the
reaction constants in Table 2 as

a :=
ka
k1u2

0

, b :=
k2

k1u2
0

, d :=
d1
d2

. (22)

Let the parameters be set as (u0, k1, k2, ka, d1, d2) = (3.0, 4.0 × 10−2, 1.98 × 10−2, 2.16 ×
10−2, 2.16×10−13, 3.6×10−14), which corresponds to (a, b, d) = (6.0×10−2, 5.5×10−2, 6.0).
With this parameter set, both deterministic and stochastic simulations exhibit the spatial
pattern as shown in Fig. 4. For the stochastic simulation, the Gillespie’s algorithm [18] was
used, where the domain was partitioned into N = 32 voxels, and the characteristic length
and the volume were ℓ = 1.0× 10−1 and Ω = 1.0× 102, respectively.

We now change the parameter k2 in the above example to 1.76 × 10−2, which results
in (a, b, d) = (6.0 × 10−2, 4.9 × 10−2, 6.0). According to the deterministic analysis [19], a
spatially homogeneous equilibrium is stable, hence no spatial pattern is expected. In fact,
the deterministic model converges to a homogeneous equilibrium (Fig. 5 (Left)). However,

9
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Figure 4: Time development of the concentrations/copy numbers of U for the first parameter
set. (Left) A simulation result of the deterministic model. (Right) A result of the stochastic
simulation.
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Figure 5: Time development of the concentrations/copy numbers of U for the second pa-
rameter set. (Left) A simulation result of the deterministic model. (Right) A result of the
stochastic simulation. The red and blue patches imply the existence of noise-induced spatial
pattern.

we observe that the stochastic simulation in Fig. 5 (Right) still displays the spatial pattern.
It should be emphasized that the deterministic model (21) failed to capture this spatial
pattern.

5.2 Spatial power spectrum analysis

In this section, we first show that Theorem 1 and Proposition 2 can capture the stochastic
spatial patterns shown in Fig. 5 (Right), then illustrate the mechanism of the stochastic
pattern generation from a system theoretic point of view.

Consider the case where the deterministic system (21) does not present Turing pattern.
Using Theorem 1, we can approximately compute the steady state spatial power spectrum.
Figure 6 shows the computation result in terms of b. We see that as b becomes larger,
sharp peak appears at k = 6 and 7, which correspond to ω6 = 5π/32 and ω7 = 6π/32. For
b = 4.9×10−2, which is the second parameter set in the previous example, the peak frequency
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Figure 6: Spatial power spectrum of intrinsic noise η computed from Theorem 1. The
horizontal axis is k in ωk = (k − 1)π/N .
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Figure 7: Trajectory of the eigenvalues of K +λD in terms of λ. The mark ∗ stands for the
eigenvalues at λ = λk.

is ω7. Hence, we can expect spatial patterns with three periods. Indeed, the spatial structure
can be confirmed in Fig. 5 (Right). The ingredient of the power spectrum can be analyzed
with Proposition 2, and it can be concluded that both reactions and diffusion contribute to
form the peak at non-zero frequency in Fig. 6

It is interesting to consider these observations from a control theoretic viewpoint. In
general, the deterministic Turing instability is determined from the stability of K + λD,
which corresponds to the stability of the system in Fig. 3. Figure 7 illustrates the eigenvalue
distribution of K+λD in terms of λ. Note that this corresponds to drawing the poles of the
system in Fig. 3 by changing the feedback gain λ. We see that one eigenvalue approaches
to the imaginary axis as k increases, and the largest real part is achieved at k = 8 (see Fig.
7). In view of the stability of this system, it is natural that the largest H2 norm is obtained
around k = 8. This observation corroborates the aforementioned analysis illustrated in Fig.
6, where we actually have the peak at k = 7.
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6 Conclusion

We have analyzed noise-induced pattern formation under the reaction-diffusion kinetics de-
scribed by the RDME. Using the linear noise approximation, we have revealed the charac-
teristic structure of the stochastic reaction-diffusion system, and presented the underlying
mathematical structure of noise-induced pattern formation from a control theoretic point of
view. The analytic tool to examine the spatial power spectrum of intrinsic noise has also
been derived in the analysis, and its effectiveness has been confirmed through the numerical
simulations.
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