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Gain scheduled control strategies for a nonlinear electrostatic
microgripper: Design and real time implementation

Mokrane Boudaoud, Yann Le Gorrec, Yassine Haddab and Philippe Lutz

Abstract— This paper deals with the accurate and fast
positioning control of a nonlinear electrostatically actuated
microgripper. Considering the importance of nonlinearities,
performances are achieved through the design of gain scheduled
controllers. To this end, a nonlinear model of the studied
system is proposed and is reformulated into a polynomial LPV
(Linear Parameter Varying) model. Controllers are designed
considering the particular polynomial parametric dependence
of the LPV model. In a first instance, a controller is synthesized
using an affine LPV descriptor representation of the system
and LMI (Linear Matrix Inequality) constraints. In a second
instance, to deal with real time implementation constraints, a
second controller is designed based on an iterative procedure
using the eigenstructure assignment methodology and a worst
case analysis. For embedded applications, requiring simple
controller structures, we show experimentally the interest of
the iterative procedure which can achieve good results rela-
tively with the ones obtained using recent advances of robust
controllers based on LMI conditions.

I. INTRODUCTION

Microgrippers are efficient tools for the manipulation of
objects at the micrometer scale. They are widely used in
microassembly [1] and biomedical research [2]. Electrostatic
comb drive actuators are among the most used actuation
mechanisms within microgrippers [3][4]. They allow a rapid
positioning with nanometer resolutions and they have no
hysteretic behavior. A comb drive actuator consists of two
interdigitated finger structures, where one comb is fixed and
the other is connected to a compliant mechanism. Comb
dive actuators generate large displacements (several tens
of µm) but they become highly nonlinear when exceeding
a threshold of displacement (few µm). Nonlinearities arise
from external electrostatic potentials [5], from axial forces
acting on the clamped parts of the suspensions [6] and
also from the damping which increases with increasing
the displacement of the actuator [7]. A recent overview
on the nonlinearities in MEMS (Micro Electro Mechanical
Systems) can be found in [8]. It is therefore very difficult
to ensure control performances for the micropositioning of
such actuators in a wide operating range.

In the literature, some robust control strategies for comb
drive actuators have been investigated (see [9] for a re-
cent survey of MEMS control). A linear time invariant H∞

methodology is proposed in [10] to control the position
of an electrostatic microgripper taking into account model
uncertainties. A robust sliding mode strategy is designed
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in [7] to control a MEMS optical switch considering the
damping of the comb drive actuator as the only nonlinear
parameter. Direct and indirect sliding mode control [11][?],
sliding mode control with an observer [12] or with an adap-
tive gain [13] proved that they are efficient to control comb
drive actuators used in MEMS gyroscope. Most of related
control techniques do not tackle the problem of positioning
the actuator in a large operating range. This requirement
is crucial in micromanipulation tasks for which positioning
performances must be ensured regardless of the size of the
manipulated object. According to author’s knowledge, such
an issue has not been analyzed previously and especially in
the case of MEMS based microgrippers.

The aim of this paper is the control of electrostatic
type microgrippers using nonlinear comb drive actuators. A
microgripper (FT-G100) from FemtoTools GmbH Company
[3] is used as a case of study. Controllers are designed to
ensure some performance level over a wide operating range
despite nonlinearities. Therefore, we propose the design of
gain scheduled controllers to achieve required specifications.
Nonlinearities induce large variations of the stiffness and
the damping of the system. Instead of using the stiffness
and the damping ”independently” as scheduling variables,
we propose to use the position of the gripper arm as the
only variant parameter. To do so, a Linear Parameter Varying
(LPV) model of the actuation mechanism with a polyno-
mial parametric dependence is proposed. This polynomial
dependence causes some issues for the derivation of the
controller. As such, two gain scheduled control strategies are
proposed: the first one uses an affine LPV descriptor model
and a finite number of linear matrix inequalities (LMIs) to
derive the controller and the second one consists on a robust
eigenstructure assignment. The paper is organized as follows.
In section II, global architecture of the FT-G100 microgripper
is presented. The third section is devoted to the nonlinear
and the LPV modeling of the system. Control strategies are
presented in the fourth section. In section V, experimental
control results are presented. Conclusions end the paper.

II. GLOBAL ARCHITECTURE OF THE MICROGRIPPER

The FT-G100 microgripper is designed to handle objects
ranging from 1µm to 100µm. The initial opening of the
gripper arms is 100 µm. The microgripper consists of two
distinct parts (see Fig. 1): -an actuation mechanism com-
posed of a comb drive actuator and an actuated arm, -a
sensing mechanism including a capacitive force sensor and a
sensing arm. The latter is not studied in this paper. The base
of the actuated arm is attached to a flexure joint. Furthermore



a suspension mechanism including two pairs of clamped-
clamped beams holds the movable part of the actuator.

Fig. 1. Structure of the FT-G100 microgripper (FemtoTools GmbH).

III. MODELING OF THE ACTUATION MECHANISM

A. Nonlinear dynamic modeling

The dynamic model of the actuation mechanism is based
on the nonlinear Duffing equation which takes into account
axial forces ~N acting on the clamped parts of the suspensions
(Fig. 2a). Such forces are considered by introducing a cubic
stiffness ka3 in the dynamic equation [8]. In the case of the
microgripper, the Duffing equation is given as:

ma.
d2ya(L)

dt2 +da.
dya(L)

dt
+ ka1.ya(L)+ ka3.y3

a(L) =
1

Da
.Felec (1)

ma, da and ka1 are respectivelythe linear mass, the linear
damping and the linear stiffness of the actuation mechanisms,
Da is an amplification factor.
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Fig. 2. Simplified scheme of the FT-G100 actuation mechanism (a) and
equivalent scheme of suspension mechanism (b).

The electrostatic force Felec generated by the comb drive
actuator is defined as:

Felec =
Na.ε.hz

2.g
.V 2

in (2)

Where, Na = 1300 is the number of comb fingers, ε =

8.85pF/m is the permittivity of the air, hz = 50µm is the
thickness of comb fingers, and g = 6µm is the gap spacing
between two fingers. Under the assumption that the base of
the actuated arm behaves as a hinge joint (Fig. 2) and that the
actuated arm is rigid, the amplification mechanism is given
as: Da =

L
xea

, with L = 5150µm and xea = 1100µm.

A laser interferometer sensor (SP-120 SIOS Metechnik
GmbH) is used to derive the experimental static charac-
teristic ya(L)/Vin from 0 to 200V . Experimental data are
then fitted using equation (1) in static mode. With a third
order polynomial interpolation, the mean fitting of the static
characteristic is found to be equal to 17.11 %. To reduce this
error, we have extended the Duffing equation by considering
a sixth order polynomial in the static characteristic leading

to the following expression:
6
∑

i=1
kai.yi

a(L) =
Na.ε.hz
2.g.Da

.V 2
in. This

polynomial extension allows taking into account additional
nonlinearities that are not considered in the standard Duffing
equation. Therefore, by fitting experimental data with the
extended Duffing static equation, the mean error is reduced
to 3.66 % and results are presented in Fig. 3a.
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Fig. 3. Nonlinear characteristics of the FT-G100 actuation mechanism (a)
static actuated arm tip displacement/ supply voltage, (b) stiffness/actuated
arm tip displacement, (c) damping/actuated arm tip displacement.

Identified parameters are given as: ka1 = 1,0762N/m,
ka2 = −1,6× 103N/m2, ka3 = 4,88× 108N/m3, ka4 = −1,69×
1012N/m4, ka5 = −3,98× 1016N/m5, ka6 = 4,71× 1020N/m6.
Consequently, the nonlinear evolution of the stiffness in the
actuation mechanism is deduced as shown in Fig. 3b.

To identify the mass and the damping, step excitations
are applied to the actuator in the operating range 0 to
200V and the displacements ya(L) are measured with the
laser sensor. It is observed that the damping of the system
increases with increasing the amplitude of motion starting
from ya(L) = 60µm. A nonlinear damping term of the form

da(ya(L)) =
4
∑

i=0
dai.yi

a(L) is then introduced in (1). A fourth

order polynomial has been sufficient to describe the non-
linear damping (Fig. 3c). The mass is identified with the
experimental step response of the actuation mechanism for
5V input voltage. Moreover, the damping is identified at each
operating point from experimental step responses and results
are fitted on the fourth order polynomial. Identified parame-
ters are: ma = 3,9843×10−8Kg, da0 = 3,01×10−6Ns/m, da1 =

−0,162Ns/m2, da2 = 1,24×104Ns/m3, da3 =−3,04×108Ns/m4,
da4 = 2,47×1012Ns/m5.



Taking into acoount the nonlinear stiffness and damping,
we obtain the following nonlinear state space model:



[
ẏa(L)
ÿa(L)

]
=

 0 1

− 1
ma

6
∑

i=1
kaiyi−1

a (L) − 1
ma

4
∑

i=0
daiyi

a(L)

[ya(L)
ẏa(L)

]

+

0
Na.ε.hz

2.g.Da

 .V 2
in

ya(L) =
[

1 0
][ya(L)

ẏa(L)

]
(3)

For the model validation, the experimental frequency
spectrum of the system is compared with the simulated one
using (3) and a good agreement is observed Fig. 4. The
first resonance frequency varies from 827Hz to about 2KHz.
Moreover three vibration modes appear staring from Vin=50
V. Such characteristics are well captured in the nonlinear
model. For control purposes, the model (3) is reformulated
into a LPV model in such a way that the position of the
actuated arm tip is the only variant parameter.

Fig. 4. Frequency responses of the nonlinear actuation mechanism:
experimental data (red curve) and simulation data (black curve)

B. LPV modeling

The nonlinear model (3) can be reformulated into an affine
LPV model if the damping and the stiffness are chosen
independently as varying parameters Fig. 2b. For this class
of LPV models, well known gain scheduled control strategies
such as LPV/H∞ [14] can be used. The main drawback of this
approach is that the polynomial dependence of the nonlinear
parameters is not taken into account during the controller
design leading to a high conservatism. In the present work,
we propose to use the operating point (actually the position
of the actuated arm tip) as the only varying parameter. To
this end, using a Jacobian linearization, the nonlinear plant
(3) is formulated into a polynomial LPV model of the form:{

Ẋp(t) = Ap(δ )Xp(t)+Bp.U(t)
ỹa(L, t) =CpXp(t)

(4)

Ap(δ ) =

 0 1

− 1
ma

.
6
∑

i=1
i.kai.δ

i−1 − 1
ma

.
4
∑

i=0
dai.δ

i


Bp =

[
0 Na.ε.hz

2.g.Da

]T
,Cp = [ 1 0 ],Xp =

[
ỹa(L)
˙̃ya(L)

]
Ap ∈ Rn×n,Bp ∈ Rn×m,Cp ∈ Rp×n with n = 2, p = m = 1.

ỹa(L) is the variation of ya(L) around an operating point δ . To
simplify notations, the variable ỹa(L) will be designed later
by ya. Note that, the nonlinearity arising from square input
voltage is overcome by considering the variable U = V 2

in as
the model input in the control design.

The polynomial parametric dependence of the LPV model
(4) causes some issues for the derivation of a gain scheduled
controller. To overcome this control design issue, two strate-
gies are suggested in the next section.

IV. GAIN SCHEDULED CONTROL STRATEGIES

To design a parameter dependant controller for which the
scheduled parameter is the operating point δ , two distinct
approaches are proposed: 1) To transform the polynomial
LPV model into an affine LPV descriptor model and to
design a controller with the resolution of a finite number
of LMIs. 2) To perform an iterative procedure based on a
worst case analysis and an eigenstructure assignment using
observed based scheduled controller. Both methods finally
allow designing a parameter dependant controller taking into
account the particular polynomial form of (4).

A. Affine LPV descriptor representation and gain scheduled
control synthesis

For the derivation of an affine LPV descriptor model of
the system, starting from (4), we have performed a linear
fractional transformation Fig. 5 of the form: Ẋp

ya

z

=

 N11 N12 N13
N21 N22 N23
N31 N32 N33


Xp

U
v

 (5)

With: v(t) = δ z(t), z(t) ∈ Rnz , v(t) ∈ Rnv .
The sub-matrices

{
Ni, j
}

i, j=1,...,3 are deduced from the
interconnexion of the LFT. Taking into account the stiffness
and damping polynomial orders, we have selected nz = nv = 7
(e.i. order of the highest polynomial +1).

The affine LPV model (6) is obtained by defining an
augmented state vector Xdes =

[
XT

p vT ]T such as:{
EẊdes = Ades(δ )Xdes +BdesU
ya =CdesXdes

(6)

Ades =

[
N11 N13

δN31 δN33 + Inv

]
Bdes =

[
N12
δN32

]
Cdes =

[
Cp 01×nv

]
E = diag(In,0nv)

This descriptor representation is used only to derive the
gain scheduled controller via the resolution of a finite number
of LMIs conditions. Control performances required in this
study are derived from general need in micromanipulation:
no overshoot, maximum static error lower than 0.05%. More-
over, we desire obtain a maximal response time lower than
30ms. Therefore, we have defined a reference closed loop
transfer function Td :

Td =
0.9995

4×10 - 6s2 +0.006 s + 1
(7)

The reference model Td contains two eigenvalues λ1 =

−191 and λ2 =−1300. In order to design the gain scheduled



controller that ensure desired performances in wide operating
range, a weighting transfer function W1(s) is introduced.

This function will allow tracking performances by apply-
ing specifications to the sensitivity function of the system
considering a frozen value of δ . In this study we have
selected the frozen value as the steady tip displacement of the
actuated arm for 5V input voltage. The weighting function is
given by W1(s) = 1

1−Td
. Therefore, the descriptor model (6) is

augmented with the weighting function leading to:
EgẊg = Ag(δ )Xg +B1w+B2U
z =C1Xg +D11w
ya =C2Xg +D21w

(8)

The external input w = yar is the trajectory reference and
the external output z1 is the output of W1(s).

The control problem consists in designing a gain scheduled
controller K(s,δ ) that minimize a positive scalar γ such as
the closed loop transfer H∞ norm of the performance channel
w→ z1 is minimized (ideally less or equal to 1) for any value
of the operating point δ . Such requirement can be satisfied
by solving the following LMI constraints [15]:[

Y ET
g Eg

ET
g ET

g χ

]
=

[
Y ET

g Eg
ET

g ET
g χ

]T

> 0 MA +MT
A MB MT

C
MT

B −γI MT
D

MC MD −γI

< 0

(9)

MA =

[
Ag(δ )Y T +B2FT Ag(δ )

HT χT Ag(δ )+GTC2

]

MB =

[
B1

χ
T B1 +GT D21

]
Mc =

[
C1Y T +D12FT C1

]
The decision variables of (9) are the matrices χ, Y , F , G

and H with a appropriate dimensions.
As, the varying parameter is bounded between upper (δM)

and lower (δm) values, the LMI problem results in an infinite
set of LMIs to solve. Nevertheless, since the matrix Ag(δ ) is
affine w.r.t the varying parameter, the LMIs (9) can be solved
only on the vertices [16] of the set [δm δM ]. Here only two sets
of LMIs must be solved since only one varying parameter
is considered. If this is feasible, the solution leads to the
following polytopic state space controller structure:

K(s,δ ) = α1(δ )

[
Ak1 Bk1
Ck1 0

]
+α2(δ )

[
Ak2 Bk2
Ck2 0

]
(10)

The matrices {Aki,Bki,Cki} are derived from the solution of
the LMIs (9) and {α1(δ ),α2(δ )} are given by α1(δ ) =

δM−δ

δM−δm
and α2(δ ) = 1−α1(δ ).

The augmented LPV descriptor model (8), is transformed
into a polytopic LPV model with two vertices. Thereafter,
the LMIs conditions (9) are solved at each vertex of the
model using the Matlab LMI Control Toolbox. For the
resolution, we have considered δm = 1µm and δM = 90µm.
Consequently, two four order controllers Gk1 {Ak1,Bk1,Ck1,0}
and Gk2 {Ak2,Bk2,Ck2,0} are obtained. Experimental control

results using this strategy are presented in section V. Nev-
ertheless, due to the order of the obtained controller, some
real time implementations constraints have been encountered.
The second proposed control strategy aim at overcoming this
constraint while keeping desired performances.
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Fig. 5. Control scheme with the augmented LPV descriptor model.

B. Gain scheduled control by eigenstructure assignment

The strategy proposed in this section is based on the
output feedback control by eigenstructure assignment and
multi model self scheduled control design [18]. It is well
known that with the traditional eigenstructure assignment
[17], the maximal number of eigenvalues that can be assigned
is limited by the number of outputs of the controlled system.
First, let us consider the LPV polynomial model (4) for
a given frozen value δ0. This model has one output and
the reference model contains two eigenvalues. Therefore
to assign the eigenvalues of the frozen parameter system
considering the reference model (7), we propose to add an
observer to the polynomial LPV model based on Lemma 1.
Lemma 1: the system defined by (see Fig. 6 ){

żo = πozo− toya +uoBpU
uoAp(δ0)+ toCp = πouo

(11)

uo ∈Cn, to ∈Cp,πo ∈C
is an observer of the variable zo = πoXp and the observation
error εo = zo− uoXp satisfies: ε̇o = πoεo (see [19]). Note that
δ0 is a frozen value of the varying parameter δ .
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Designing an output feedback controller by eigenstructure
assignment to the frozen polynomial LPV model (4) with the
observer consists on finding the matrix Kc = [Ky Kz] such as
the system: 

Ẋp = Ap(δ0)Xp +BpU
żo = πozo +uoBpU− toya

ya =CpXp

(12)

controlled by U = Kyya + Kzzo have the expected perfor-
mances. This problem can be resolved by considering the
separation principle described in the theorem 1 [20].



Theorem 1: It is equivalent to assign (by the static feedback
Kc = [Ky Kz]) the eigenvalues of the system (12) and the one
of the system (13).

Ẋp = Ap(δ0)Xp +BpU[
ya

zo

]
=CpoXp

(13)

Where: Cpo = [CT
p uT

o ]
T

The gains Ky and Kz allow the assignment of the eigenval-
ues λ1 and λ2 respectively. On the other hand, to ensure a
statistic error lower than 0.05%, we have added an integrator
on the signal yar− ya (recall that yar is the reference trajec-
tory). In this case, the matrix Kc is extended to Kc = [Ky Kz Ki]

and the control low becomes U = Ki
∫

ε−Kyya−Kzzo, where
ε = yar−ya. The gain Ki is used to assign a third eigenvalue.
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Fig. 7. Pole maps obtained during the iteration procedure: fist (a), second
(b) and third (c) iteration.

Let us now consider the variations of the parameter δ

in the set [δm δM ]. In this case, the separation principle
is no more satisfied ∀δ . To overcome this drawback, one
can modify the observer structure by choosing uo(δ ) =

toCp [πoI−Ap(δ )]−1 instead of uo. As such, the separation
principle is satisfied provided that the value of πo is different
from any eigenvalue of the matrix Ap(δ ). Afterward, we
proceed to a multi model eigenstructure assignment. For
that purpose, we increase the number of degree of freedom
by choosing a posteriori a gain scheduled output feedback
matrix Kc(δ ) by mean of a second order polynomial:

Kc(δ ) = Kc0 +Kc1δ +Kc2δ
2 (14)

Thus, we apply the following iterative procedure to take
into account the variation of δ :

Step 1: designing an output feedback controller with the
observer on a nominal model (called Gn) derived from (13)
using the eigenstructure assignment methodology. At this
step any frozen value of the varying parameter δ can be
used (this frozen value is designed as δn).

Step 2: proceeding to a closed loop multi-model analysis
of the pole map considering a finite number of operating

points in the set [δm δM ]. If the design is satisfactory for all
the selected operating points, then stop. Otherwise identify
the worst-case model (called Gwc), determine its critical triple
Γ∗i = (λ ∗i ,ν

∗
i ,ω

∗
i ) and continue with Step 3.

Step 3: improving the behavior of the worst-case model
Gwc by replacing Γi by Γ∗i respecting the specifications
while preserving the properties of all the models Gn,...,Gwc−1
treated before. Return to Step 2.

The synthesis of the controller is done with respect to the
couples (νi,ωi), i= 0, ...,nwc, where nwc is the number of worst
case models identified from the iterative procedure. Finally,
taking into account the structure (14), the controller Kc(δ ) is
given such as:

KT
c0

KT
c1

KT
c2


T

=


ω

T
0

...

ω
T
nwc


T  Cpo(δn)ν0 ... Cpo(δnwc)νnwc

δnCpo(δn)ν0 ... δnwcCpo(δnwc)νnwc

δ 2
n Cpo(δn)ν0 ... δ 2

nwc
Cpo(δnwc)νnwc

−1

(15)
To ensure the matrix inversion in (15) two solutions are

possible: performing a Moore Penrose pseudo inverse or
increasing the order of the polynomial (14) at each iteration
during the controller design.

For the controller synthesis, we have selected a set of
24 elementary models in the interval [Vin = 5V ...Vin = 120V ]

and 50 elementary models in the interval [Vin = 125V ...Vin =

185V ]. Each interval is divided equally and from Fig. 3a the
frozen value of δ related to each elementary model has been
defined. We have selected more models in [Vin = 125V ...Vin =

185V ] due to the rapid variations of the damping when the
position of the actuated arm tip exceeds 60µm (see Fig. 3c).
The selected nominal model corresponds to Vin = 5V . As a
result, three iterations have been required to satisfy desired
performances. Identified worst case models corresponds to
Vin = 55V and Vin = 150V . The pole map obtained at each
iteration is presented in Fig. 7.

The controller (14) is then deduced from (15) considering
the couples (νi,ωi) obtained at each iteration. Obtained
matrices Kc0, Kc1 and Kc2 have only 1 line and 3 columns
leading to a very simple controller structure.

V. SYSTEM SETUP AND CONTROL IMPLEMENTATION

The system setup is composed of: the FT-G100 microgrip-
per, the interferometer sensor, the dSPACE control board, an
amplifier and a vibration isolation table where the gripper
and the laser senor are fixed. Each controller is designed
using the Matlab/Simulink software and a real time imple-
mentation is performed using the dSPACE control board. The
displacements at the tip of the actuated arm, measured in real
time by the laser sensor, are used to schedule the controllers.
The root square output of the controllers is translated into
an analog signal to drive the electrostatic actuator.

To emphasis the importance of the proposed gain sched-
uled controllers, a LT I/H∞ controller is designed using the
model (4), for a frozen value of δ = δm, with the weighting
function of Fig. 5. Therefore, for each controller, 16 step
excitation references have been applied to the input of the



0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 c
on

tr
ol

le
d 

po
si

tio
n

(a)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 c
on

tr
ol

le
d 

po
si

tio
n

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 c
on

tr
ol

le
d 

po
si

tio
n

(c)

Fig. 8. Experimental step responses of the controlled microgripper at
different operating points (from 5µm to 90µm actuated arm tip displace-
ment). The black curve refer to the step response of the reference model
Td . Controllers are defined as: a) method 1, b) method 2, c) method 3

closed loop system. The amplitude of the step excitations
varies from 5µm to 90µm with a step of 5µm. Results of the
controlled displacements normalized to unity (divided by the
input reference) of the actuated arm tip in response to the
step excitations are presented in (8). We have referred to
method 1, method 2 and method 3, the LT I/H∞ controller,
the controller obtained by the descriptor model, and the
controller based on the iterative procedure respectively.

It is clear from Fig. 8 that the LT I/H∞ controller cannot
guarantee the required performances when performing large
displacements of the actuator. Performances are respected
over the operating range 5µm < δ < 90µm with the method
2 and the method 3. The latter allows obtaining the desired
response time, no overshoot is observed and the static error is
less than 0.05%. This demonstrated and justify the proposed
gain scheduled controllers w.r.t the parameter δ for the
control of the comb drive actuator for large displacements.

Some real time implementation constraints have been
encontourned for the controller based on the methods 2. Due
to the high order of the controller (two transfer functions with
a fourth order denominator), the sampling frequency of the
dSPACE control board had to be reduced to 15KHz for an
efficient implementation while with the very simple structure
of the controller based on method 3, the implementation
could be performed easily until 100KHz sampling frequency.
This demonstrates the interest of the method 3 for real time
implementations constraints. Such a requirement is more
and more needed for embedded applications in the field of
robotics micromanipulation. A solution to use the method
2 for embedded application is to reduce the order of the
controller. Nevertheless, controller reductions can lead to a
loss of performances.

VI. CONCLUSIONS

This paper has dealt with the gain scheduled control of
a nonlinear electrostatic microgripper. A nonlinear dynamic
model of the actuation mechanisms has been proposed and
main nonlinear parameters have been identified experimen-
tally. For control purposes, the nonlinear model is reformu-
lated into a polynomial LPV model. To deal with the partic-
ular structure of the LPV model, two gains scheduled control
strategies are proposed and experimental implementation
results are presented. The interest of the iterative procedure
for the control of comb drive actuators over large dis-
placements in embedded applications is demonstrated with
experimental arguments. The latter can achieve good results
relatively with the ones obtained using recent advances of
robust controllers based on LMIs conditions. Future works
will concern the implementation of the controller based on
the iterative procedure in micro-calculators such as FPGA.
Therefore, high control performances can be achieved during
a micromanipulation processes without the use of a high
performance controller board such as dSPACE.
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