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Distributed team formation in multi-agent systems:

stability and approximation

Lorenzo Coviello and Massimo Franceschetti

Abstract

We consider a scenario in which leaders are required to iteelams of followers. Each leader
cannot recruit all followers, but interaction is constedraccording to a bipartite network. The objective
for each leader is to reach a statelatal stability in which it controls a team whose size is equal to a
given constraint. We focus on distributed strategies, inctvlagents have only local information of the
network topology and propose a distributed algorithm inalilieaders and followers act according to
simple local rules. The performance of the algorithm is yred with respect to the convergence to a
stable solution

Our results are as follows. For any network, the proposedrithgn is shown to converge to an
approximatestable solution in polynomial time, namely the leaders kjyidorm teams in which the
total number of additional followers required to satisfy talhm size constraints is an arbitrarily small
fraction of the entire population. In contrast, for genegedphs there can be an exponential time gap

between convergence to an approximate solution and to & stalution.

|. INTRODUCTION

A multi-agent system (MAS) is composed of many interactinigliigent agents. Agents can
be software, robots, or humans, and the system is highlyilaistd, as agents do not have
a global view of the state and act autonomously of each offtezse systems can be used
to collectively solve problems that arefiiltult to solve by a single entity. Their application
ranges from robotics, to disaster response, social stes;tarowd-sourcing etc. A main feature

of MAS is that they can manifest self-organization as welbtdger complex control paradigms
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even when the individual strategies of the agents are varglsi In short, simple local interaction
can conspire to determine complex global behaviors. Exesnpf such emerging behaviors are
in economics and game theory, where local preferenceslatansto global equilbria [35], in
social sciences, where local exposure governs the spreahovation [41], and in control,
where local decision rules determine whether and how rgpidhsensus is reached [4], [28],
[29], [30], [36], [37].

From a practical perspective, the performance of a MAS oftepends on how quickly
convergence to a global, possibly approximate, solutiorashed and it is in general influenced
by the network structure. For example, in the context ofrimiation difusion in social networks,
the rate of convergence of the system’s dynamicgfecéed by the underlaying network and the
local interaction rules [21], [26].

One of the critical issues in multi-agent systems is co@tiom. Due to the autonomous
behavior of the agents and to the absence of a central clenfidordination must be distributed.
In the case of human agents, it is also important that theildliséd control algorithm is simple
enough to be suitable to model basic principles of humanbehf8]. Two prominent problems
related to consensus and coordination in multi-agent systare leader election and group
formation. In the former case, multiple agents elect a ledkat can then assign tasks [24],
while in the latter they divide themselves into teams in saclay that each agent knows to
what team it belongs [11]. In both cases agents are all equalcaordination occurs among
agents of a single class.

We consider a scenario in which there are agents of two daleselersandfollowers Each
leader must recruit a team of followers whose size is equa gven constraint, by sending
requests to the followers. Followers can only accept orctejeeoming leaders’ requests. While
multiple followers can be part of a leader’s team, each fedlocan be part of a single team at any
time, but is allowed to change team over time. Moreover, ddeaannot recruitll followers, but
can only recruit the followers it is in direct communicatiaith. The communication structure
between leaders and followers is captured by an arbitrgpprbie network, and we assume
that each agent has knowledge of and can interact with itghbers only. That is, agents only
have local knowledge of the underlying network. In genetta, communication constraints of
the population (and therefore the structure of the bigarigtwork) can be dictated by physical

constraints (as for example antenna visibility range onaigo noise ratio threshold), social
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Fig. 1. Example of a bipartite network between leaders afidWers determined by physical constraints. Left: eacluéea
can only recruit the followers in its visibility range (dett circle), arrows represent team membership, and the satr@fs
defines a partition of the followers into teams.

Right: the resulting bipartite network. An edge betweerdée# and follower f exists if and only iff is in ¢'s visibility range.

Matching edges define team membership and are highlighted.

context, and so on. A pictorial representation of a bipartietwork arising from physical
constraints is given in Figuig 1.

We consider a notion of stability in which each agent costateam of adequate size. Each
leader has an incentive to reatdcal stability (that is, to build a team of followers of the
right size) by dynamically interacting with its neighbofhe question we aim to answer is:
can simple local rules lead to stable, @oseto stable, team formation in reasonable time? By
“close to stable” we mean that the total number of additidofibwers required to satisfy all
team size constraints is an arbitrary small fraction of thigre population. We propose a simple,
distributed, memoryless algorithm in which leaders do mohmunicate between each other, and
we show that, in any network of size any constant approximation of a stable outcome (or of
a suitably definedestoutcome if a stable one does not exist) is reached in timenpohyal
in n with high probability. In contrast, for general graphs wewhhrough a counterexample
that there can be an exponential gap between the time neededdh stability and that needed
to reach approximate stability, that is, to find thestsolution compared to good solution.
We remark that, in its simplicity, the proposed algorithrrsigtable to model human agents, it

can be programmed on simple robots with limited computagibitities, and it is amenable to
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analysis.

The rest of the paper is organized as follows. After discugs$iow our work relates to the
existing literature, in Section]ll we formally define the plem and the notions of stability
and approximate stability, in Sectionllll we present thetritisted algorithm for leaders and
followers, in Sections IV and ]V we present our technical ltsson the algorithm’s performance,
and in Section VI we further discuss the algorithm’s perfante by showing some simulations’
results. To prove our result on the convergence to apprdirstability, we derive a technical
lemma (Lemmall) that relates the quality of a matching to #istence of particular paths (that
we call deficit-decreasingpaths) of given length. The lemma extends a known combii@tor
result by Hopcroft and Karp [15] to the setup of many-to-oretching, and can be considered

to be of independent interest.

A. Related work

The problem of team formation that we consider is an exampléigtributed many-to-
one matching in bipartite networks![2], [14], [34]. The otweene case has been previously
studied in the context of theoretical computer science [33]. In the control literature, our
work is related to the distributed assignment problem angrtmp formation in MAS. In this
framework, Moore and Passino [27] proposed a variant of thtilouted auction algorithm for
the assignment of mobile agents to tasks. Cenedese ét girdppsed a variant of the Stable
Marriage algorithm[12] to solve the distributed task assignt problem. Abdallah and Lesser [1]
proposed an “almost” distributed algorithm for coaliticrrhation, allowing for a special agent
with the role of “manager”. Gatson and den Jardins [13] stddi scenario of group formation
where agents can adapt to the network structure. Tosic ardh AB0] proposed an algorithm
for group formation based on the distributed computatiomakimal cliques in the underlying
network. Further work studied team formation in multi-rolsystems|([40], in the case where
communication between agents is not allowed [3]. Otherasthonsidered MAS composed by
leaders and followers. To cite a few, Tanner![38] derived @essary and sticient condition for
a group of interconnected agents to be controllable by ortbesh acting as a leader; Rahmani
et al. [33] studied the controlled agreement problem in pét& in which certain agents have
leader roles, translating graph-theoretic properties auntrol-theoretic properties; Pasqualetti

et al. [31] analyzed the problem of driving a group of mobiigiats, represented by a network
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of leaders and followers, in which follower act accordingatgimple consensus rule.

We distinguish ourselves from all mentioned papers, as weqse a fully distributed algorithm
for group formation on arbitrary networks in which agents$ according to simple local rules
and perform very limited computation, and we derive perfamce guarantees in the form of
theorems. For an exhaustive overview on distributed algms in multi-agent systems, the
interested reader is referred to the books by Lynch [24] anBuWilo et al. [5] and the references
therein, while the survey by Horling and Lesser![16]eos an overview on three decades of
research on organizational paradigms as team and codidraration.

A more recent line of research aims to study how humans coedever a network solve tasks
in a distributed fashiori [8]/[10][[17]/ [19], [20], [25]nlthe work of Kearns et al. [20], human
subjects positioned at the vertices of a virtual networkenginown to be able to collectively
reach a coloring of the network, given only local informatiabout their neighbors. Similar
papers further investigated human coordination in the adseoloring [10], [17], [25] and
consensus [17]/119], with the main goal of characteriziogvtperformance is féected by the
network’s structure. Using experimental data of maximuntamag games performed by human
subjects in a laboratory setting, Coviello et al. [8] propds simple algorithmic model of human
coordination that allows complexity analysis and predicti

Finally, related to our work is also the research on socigharge networks [7]/[22], that
considers a networked scenario in which each edge is agstd@ an economic value, nodes
have to come to an agreement on how to share these valuesaamdgent can only finalize
a single mutual exchange with a single neighbor. Recentbndfia et al.[[18] proposed a
distributed algorithm that reaches approximate stabilitjinear time. However, we consider a

different setup since we allow leaders to build teams of mulfgdlewers.

Il. PROBLEM FORMULATION

We consider a population composed of agents of twiedint classes: leaders and followers.
Each leader is required to recruit a team of followers whase is equal to a given constraint,
by sending requests to the followers. Followers can onlgjpicor reject leaders’ requests. While
multiple followers can be in a leader’s team, each followaar be part of a single team at a time,
but is allowed to change team over time. A leader is not altbteerecruitall followers, but can

only recruit the followers it is in direct communication WitThe communication constraints of
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the population are captured by a bipartite netw@rk (LUF, E) whose nodes’ partition is given
by the setL of leaders and the sét of followers, and where there exists an eddef) € E
between followerf and leader if and only if f and¢ can communicate between each other
(see Figuré]l). LeN, = {f € F : (f,¢) € E} be the neighborhood of € L. For eacht € L,
leader? is required to recruit a team af followers, wherec, > 1.

Definition 1 (Matching):A subsetM C E is a matching ofG if for each f € F there exists
at most a singlé € L such that {, f) € M.

The definition of matching is consistent with the fact thatltiple followers can be part of a
leader’'s team. There is a one-to-one correspondence hetwatchingsM of G and tuples of
teams{T,(M) : ¢ € L}, whereT,(M) denotes the team of leadérunder the matchindgi. We
have thatT,(M) = {f € F : (¢, f) € M} C N, for every matchingM. We consider the following
notion of stability.

Definition 2 (Stable matching)Given constraints, for each¢ € L, a matchingM of G is
stable if and only ifiT,(M)| = ¢, for all £ € L.

Depending on the constraintg a networkG might not admit a stable matching. Nonetheless,
given a matching o5, we are interested in assessingqtsality. Our main result builds on the
following definitions ofdeficit of a leader and deficit of a matching.

Definition 3 (Deficit of a leader)Let ¢ be a leader with constraird, > 1, and M be a

matching ofG. The deficit of¢ under the matchingv is
d,/(M) = ¢, = [T,(M)|.

Definition 4 (Deficit of a matching)Given constraintg, > 1 for each¢ € L, the deficit of a

matchingM of G is
d(M) = > de(M) = > (ce = [Te(M)]).

el el
In words, d,(M) is the number of additional followers leadérneeds to satisfy its size

constraint. Similarlyd(M) sums the numbers of additional followers each leader ntesdatisfy
its size constraint. Given a matchirlg, we say that a leadef is poor if d,(M) > 0 (that is,
IT,(M)| < c,) andstableif |T,(M)| = ¢,. In this work, we do not consider the case/B{M)| > ¢,
since we assume that each leadarever recruits more thagy followers simultaneously. This

can be justified by the fact that recruiting additional falers might be costly.
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Observe that only poor leaders contributel(), and thatM is stable if and only id(M) = 0.
GivenG, two matchings ofs can be compared with respect to their deficit, and the besthimeas
of G can be defined as one minimizing the deficit.

Definition 5 (Best matching)A matchingM of G is a best matching o& if d(M) < d(M’)
for every matchingM’ of G.

Observe that a stable matching is also a best matching. Mered G admits a stable
matching,d(M) quantifies how muchM differs from a stable matching @. In general, if
M* is a best matching o& with d(M*) = d*, then,d(M) — d* tells how muchM differs from a
best matching of5. Given a matchingV of G, the following definition provides a measure of
how well M approximates a best matching Gf

Definition 6 (Approximate best matchingfix ¢ € [0, 1], and letm be the number of followers
in G. Let M* be a best matching @&. Then, a matching/ is a (1-¢&)-approximate best matching
of G if d(M) — d(M*) < em.

When G admits a stable matching, we are interested in the notionppfoximate stable
matching.

Definition 7 (Approximate stable matching)et G admit a stable matching. Fix € [0, 1],
and letm be the number of followers 6. Then, a matchingV is a (1- ¢)-approximate stable

matching ofG if d(M) < em.

[1l. THE ALGORITHM

We now present a distributed algorithm for team formatiomd'is divided into rounds, and
each round is composed by two stages. In the first stage, eackerl acts according to the
algorithm in Table 11, and in the second stage each followtr according to the algorithm in
Table[2.

First consider a leadet, and letM be the matching at the beginning of a given round. i$
poor (that is|T,(M)| < ¢,) and|T,(M)| < IN,| (that is,¢ is not already matched with all followers
in N;) then, with probabilityp (where p € (0,1] is a fixed constant)/ attempts to recruit an
additional follower, chosen as explained below, by sendimgatching requestAn unmatched
follower in N, if any, is chosen uniformly at random; otherwise, a followe N,\T,(M) is

chosen uniformly at random. In other words, leaders alwag$ep to recruit followers that are
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currently unmatched over matched ones. Note that a leadsrttr recruit an additional follower
after checking iflocal stability holds (that is, after checking if its team size is equatfp
Consider now a followef. During each round, if has incoming requests then each request is
rejected independently of the others with probability 4 (whereq € (0, 1] is a fixed constant).
If all incoming requests are rejected, théndoes not change team (if currently matched) or
it remains unmatched (if currently unmatched). Otherwm®g among the active requests is
chosen uniformly at randomf, joins the corresponding leader, and all the other requests a
discarded. For ease of presentation, we assume that a éoliewequally likely to join a team
when unmatched and to change team when currently matchédllbour results hold if we
consider diferent values of] for matched and unmatched followers (and even if we consder

different value ofq for each follower, as long as each value is a constant).

Table 1 Algorithm for leaderf € L
if |T,(M)| < min{c,., |N,|} then

with probability p do the following

if 3 unmatchedf € N, then
choose an unmatched followdf € N, u.a.r.
else
choose a followerf” € N/\T,(M) u.a.r.
end if
send a matching request fo

end if

The proposed algorithm enjoys several properties. It is argless, the actions of each agent
only depend on local information, and the leaders do not comaoate between each other. Also,
it is self-stabilizing that is, once a stable matching is reached, leaders stapitneg followers.
Moreover, it is a single-stage algorithm, that is, agentenehange their behavior until stability

is reached. Finally, observe that the exchanged messagdsecaepresented by a single bit.

IV. CONVERGENCE TO APPROXIMATE STABLE MATCHINGS

In this section, we only consider networks admitting stabéchings, and we show that, given

any network and any constante (0,1), a (1- &)-approximate stable matching is reached in a
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Table 2 Algorithm for follower f € F
if f has incoming requestsien

for each leadef requestingf do
with probability 1- g reject{’s request

end for

if there are active requedtisen
select one u.a.r. and join the corresponding team
reject all other requests

end if

end if

number of rounds that is polynomial in the network size wiitphhprobability. The assumption
that a stable matching exists is for ease of presentatiahathour results also hold for reaching
approximate best matchings, by replacdi{®) with d(M)-d(M*), whereM* is a best matching

of G.

Given a networlG, for everyt > 0, let M(t) be the matching o6 at the beginning of round
t, with deficit d(M(t)). The next property follows from the fact that leaders da vauntarily
disengage from the followers in their teams (and therefbeedeficit of a leader increases of a
unit only if the deficit of another leader decreases by oné).uni

Property 1: Fort > 0, d(M(t)) is non-increasing in.

The next property follows from the assumption> 1, V¢.

Property 2: If G admits a stable matching, theiiM(t)) < m for everyt > 0.

We are now ready to state our main result.

Theorem 1:Let G be a network withm followers and which admits a stable matching. Let
A = maxc_ [N;| be the maximum degree of the leaders. Fix@ < 1, and letc > 1 + @
Then, a (1- &)-approximate stable matching &f is reached withirc|1/&](A/pd)-¢'m rounds
of the algorithm with probability at least 4 e c™*/2,

Example 1:If A is constant in the network size, then one can chaose 1/logm, and
Theorem[ll implies that a (2 1/ logm)-approximate stable matching is reached in at most
O(m?logm) rounds with probability that goes to one @s— .

To prove Theorenill, we introduce the notion d#ficit-decreasingpath, that in our setup
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Fig. 2. A deficit-decreasing path of length 5 is representethe top of the figure?, is a poor leaderf; is an unmatched
follower, and matching edges are highlighted. The path @gdv&d” by turning each matched edge into an unmatched edde an
vice versa, as show at the bottom of the figuigobtains an additional follower (and therefore its deficitases by a unit)

and both¢; and ¢, do not change their numbers of followers.

plays the same role as the augmenting path in the contextesfaone matching [9]. Since we
consider bipartite networks, a path alternates leaderddlmvers.

Definition 8 (Deficit-decreasing path)Given a matchingM of G, a cycle-free pathP =
lo, 1,01, ..., fx (of odd length 2k-1) is a deficit-decreasing path relativeMoif (¢, f) € M
forall 1<i<k-1, ¢ is a poor leader, and is an unmatched follower.

In words, a deficit-decreasing path starts at a poor lead#r an edge not inVl, ends at
a follower that is not matched, and alternates edge®sliand edges not iM. To justify the
nomenclature, observe that,d{M) > 0 andP is a deficit-decreasing path relative kb, a new
matchingM’ such thatd(M’) = d(M) — 1 can be obtained by flipping each unmatched edge of
P into a matched edge, and vice versa. This is depicted inFig. 2

The proof of Theorerl1 builds on a technical lemma that, gaveratchingM with d(M) > em,
guarantees the existence of a deficit-decreasing path gfilext most 21/¢]. The existence of
such a path allows us to bound the number of rounds needed doe-ainit reduction of the
deficit. Our technical lemma extends a known result by Hopaod Karp [15, Theorem 1]
given in the context of one-to-one matching, but our prooh@e subtle because leaders can be
matched to multiple followers and can havéelient size constraints. The symmetric dference
of two setsA andB is defined aA@ B = (A\B) U (B\A). Two paths ardollower-disjointif they
do not share any follower (even though they might share seadek).

Lemma 1:Let G admit a stable matchinly. Let M be a matching o6 with deficitd(M) > 0.
Then, inM @ N there are at least(M) follower-disjoint deficit-decreasing paths relative b
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Proof: See Appendix’A. u
We make use of Lemmid 1 through the following corollary.
Corollary 1: Let G be a network withm followers, admitting a stable matching. Let M
be a matching ofs with deficit d(M) > em, for somee > 0. Then, iInM @& N there exists a
deficit-decreasing path relative i of length at most P/ — 1.

Proof: By Lemmall, ifd(M) > emandN is a stable matching d&, then inM &N we can
chooseem follower-disjoint deficit-decreasing paths relative My whose cumulative length is
at most 2n (since they do not share followers agdis bipartite). Necessarily, one of them has
length at most P1/e] — 1 (note that a deficit-decreasing path has odd length). [ ]

We are now ready to present the proof of Theofém 1.

A. Proof of Theorerhll

Let G be a network withm followers and which admits a stable matching. Fix @ < 1. For

t > 0, M(t) denotes the matching at the beginning of roanBor every O< x < 1, let
7(x) = minf{t > 0 : d(M(t)) < xm|

be the first round at whose beginning the deficit is stricthalen thanxm We are interested
in boundingz(g).

Consider any round > 0. By Property 2d(M(t)) < m, and therefore there exists<0e’ < 1
such thatd(M(t)) = ¢m (we assume’ > 0, since the case af = 0 is trivial). The following
lemma bounds the number of rount(g’) —t needed for a one-unit reduction of the deficit. Let
A = max_ |N,| be the maximum degree of the leadersGn

Lemma 2:Let d(M(t)) = &m for some O< &’ < 1. Then

Pr(T(s’) -t< Ll/s'J) > (%1)L1/6,J )

Proof: Let h(t) > 1 be the odd length of the shortest deficit-decreasing pétive to M(t).
By Corollary[1,h(t) < 2[1/¢’'] — 1. We distinguish the cases bft) = 1 andh(t) > 3.
First considem(t) = 1. With probability at leasipg/A the deficit decreases by at least one
unit during the next round of the algorithm. Too see this,sider a deficit-decreasing pathf.
With probability at leasp/A, ¢ attempts to recruif and, conditional on this event, considers

{'s proposal with probabilityg, resulting in the lower boungqg/A.
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Now considerh(t) > 3, and letP be a shortest deficit-decreasing path of lengft) ending
at an unmatched followef. By the same argument as above, the lengtP afecreases by one
during the next round with probability at legst)/A (observe that, as long &ft) > 1, f remains
unmatched during rountisinceP is a deficit decreasing path of shortest length).

By independence of successive rounds of the algorithm amtabindh(t) < 2|1/¢] -1, with
probability at least§q/A)Y¢7, a sequence dfl/e’] -1 rounds reduces the length Bfto 1 and
then in one additional roun& gets “solved” and the deficit decreases by one unit. [ |

Consider consecutive phases |dfe]| rounds each. For phasés= 0,1,2,..., let X; be iid
Bernoulli random variables with PX( = 1) = (pg/A)Y¢). By Lemmal2, afteiT phases (i.e., at
the beginning of round* = T|1/¢]), the deficit of the matching is upper bounded by

d(M(t")) < max{sm, m+1-— ZTl Xi},
i=1

since by Property12 the matching at the beginning of round 9 deficit d(M(0)) < m. By
independence of the phases, a Chérbound implies that for any @ 6§ < 1
T
Pr( > X < (1-0)T(po/a)e!) < g T2,
i=1
Settings = ¢ and T = cm(A/pg)t¥/#! (wherec is a constant to be specified later), the deficit

of the matching at the beginning of routid= [1/¢Jcm(A/pg)!Y#! is upper bounded by
d(M(t")) < maxfemm+ 1 — (1 - &)cm}

with probability at least + e°™*/2. To conclude the proof of the theorem we need #mat>

m+ 1 - (1 - &)cm which is true for anyc > 1 + m

V. EXPONENTIAL CONVERGENCE

TheorenL gives a polynomial bound for reaching a €)-approximate stable matching for
any constant & € < 1 and any network. However, a similar guarantee cannot beedefor the
case of a stable matching, as shown in this section througiuaterexample. In particular, we
define a sequence of networks of increasing size and maxinagred that diverges with the
network size, and show that the number of rounds requiredbtwerge from an approximate

matchingM with d(M) = 1 to the stable matching (that is, to reduce the deficit of glsinnit)
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is exponentially large in the network’s size with high prbli#y from an overwhelming fraction
of the approximate matchindd such thatd(M) = 1.

Forn > 1, let G, = (L, U F,, E,) be the network withn leaders andh followers (i.e.,
Lo ={{1,.... 6} andF, = {fq, ..., f}), with edgesE, = {(¢, fj)) : L <i < n, j <i}, and team size
constraintsc, = 1 for all ¢ € L,,, see Figuré]3G, has maximum degree and a unique stable
matching given byM; = {(¢, f) : 1 <i <n}.

fi
b f2
b 7 13
I fa
fs

15/

ls—Js

Fig. 3. The networkG, for n = 6. The matching\;, is highlighted.

Theorem 2:For any matchingM of Gy, let (M) denote the number of rounds to converge
to the perfect matching when starting fravih. Then, for any fixed constant9y < 1, (M) is
exponentially large iryn with high probability for a - O(n2-&"") fraction of all the matchings
M such thatd(M) = 1.

Here we only provide a sketch of the proof, whose details aesgmted in AppendixIB. To

get an understanding of the algorithm’s dynamics, condidematching
M; = {(4, fii) 1 2<i<n},

highlighted in Figure 13 for the case of = 6. Observe thatd(M;) = 1 and, underM;, ¢; is
poor, and the remaining leaders are stable. According taalerithm, £; attempts to recruit

fy (currently iné,’s team). If f; accepts, thed; becomes stable anfy becomes poor (and can
in turn attempt to recruit eithef; or f;). After each round, there exists a unique poor leader
until the stable matching is reached. The stable matchimgashed whe,_; (¢5 in Figure[3)
becomes poor and then successfully recrdiits (fs in Figure[3), and finally¢, successfully

recruits f, (recall that leaders prefer unmatched followers).
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In general, fix any matchingd of G, such thatd(M) = 1. In M, there is a single poor
leader¢;, and a single unmatched followdy,. M is associated to a unique deficit-decreasing
path &, fi,, ..., Gy fics Gics fic. We define theheight {M) of M as follows. If K > 1 then
h(M) = ix_1, if K =0 thenh(M) = 0.

Starting fromM, for everyt < (M), the matchingVi(t) at the beginning of rountihas deficit
d(M(t)) = 1 (by Property 11), a single poor leader denoted/lpy the single unmatched follower
fi, and heighth(M(t)) = h(M) = ik_;. The stochastic proceggt)} tracking the position of the
poor leadert;; is not a classical random walk dd, ..., ¢, } and its transition probabilities at
each round depend on the current matching. The time to reathlity is upper bounded by
min{t : i(t) = h(M)}, that is, the first round in whicld,) becomes poor (sincé,y can then
match with fyy leaving ¢, poor, who would in turn match with the unmatched followfgr,
thus reaching the stable matching).

We prove a one-to-one correspondence between the matcM(igsreachable fromM in
which i(t) < h(M) (note thatd(M(t)) = 1 for each of them) and the nodes of a tree whose
size is exponentially large in the heigh{M). In particular, we can show that the process
{M(t) : t > 0,M(0) = M} is equivalent to a classical random walk on the nodes of tbe, tr
and that reaching the matching witft) = h(M) corresponds to reaching the root of the tree.
A random walk starting at any node of the tree visits the rdtdrea number of steps that is
exponentially large in the heiglm(M) with high probability. Finally, the proof of Theorem 2 is
completed by arguing that, for any constant @ < 1, a 1-O(n2-4-)") fraction of all matchings
M of G, such thatd(M) = 1 have heighh(M) > yn.

V1. SIMULATIONS

In this section, the performance of our algorithm is furtbealuated through simulation. In
Figure[4, the algorithm’s average convergence time on thaeswe of networkss,, defined in
SectionlY is shown (in logarithmic scale). On the one hand,ttiick solid line suggests that
the average number of rounds to reach.@&pproximate stable matching is upper bounded by
a polynomial of small degree, consistently with Theofgm f.te other hand, convergence to
the stable matching requires an average number of rountigtbas exponentially im (thin
solid line), as predicted by Theorem 2. Moreover, the doliteel represents the average time

after which all followers become matched, that grows slowith n.

DRAFT



15

Stable matching — |
0.9-approximation=—
Followers matched |

Rounds (log-scale)

L L L L L L L I
10 20 a0 40 50 G0 70 -] a0 100

Fig. 4. Algorithm’s convergence time on the sequence of agke/G,,.

Figure[5 shows the algorithm’s performance in reaching essigely finer approximations of
the best matching on random netwoK&, m, p). Here,G(n, m, p) refers to a random bipartite
network withn leaders anan followers, in which each edge exists independently of thesist
with probability p (we fixedp = 0.04), and with constraint, = min{m/n, |[N,|} for each leader
¢ . For each of ther;m) pairs that we considered, 20 randd@in, m, p) were generated, and
the algorithm was run 20 times on each. We observe that, stensly with Theoreni17(g)
increases both when decreases (i.e., when a finer approximation is desired) amehvihe
numberm of followers increases. The plot visually suggests that adgsolution is reached

quickly, while most of the time is spent in the attempt of ilyng it to the best solution.

VIl. Discussion

The distributed algorithm we proposed, in which leadersfaiidwers act according to simple
local rules, is computationally tractable and allows us ¢oivé@ performance guarantees in the
form of theorems. Despite its simplicity, the algorithm tsoe/n to reach an arbitrarily close
approximation of a stable matching (or of a best matching)dlynomial time in any network.
However, in general there can be an exponential gap betvesmming an approximate solution
and a stable solution.

In the proposed algorithm, leaders do not communicate lestveach other, and only act in

response to their own status and the status of their neigbbds. The only collaboration between
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Fig. 5. Algorithm’s average time to reach a-<{lk)-approximate best matching on random bipartite netw@ks m, p), for
p = 0.04.

them consists in the fact that the leaders whose size cantstiare satisfied do not attempt to
recruit additional matched followers, and this is justif@dce recruiting more followers might
be costly. How communication between leaddfea@s performance is an open question, as well
as determining what amounts of communication and compiexi¢ necessary to remove the
exponential gap in the case of unbounded degree networks.

Finally, in SectiorL YV, we defined a sequence of networks inctvihe maximum degree of
the leaders scales linearly with the network size. It wowddrieresting to understand whether
a counterexample in which the maximum degree scales momdysle.g., logarithmically in the
network size) could be derived.

APPENDIX
A. ProoF oF LEmMMA

Given the matchingM and the stable matching, for brevity we write deficit-decreasing path
instead of deficit-decreasing path M N relative toM. Similarly, by telling that leadef and
follower f are matched we mean that ) € M, unless otherwise specified.

We prove a stronger claim than the one stated in the lemmageding as follows. First, we

show that for each leadémwith deficitd,(M) > 0 there are at leask(M) follower-disjoint deficit-
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- o — dye(M)

Te—n @Y

Fig. 6. A leader with constraintc,, degreeN,| > ¢, and deficitd,(M). Matched edges are highlightelis matched to exactly
¢, — d,(M) followers (depicted on the right). Among the otHer d,(M) followers in N;, h < k of them are the first followers
on h follower-disjoint deficit-decreasing paths startingfathese paths are denoted By, ..., Py), and none of the remaining
k — h (denoted byfy,..., fiun ) is the first follower of a deficit-decreasing paths startiaid.

decreasing paths starting@atThen, we argue that(M) follower-disjoint deficit-decreasing paths
can be choserg,(M) of which start at each leadérwith deficit d,(M) > O.

Consider a leadef with d,(M) > 0. Assume by contradiction that there are strictly less then
d.(M) follower-disjoint deficit-decreasing paths startingfaand refer to Figll6 for a schematic
representation.

Sincef has a team size constramt> 0, there are exactly,—d,(M) followers that are matched
to ¢. Observe that no follower matched £acan be the first follower of a deficit-decreasing path
starting at¢, since a deficit-decreasing path starts with an edgs\ikl.

Since G admits a stable matching, the neighborhddgdof ¢ has sizelN,| > c,. Therefore,
there are ar& > d,(M) followers in N, that are not matched t Assume thah < d,(M) of the
followers in N, are the first followers oh follower-disjoint deficit-decreasing paths starting at
¢ (these paths are denoted By, ..., P, in Figure[6). Denote the remainirdg- h > 0 followers
by fi,..., fiun, and assume by contradiction that none among them is thefditetver of a
deficit-decreasing path starting at(this is equivalent to assuming that there are strictly less
thand,(M) follower-disjoint deficit-decreasing paths startingfat

Observe that, in order to become stalfleeeds to match with at least one additional follower
among( fy, ..., fi_n}. We show that, under the assumption above, a one-unit ieduntthe deficit

of £ would eventually result in a one-unit increase of the de@tianother leader, implying that
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Fig. 7. If f” is not matched thed, f’, ¢, f” would be a deficit-decreasing path (shown at the top of thedigim which
matching edges are highlighted), contradicting the assiomphat no follower in{fy,..., fien) can be the first follower of a
deficit-decreasing path starting &t Therefore,f” is matched to a leadet’ (the bottom of the figure represents the case of
L#0").

G does not admit a stable matching, generating a contradictio
Consider any followerf’ € {fy, ..., fi_n}, and observe that’ is matched inM since otherwise
¢’ would be a deficit-decreasing path startingfat.et ¢’ be the leader such thaf’ (f’) € M,
and observe that  is matched to all followers itN, then¢ cannot match td’ without causing
a one-unit increase of the deficit 6f Therefore assume that W, there is a followerf” such
that ¢, f’) € M for some leadef” # ¢ (f” is matched inM since otherwisé, f’, ¢, f” would
be a deficit-decreasing path startingfasee Fig[l7). In the following two caséscannot match
to f/ without eventually increasing the deficit of another leader
(i) ¢ = ¢. In this caset, f’, ¢, f”,¢ is a cycle, and if¢ matches tof’ then the deficit of a
leader in the cycle must increase of one unit.
(i) ¢” # ¢ and¢” is matched to all followers iMN,. other thanf’. In this case iff matches to
f’ then the deficit of a leader on the pathf’, ¢, f”, ¢ must eventually increase by a unit.
Therefore assume that N, there is a followerf”” such that {”, f””) € M for some leader
¢ + ¢ (again, f”” is matched inM since otherwise, f/, ¢, t”,¢”, 7 would be a deficit-
decreasing path). Agaifi,cannot match td’ without eventually increasing the deficit of another
leader if eithert”” = ¢ or ¢ = ¢’ (each similar to the case (i) above), o#if is matched to all
followers in N,» other thanf’, f” (similar to the case (ii) above).
By iteration, it follows that cannot match to any followdr € {f,, ..., f_,} without eventually
increasing the deficit of another leader, in contradictigtin\the existence of the stable matching

N. Hence, there are at leadt(M) follower-disjoint deficit-decreasing paths startingfat
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b fi b1 fa Y ¢
: |
7S bt o fa

Fig. 8. Given the matching at the top of the figure (matchingesdare highlighted), assume that bérand ¢, are poor, and
that f3 is unmatched. The deficit-decreasing pakhs (o, f1, {1, f2, €2, f3 and P’ = £y, f1, €1, f, are not follower-disjoint. IfP’ is

solved (shown at the bottom of the figure), thHers not solved, and vice versa.

To complete the proof of the lemma, we show that we can cho¢sB follower-disjoint
deficit-decreasing pathd,(M) of which start at each leadérwith d,(M) > 0.

We proceed by contradiction, and make the following assionpt.et# be any set ofl(M)
deficit-decreasing paths,(M) of which start at each leadérwith d,(M) > O (denote byP,
the elements of? starting at¢); then, there are two leadefs ¢ such that two path® € #,,
P’ € P, are not follower-disjoint. In order to reach the stable rhatg N starting fromM, a set
of d(M) deficit-decreasing paths must be solved. Howeve®,ig solved (by “flipping” matched
edges into unmatched edges, and vice versa) Bien not solved, and i’ is solved thenP
is not solved (see Figurés 8 and 9 for a schematic repregemtalf follows that N cannot be
reached fromM by solving thed(M) deficit-decreasing paths iA.

The last argument holds for any choice Bf and this generates a contradiction on the
reachability ofN starting fromM (observe thalN can be reached frorv in finite time, e.g. by
a cat-and-mouse argument on the space of all the matchin@s éfence, we can choos{M)
follower-disjoint deficit-decreasing pathd,(M) of which start at each leadérwith d,(M) > O,

and the lemma is proven.

B. ProoF OF THEOREM

Let M, be the set of all the matchings Gf, such thatd(M) = 1. We proceed as follows. First,
we show that eacM € M, is uniquely identified by the set of the leaders that are ndtheal
with “horizontal” edges (that is, leadefs such that {, f)) ¢ M). Second, we define treés,,

m > 1 such that a random walk OFy;, starting at any node fierent than the root hits the root
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Fig. 9. If, under the matching highlighted in the figure, bdtland ¢’ are poor andf; is unmatched then there are two
deficit-decreasing paths that are not follower-disjoimestarting at ad ending atf;, the other starting at’ ad ending atf;).

If one of them is solved then the other is not solved, and viaesa,

after a number of steps that is exponentially largaminvith high probability. Third, for each
matchingM € M, we define a quantityh(M) that we call theheightof M and we argue that,
when initialized atM, the algorithm’s dynamics is equivalent to a random WalkhmtreeT;(M)
and reaching the stable matching@&f corresponds to reaching the root'b;f(M) (and therefore
it requires a number of rounds that is exponentially largle(M) with high probability). Finally,
by a counting argument, we show that for any constaat)o< 1 a 1— O(n2-&=") fraction of

all the matchings inM, have height at leastn, completing the proof of the theorem.

A. Properties of the matchings im,.

Matchings in M, enjoy the following structural properties.
Lemma 3:Let M € M,. The following properties hold.
(1) There are a single poor leadgy) and a single unmatched followéf gy in M.
(2) 1<i*(M) < j* (M) <n.
(3) (¢k, fx) € M for all k < i*(M) and allk > j*(M).
(4) Let (M) ={jo, j1...., Jx} be the sorted set of indexgssuch that {;, f;) ¢ M. Then
(@) ji=i"(M) and jk = j*(M).
(b) (... f) e M forall ke {0,...,K-1}.
Proof: Property (1). Sinc&(M) = >, d,(M) =1, there is a single poor lead&ry in M.
Sincec, = 1 for all £ € L, each leadeft # ;- is matched to a single follower. It follows that

there is a uniqgue unmatched follow&r).
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Property (2). Suppose by contradiction tiigM) > j*(M). SinceN;,.,, = {fs,..., f-n} and
fi«ovy is unmatched, leadeft-(v) is matched to one of the followers i, ..., fjw)-1}. Hence,
the j*(M)-1 leaderds, ..., {j-m)-1 are matched to at mogt(M)—-2 out of thej*(M)—1 followers
fi,..., fjw)-1, and one of them is necessarily poor, contradicting Prgggjt Thereforej*(M) <
i"(M).

Property (3). We proceed by inductionii{M) > 1, then (4, f;) € M sinceN,, = {fi} and{; is
matched with a follower. Assume thatii{M) > j then ¢, fy) € M for all k < j. If i*(M) > j+1,
then, by the inductive assumptiofy,; can only be matched té;,; sinceN,,, = {fi,..., fj1}.
This shows that4, fy) € M for all k < i*(M). If j*(M) < n then ¢,, f,) € M since f, is matched
and¢, is the only leader connected fg. Assume by induction that if' (M) < j then ¢, fk) e M
for all k> j. If j*(M) < j -1, then, by the inductive assumptiof),; can only be matched to
;-1 since f;_; is adjacent tcfj_4, ..., {n. This shows that&, fy) € M for all k > j*(M).

Property (4). IfK = 0 thenM = {(4, f;) : i # i*(M)}, j*(M) = i*(M), and properties (4a) and
(4b) trivially hold. Now consideK > 1. Let 7(M) = {jo, j1,- .-, Jx} be the sorted set of indexes
J such that {;, f;) ¢ M. By property (3), we have tha = i*(M) and jx = j*(M), therefore
property (4a) follows. Hence/, f;,) € M since ¢, fx) € M for all ke {j: +1,...,j2— 1} by
definition of 7(M), andN,,, = {fy, ..., f,}. Property (4b) follows by induction. [ |

Lemmal3 states that non-horizontal matching edges do netsiatt. In particular, given a
matchingM € M,, the setZ (M) represents the set of (the sorted indexes of) the leadatrsite
not matched with horizontal edges (see Fidure 10 for an el for i*(M) = minZ (M) is
the unique unmatched leader, afg for j*(M) = maxZ (M) is the unique unmatched follower.
Recall thatM; = {({, fi) : 1 < k < n} is the unique stable matching &, and let7(M;) = 0.
Lemmal3 implies that every matchirlg € M, U {M*n} is uniquely identified by the sef(M).

In particular, the following result holds.

Lemma 4:Consider the mapping(-) from M,U{M:} to S = {A: AcC{1,...,n}} defined by
M — I(M). ThenI(:) is a bijection.

Proof: The stable matchind/’ is associated td’(M;) = 0. The mappingZ () is injective
since ifM, M’ € M, andM # M’ thenZ (M) # 7(M’). To see thaf (-) is surjective, fixk < n-1

andA = {ig,i1,...,ik} €S such that I<ipg < iy < ... < ik < n. The matchingM € M, such that
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lG_G

Fig. 10. An example of a matchinyl of Gg with d(M) = 1. M is uniquely determined by the s&(M) = {2,4, 6}, that
encodes the following?, is not matched/, is matched withf,, £ is matched withf,, fg is not matched. Also note that

P(M) = ¢,, T2, €4, T4, Cs, fs is the unique deficit-decreasing path relativeMo

I(M) = Ais given by
M ={(l., i) :0<k<K-1}U{(b, f) : k¢ A} € M.

[
Remark 1:Lemmal3 and Lemma 4 imply that every matchiMge M,, Z7(M) = {io, ..., ik},

is associated to a unique deficit-decreasing patM i@ M; relative toM, given by
P(M) = &, fi,, Gy, firs ..o G fi

Too see this, observe thdd\M;, is given by the non-horizontal edges M, while M;\M is

given by the horizontal edges that are notMnh Therefore, by Lemma] 3,
M\M; = {(fil’ fio)’ (fiz’ fil)’ s (fiK’ fiK—l)}’
M:]\M = {(flo’ fio)? (fil? fil)’ st (giK7 fl|<)}7

and the set of edges iR(M) is equal toM @ M. The uniqueness oP(M) follows since
I(M) is unique by Lemmal4 and there is no other way to connect tloe leader(;, and the
unmatched followerf;, with a path. This suggests that, given a matchivige M,, the unique

deficit-decreasing patR(M) must be “solved” in order to reach the stable matchingspf

B. The tree T,

Definition 9: Let T, be a labeled rooted tree with a singleton node with label dudtively,

fori < 2, let T; be the labeled rooted tree whose root is labeled wistmd itsi — 1 children
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are the roots of copies df, ..., Ti_1. We defineT}, to be the tree with a root with labeh+ 1
whose only child is the root of a copy df, (see Figuré 11 for a visual representation). tet

denote the root of .

’
5
12/:;,\4
D .\
iII.Z, I3‘\
XTI
1

Fig. 11. The thred;, for m=5.

We show that the hitting time af* for a random walk onTl;, starting at any node # r*
is exponential inm with high probability. For a node # r*, we call the edge that conneais
to its parentu’'s exit edge. For any subtreg c T}, let Z; be the random variable denoting the
number of steps that it takes for a walk starting at the root;afo exit T; (that is, to hit the
parent of the root off;). The following lemma provides an exponential lower boumdza

Lemma 5: There exist positive constanisy > 0 such that, for ali > 2,

. . 1
Pz >y - 2/@09] > 1 - —

Proof: We proceed by induction on For convenience, defing(i) = alog?i and f(i) =
y - 2790 for somea,y > 0. For anya > 0 andi > 2, we can choose > 0 such thatf (i) < 1;
therefore, asZ; > 1 with probability 1, the claim holds trivially for any < i*, wherei* is a
suitably large constant.
Now consider any > i* and suppose the claim holds upite 1. Every time the walk is on
the root ofT;, it exits T; with probability 1/i (since the root off; hasi neighbors: one parent
andi — 1 children). Therefore, letting; be the event that the firsttimes the walk is on the

root of T; it doesnot exit T;, we have Pi] > 1-t/i. Lett =i/(2logi), and letDj, 1< j <t,
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be the event that, when it is on the rootffor the j-th time, the walk moves to the root of

one of the subtree$;_g;, ..., Ti.; and takes at leasf (i — g(i)) steps to exit that subtree. For
1<j<t, we have

PrD; 1 E1 2 2 Prize g 2 1 - i)

ai) (,__ 1
Zi(lmw—wﬁ’

by the induction hypothesis ofi_y;. Letting y; be the indicator function of the eveit; for
1< j<t, the probability that at least two of the everds happen, giverk;, is lower bounded

by:
[ t/2

ZPI’Z)(J>1 Z)(J>1

j= t/2+1

E;

Pr 2){,22

=

t/2
:PrZX,>1‘Et

By union bound, we can write
t/2

Z)(jZl

=1

Pr E;

t/2

]_[ (1- PrD;jIEY)

21‘(1@(1‘@))”2
1

— %_____ >1—- —
log(i —g@)/| ~ = iv/®
where the last step holds fd)rsu‘ﬁciently Iarge so that logE g(i)) > 2. This implies that

1\ 2
:E;kq >2 Et > 1—'Fg§) > 1—-FZ§.
J

Therefore, we conclude that

Pr

Pz > 2- f(i- g@)] 2 Pr| > x; 22

> Pr Xj22|Et
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where the last step holds by choosguficiently large. The claim follows since-2(i —g(i)) >
f(i). [
Note that a random walk starting at any nade r* has to exitT,, before hittingr*. Therefore,
an application of LemmRgl5 t@,, yields a lower bound to the hitting time of when starting
at any nodeu # r*.
Corollary 2: The hitting time ofr* of a random walk starting at any nodez r* is 2/ 1og*n
with high probability.

C. The dynamics of the algorithm starting from éviM,,

For ease of presentation, we set the probability paramefetise algorithms top = g = 1.
Settingp = 1 means that a poor leader always proposes to a followem&egt= 1 means that
a follower always accepts an incoming request. Our resuttshior any choice ofp andq.

By Lemmal4, every matchiniyl € M, U {M;} is uniquely identified by the sef(M) = {k :
(b, f) € M}

Definition 10 (The height of a matchinglket M € M,,, 7(M) = {io, ..., ik}. The heighth(M)
of M is defined as follows. IK = 0 thenh(M) = 0. If K > 1 thenh(M) =ix_;€{1...,n-1}.

For a matchingM € M, such thath(M) > 0 we can writeZ (M) = {iq, ..., h(M), ix}. For each
t > 0, let M(t) be the matching at the beginning of rouhadf the algorithm, and for ease of
notation letZ (t) = 7(M(t)). For a matchingM € M, let

(M) = min{t : M(t) = M*IM(0) = M}

be the number of steps that the algorithm needs to reach dbke shatching starting fronv.
Note that, withp = g = 1, t*(M) = 1 for everyM € M, such thath(M) = 0 (that is,|Z7(M)| =
1), since according to the algorithm leaders prefer unneatdollowers. We are interested in
relating 7*(m) and h(M) for every matchingVl € M, such thath(M) > O (that is,|Z7(M)| > 1).
We study how the matching evolves over time through the Magmcess{7(t) : 0 <t <
7(M)}. SinceZ(M;) = 0, *(M) = min{t : Z(t) = 0}. The state space of the Markov process
is given by the seSS defined in Lemmal4. The transition probabilities are charédd by the

following lemma.

DRAFT



26

Lemma 6:Conditional onZ(t) =1 € S, |l| > 1, the transition probabilities at tinteare given

by

Pr(rt+1)=r|I)=1)= ﬁ if 17e{lufki:k<minl}u{i\(mini}},
and 0 otherwise. Moreover Bi(t + 1) = 0|7(t) = 0) = 1, and Pr{(t+ 1) = 0|7(t) = 1) = 1 for
everyl sich that|l| = 1.

Proof: The case off (t) = 0 corresponds to the stable matchiktj, which is an absorbing
state for the Markov process. In the casefft) = 1, we have thah(M) =0, andp=q=1
implies that thatZ (t + 1) = 0.

Consider nowjl| > 1. Conditional onZ(t) = I, the poor leader i€nin; and has degree min
and neighborhoo®in, = {f1,..., fmin1}, @nd chooses one of the followersNg,,, uniformly at
random. If£nin, chooses followelf, for somek < minl then the leadef, becomes poor, since
by property (3) of Lemmal3, was matched tdy in M(t), and we have thaf(t+1) = | U{k}. If
insteadlmin chooses followerfyi,; (matched t&ming\miny i M(t) by property (4) of Lemmal3),
thenZ(t+ 1) =I1\{minl}. [ |

For every matchindl € M, such thath(M) > 0 andZ(M) = {io, ..., ik}, define the matching
L(M) ={(¢}, f)) : ] # ik} and (M) = min{t : M(t) = L(M)}, and observe that(L(M)) = 0 and
(M) > (M) (in particular,7*(M) = 1+ (M) for p=q=1).

For every matchindg such thafZ(M)| > 1, let R(M) be the set of the matchings im, that
can be reached frorM (after one or multiple steps). According to the transitionhabilities

defined by Lemmals, it is easy to see that
R(M) = {LIM)} U {M" € M, 1 (M) = AU (M), ik}, AC {1,....h(M) - 1}}.

Observe that everil’ € R(M)\{£L(M)} has heighth(M’) = h(M). The following lemma charac-

terizes the one-to-one correspondence between matciir§@) and nodes of the tre€;,,.

Lemma 7: Consider the mapping(-) from R(M) to Ty, defined as follows. Lew(L(M)) =
r, wherer is the root ofT;(M). For M’ € RIMM\{L(M)} and 7(M’) = I, let w(M’) be the node
of Thwm
indexes inl\{minl}. Thenw(-) is a bijection.

with label minl and connected to the root with a path of nodes labeled by tttedso

The proof is omitted since it directly follows from the comsttion of the treeTy,, and the

mappingZ(-).
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Lemma 8:The stochastic procegg(t) : 0 <t < 7(M)|M(0) = M} is equivalent to a random
walk on oo starting atw(M).

Proof: It suffices to show that the transition probabilities between twéchagsM,, M, €
R(M) are nonzero if and only if the nodeg(M;) and w(M,) are adjacent inT;;(M). To prove
the “only if” direction, assume thatl;, M, € R(M) are such that there is a nonzero transition
probability from M; to M, (and therefore fromM, to M,). Let 7(M;) = I; and 7(M;) = I,.
According to the transition probabilities given above,réhare two possible cases. In the first
case,l, = I; U {k} for somek < minl;, and w(M,) is a child of w(M,). In the second case
I, = I;\{minl} and w(M,) is the parent otw(M,). The proof of the other direction is similar.

u
To summarize, the number of steps that the algorithm needsatth the stable matching G,
starting fromM e M, with h(M) > 0 is upper bounded by the timéM) to reach the matching
L(M), and reaching£(M) is equivalent to reaching the root Gﬁ(M) starting from the node
w(M). By Corollary[2,7(M) is exponentially large ifn(M) with high probability. To complete
the proof of the theorem, we show that, for any constarty0< 1, a 1- O(n2-&="") fraction

of the matchingdM € M, haveh(M) > yn. This is done through a counting argument.

D. The fraction of the matchings K M, such that kM) > yn

Let N be the number of matchings if,. Fixed a constant & y < 1, let M, = {M € M, :
h(M) < yn}and letN, = [M,|. Forj =0,...,n—-1, l[etN(j) be the number of matchindd € M,
such thath(M) = j. It follows that

=

n [yn]-1

N=) NGi.  Ny< ) N().

J j=0

I
o

Lemma 9: NO)=nandN(j)=(n-j)2*forall j=1,...,n-1.
Proof: N(O) = n since there aren matchingsM with h(M) = 0, that is, the matchings
{(¢;, ) - j#k forl<k<n.
Fix j €{1,...,n=1}. By Lemma’4, a matchiny! € M, with h(M) = j is uniquely identified
by a setZ7 (M) = {io,...,ik-1,ix} for some 1< K <n-1 andix_; = j. SinceZ(-) is a bijection,
to determineN(j) we need to count all subsets df. .., n} of the form{io,..., |,ix}. There are

2i-! subsets of1,..., j—1} andn- j ways to chooseéx € {j+1,...,n}, thusN(j) = (n—j)2I-L.
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u
We now show that for any constant<Oy < 1, the fraction of matching® € M, such that
h(M) < yn goes to zero exponentially fast m
Lemma 10:Fix 0 <y < 1. Then,N,/N = O(n2-(-"),
Proof: We first computeN.

n-1 n-1 _ n-2 _ n-1 _
N= > N@=n+> -2 =n+n) 2 -2
i=0 i=1 i=0 i=1
The second sum can be shown (e.g. by induction) to be equal ol + (n — 2)(2"! - 1).

Therefore,
N=n+n2™ ' -1)-(n-1)-(n-2)(2"*1-1)=2"-1=Q(2".

Similarly, lettingk = [yn] we have that,

k-1 k-2 k-1
N, < D N@) =n+n) 2= 2
i=0 i=0 i=1
=n+n2t-1) - (k-1)- (k-2)(Z*-1)
= 2 n-k-2)-1=0(n2").

Therefore, the fraction of matchings i, with heighth(M) < yn is N,/N = O(n2-2"). m
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