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Distributed team formation in multi-agent systems:

stability and approximation

Lorenzo Coviello and Massimo Franceschetti

Abstract

We consider a scenario in which leaders are required to recruit teams of followers. Each leader

cannot recruit all followers, but interaction is constrained according to a bipartite network. The objective

for each leader is to reach a state oflocal stability in which it controls a team whose size is equal to a

given constraint. We focus on distributed strategies, in which agents have only local information of the

network topology and propose a distributed algorithm in which leaders and followers act according to

simple local rules. The performance of the algorithm is analyzed with respect to the convergence to a

stable solution.

Our results are as follows. For any network, the proposed algorithm is shown to converge to an

approximatestable solution in polynomial time, namely the leaders quickly form teams in which the

total number of additional followers required to satisfy all team size constraints is an arbitrarily small

fraction of the entire population. In contrast, for generalgraphs there can be an exponential time gap

between convergence to an approximate solution and to a stable solution.

I. Introduction

A multi-agent system (MAS) is composed of many interacting intelligent agents. Agents can

be software, robots, or humans, and the system is highly distributed, as agents do not have

a global view of the state and act autonomously of each other.These systems can be used

to collectively solve problems that are difficult to solve by a single entity. Their application

ranges from robotics, to disaster response, social structures, crowd-sourcing etc. A main feature

of MAS is that they can manifest self-organization as well asother complex control paradigms
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even when the individual strategies of the agents are very simple. In short, simple local interaction

can conspire to determine complex global behaviors. Examples of such emerging behaviors are

in economics and game theory, where local preferences translate into global equilbria [35], in

social sciences, where local exposure governs the spread ofinnovation [41], and in control,

where local decision rules determine whether and how rapidly consensus is reached [4], [28],

[29], [30], [36], [37].

From a practical perspective, the performance of a MAS oftendepends on how quickly

convergence to a global, possibly approximate, solution isreached and it is in general influenced

by the network structure. For example, in the context of information diffusion in social networks,

the rate of convergence of the system’s dynamics is affected by the underlaying network and the

local interaction rules [21], [26].

One of the critical issues in multi-agent systems is coordination. Due to the autonomous

behavior of the agents and to the absence of a central controller, coordination must be distributed.

In the case of human agents, it is also important that the distributed control algorithm is simple

enough to be suitable to model basic principles of human behavior [8]. Two prominent problems

related to consensus and coordination in multi-agent systems are leader election and group

formation. In the former case, multiple agents elect a leader that can then assign tasks [24],

while in the latter they divide themselves into teams in sucha way that each agent knows to

what team it belongs [11]. In both cases agents are all equal and coordination occurs among

agents of a single class.

We consider a scenario in which there are agents of two classes, leadersand followers. Each

leader must recruit a team of followers whose size is equal toa given constraint, by sending

requests to the followers. Followers can only accept or reject incoming leaders’ requests. While

multiple followers can be part of a leader’s team, each follower can be part of a single team at any

time, but is allowed to change team over time. Moreover, a leader cannot recruitall followers, but

can only recruit the followers it is in direct communicationwith. The communication structure

between leaders and followers is captured by an arbitrary bipartite network, and we assume

that each agent has knowledge of and can interact with its neighbors only. That is, agents only

have local knowledge of the underlying network. In general,the communication constraints of

the population (and therefore the structure of the bipartite network) can be dictated by physical

constraints (as for example antenna visibility range or signal to noise ratio threshold), social
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Fig. 1. Example of a bipartite network between leaders and followers determined by physical constraints. Left: each leader

can only recruit the followers in its visibility range (dotted circle), arrows represent team membership, and the set ofarrows

defines a partition of the followers into teams.

Right: the resulting bipartite network. An edge between leader ℓ and follower f exists if and only if f is in ℓ’s visibility range.

Matching edges define team membership and are highlighted.

context, and so on. A pictorial representation of a bipartite network arising from physical

constraints is given in Figure 1.

We consider a notion of stability in which each agent controls a team of adequate size. Each

leader has an incentive to reachlocal stability (that is, to build a team of followers of the

right size) by dynamically interacting with its neighbors.The question we aim to answer is:

can simple local rules lead to stable, orcloseto stable, team formation in reasonable time? By

“close to stable” we mean that the total number of additionalfollowers required to satisfy all

team size constraints is an arbitrary small fraction of the entire population. We propose a simple,

distributed, memoryless algorithm in which leaders do not communicate between each other, and

we show that, in any network of sizen, any constant approximation of a stable outcome (or of

a suitably definedbest outcome if a stable one does not exist) is reached in time polynomial

in n with high probability. In contrast, for general graphs we show through a counterexample

that there can be an exponential gap between the time needed to reach stability and that needed

to reach approximate stability, that is, to find thebest solution compared to agood solution.

We remark that, in its simplicity, the proposed algorithm issuitable to model human agents, it

can be programmed on simple robots with limited computationabilities, and it is amenable to
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analysis.

The rest of the paper is organized as follows. After discussing how our work relates to the

existing literature, in Section II we formally define the problem and the notions of stability

and approximate stability, in Section III we present the distributed algorithm for leaders and

followers, in Sections IV and V we present our technical results on the algorithm’s performance,

and in Section VI we further discuss the algorithm’s performance by showing some simulations’

results. To prove our result on the convergence to approximate stability, we derive a technical

lemma (Lemma 1) that relates the quality of a matching to the existence of particular paths (that

we call deficit-decreasingpaths) of given length. The lemma extends a known combinatorial

result by Hopcroft and Karp [15] to the setup of many-to-one matching, and can be considered

to be of independent interest.

A. Related work

The problem of team formation that we consider is an example of distributed many-to-

one matching in bipartite networks [2], [14], [34]. The one-to-one case has been previously

studied in the context of theoretical computer science [23][32]. In the control literature, our

work is related to the distributed assignment problem and togroup formation in MAS. In this

framework, Moore and Passino [27] proposed a variant of the distributed auction algorithm for

the assignment of mobile agents to tasks. Cenedese et al. [6]proposed a variant of the Stable

Marriage algorithm [12] to solve the distributed task assignment problem. Abdallah and Lesser [1]

proposed an “almost” distributed algorithm for coalition formation, allowing for a special agent

with the role of “manager”. Gatson and den Jardins [13] studied a scenario of group formation

where agents can adapt to the network structure. Tosic and Agha [39] proposed an algorithm

for group formation based on the distributed computation ofmaximal cliques in the underlying

network. Further work studied team formation in multi-robot systems [40], in the case where

communication between agents is not allowed [3]. Other authors considered MAS composed by

leaders and followers. To cite a few, Tanner [38] derived a necessary and sufficient condition for

a group of interconnected agents to be controllable by one ofthem acting as a leader; Rahmani

et al. [33] studied the controlled agreement problem in networks in which certain agents have

leader roles, translating graph-theoretic properties into control-theoretic properties; Pasqualetti

et al. [31] analyzed the problem of driving a group of mobile agents, represented by a network
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of leaders and followers, in which follower act according toa simple consensus rule.

We distinguish ourselves from all mentioned papers, as we propose a fully distributed algorithm

for group formation on arbitrary networks in which agents act according to simple local rules

and perform very limited computation, and we derive performance guarantees in the form of

theorems. For an exhaustive overview on distributed algorithms in multi-agent systems, the

interested reader is referred to the books by Lynch [24] and by Bullo et al. [5] and the references

therein, while the survey by Horling and Lesser [16] offers an overview on three decades of

research on organizational paradigms as team and coalitionformation.

A more recent line of research aims to study how humans connected over a network solve tasks

in a distributed fashion [8], [10], [17], [19], [20], [25]. In the work of Kearns et al. [20], human

subjects positioned at the vertices of a virtual network were shown to be able to collectively

reach a coloring of the network, given only local information about their neighbors. Similar

papers further investigated human coordination in the caseof coloring [10], [17], [25] and

consensus [17], [19], with the main goal of characterizing how performance is affected by the

network’s structure. Using experimental data of maximum matching games performed by human

subjects in a laboratory setting, Coviello et al. [8] proposed a simple algorithmic model of human

coordination that allows complexity analysis and prediction.

Finally, related to our work is also the research on social exchange networks [7], [22], that

considers a networked scenario in which each edge is associated to an economic value, nodes

have to come to an agreement on how to share these values, and each agent can only finalize

a single mutual exchange with a single neighbor. Recently, Kanoria et al. [18] proposed a

distributed algorithm that reaches approximate stabilityin linear time. However, we consider a

different setup since we allow leaders to build teams of multiplefollowers.

II. Problem formulation

We consider a population composed of agents of two different classes: leaders and followers.

Each leader is required to recruit a team of followers whose size is equal to a given constraint,

by sending requests to the followers. Followers can only accept or reject leaders’ requests. While

multiple followers can be in a leader’s team, each follower can be part of a single team at a time,

but is allowed to change team over time. A leader is not allowed to recruitall followers, but can

only recruit the followers it is in direct communication with. The communication constraints of
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the population are captured by a bipartite networkG = (L∪F,E) whose nodes’ partition is given

by the setL of leaders and the setF of followers, and where there exists an edge (f , ℓ) ∈ E

between followerf and leaderℓ if and only if f and ℓ can communicate between each other

(see Figure 1). LetNℓ = { f ∈ F : ( f , ℓ) ∈ E} be the neighborhood ofℓ ∈ L. For eachℓ ∈ L,

leaderℓ is required to recruit a team ofcℓ followers, wherecℓ ≥ 1.

Definition 1 (Matching):A subsetM ⊆ E is a matching ofG if for each f ∈ F there exists

at most a singleℓ ∈ L such that (ℓ, f ) ∈ M.

The definition of matching is consistent with the fact that multiple followers can be part of a

leader’s team. There is a one-to-one correspondence between matchingsM of G and tuples of

teams{Tℓ(M) : ℓ ∈ L}, whereTℓ(M) denotes the team of leaderℓ under the matchingM. We

have thatTℓ(M) = { f ∈ F : (ℓ, f ) ∈ M} ⊆ Nℓ for every matchingM. We consider the following

notion of stability.

Definition 2 (Stable matching):Given constraintscℓ for eachℓ ∈ L, a matchingM of G is

stable if and only if|Tℓ(M)| = cℓ for all ℓ ∈ L.

Depending on the constraintscℓ, a networkG might not admit a stable matching. Nonetheless,

given a matching ofG, we are interested in assessing itsquality. Our main result builds on the

following definitions ofdeficit of a leader and deficit of a matching.

Definition 3 (Deficit of a leader):Let ℓ be a leader with constraintcℓ ≥ 1, and M be a

matching ofG. The deficit ofℓ under the matchingM is

dℓ(M) = cℓ − |Tℓ(M)|.

Definition 4 (Deficit of a matching):Given constraintscℓ ≥ 1 for eachℓ ∈ L, the deficit of a

matchingM of G is

d(M) =
∑

ℓ∈L

dℓ(M) =
∑

ℓ∈L

(cℓ − |Tℓ(M)|) .

In words, dℓ(M) is the number of additional followers leaderℓ needs to satisfy its size

constraint. Similarly,d(M) sums the numbers of additional followers each leader needsto satisfy

its size constraint. Given a matchingM, we say that a leaderℓ is poor if dℓ(M) > 0 (that is,

|Tℓ(M)| < cℓ) andstableif |Tℓ(M)| = cℓ. In this work, we do not consider the case of|Tℓ(M)| > cℓ

since we assume that each leaderℓ never recruits more thancℓ followers simultaneously. This

can be justified by the fact that recruiting additional followers might be costly.
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Observe that only poor leaders contribute tod(M), and thatM is stable if and only ifd(M) = 0.

GivenG, two matchings ofG can be compared with respect to their deficit, and the best matching

of G can be defined as one minimizing the deficit.

Definition 5 (Best matching):A matchingM of G is a best matching ofG if d(M) ≤ d(M′)

for every matchingM′ of G.

Observe that a stable matching is also a best matching. Moreover, if G admits a stable

matching,d(M) quantifies how muchM differs from a stable matching ofG. In general, if

M∗ is a best matching ofG with d(M∗) = d∗, then,d(M) − d∗ tells how muchM differs from a

best matching ofG. Given a matchingM of G, the following definition provides a measure of

how well M approximates a best matching ofG.

Definition 6 (Approximate best matching):Fix ε ∈ [0, 1], and letmbe the number of followers

in G. Let M∗ be a best matching ofG. Then, a matchingM is a (1−ε)-approximate best matching

of G if d(M) − d(M∗) < εm.

When G admits a stable matching, we are interested in the notion of approximate stable

matching.

Definition 7 (Approximate stable matching):Let G admit a stable matching. Fixε ∈ [0, 1],

and letm be the number of followers inG. Then, a matchingM is a (1− ε)-approximate stable

matching ofG if d(M) < εm.

III. The algorithm

We now present a distributed algorithm for team formation. Time is divided into rounds, and

each round is composed by two stages. In the first stage, each leader acts according to the

algorithm in Table 1, and in the second stage each follower acts according to the algorithm in

Table 2.

First consider a leaderℓ, and letM be the matching at the beginning of a given round. Ifℓ is

poor (that is,|Tℓ(M)| < cℓ) and |Tℓ(M)| < |Nℓ | (that is,ℓ is not already matched with all followers

in Nℓ) then, with probabilityp (where p ∈ (0, 1] is a fixed constant),ℓ attempts to recruit an

additional follower, chosen as explained below, by sendinga matching request. An unmatched

follower in Nℓ, if any, is chosen uniformly at random; otherwise, a follower in Nℓ\Tℓ(M) is

chosen uniformly at random. In other words, leaders always prefer to recruit followers that are
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currently unmatched over matched ones. Note that a leader tries to recruit an additional follower

after checking iflocal stability holds (that is, after checking if its team size is equal tocℓ).

Consider now a followerf . During each round, iff has incoming requests then each request is

rejected independently of the others with probability 1− q (whereq ∈ (0, 1] is a fixed constant).

If all incoming requests are rejected, thenf does not change team (if currently matched) or

it remains unmatched (if currently unmatched). Otherwise,one among the active requests is

chosen uniformly at random,f joins the corresponding leader, and all the other requests are

discarded. For ease of presentation, we assume that a follower is equally likely to join a team

when unmatched and to change team when currently matched, but all our results hold if we

consider different values ofq for matched and unmatched followers (and even if we considera

different value ofq for each follower, as long as each value is a constant).

Table 1 Algorithm for leaderℓ ∈ L
if |Tℓ(M)| < min{cℓ, |Nℓ|} then

with probability p do the following

if ∃ unmatchedf ∈ Nℓ then

choose an unmatched followerf ′ ∈ Nℓ u.a.r.

else

choose a followerf ′ ∈ Nℓ\Tℓ(M) u.a.r.

end if

send a matching request tof ′

end if

The proposed algorithm enjoys several properties. It is memoryless, the actions of each agent

only depend on local information, and the leaders do not communicate between each other. Also,

it is self-stabilizing, that is, once a stable matching is reached, leaders stop recruiting followers.

Moreover, it is a single-stage algorithm, that is, agents never change their behavior until stability

is reached. Finally, observe that the exchanged messages can be represented by a single bit.

IV. Convergence to approximate stable matchings

In this section, we only consider networks admitting stablematchings, and we show that, given

any network and any constantε ∈ (0, 1), a (1− ε)-approximate stable matching is reached in a
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Table 2 Algorithm for follower f ∈ F
if f has incoming requeststhen

for each leaderℓ requestingf do

with probability 1− q reject ℓ’s request

end for

if there are active requeststhen

select one u.a.r. and join the corresponding team

reject all other requests

end if

end if

number of rounds that is polynomial in the network size with high probability. The assumption

that a stable matching exists is for ease of presentation, and all our results also hold for reaching

approximate best matchings, by replacingd(M) with d(M)−d(M∗), whereM∗ is a best matching

of G.

Given a networkG, for everyt ≥ 0, let M(t) be the matching ofG at the beginning of round

t, with deficit d(M(t)). The next property follows from the fact that leaders do not voluntarily

disengage from the followers in their teams (and therefore the deficit of a leader increases of a

unit only if the deficit of another leader decreases by one unit).

Property 1: For t ≥ 0, d(M(t)) is non-increasing int.

The next property follows from the assumptioncℓ ≥ 1,∀ℓ.

Property 2: If G admits a stable matching, thend(M(t)) ≤ m for every t ≥ 0.

We are now ready to state our main result.

Theorem 1:Let G be a network withm followers and which admits a stable matching. Let

∆ = maxℓ∈L |Nℓ | be the maximum degree of the leaders. Fix 0< ε < 1, and letc ≥ 1 + 1
m(1−ε) .

Then, a (1− ε)-approximate stable matching ofG is reached withinc⌊1/ε⌋(∆/pq)⌊1/ε⌋m rounds

of the algorithm with probability at least 1− e−cmε2/2.

Example 1: If ∆ is constant in the network size, then one can chooseε = 1/ logm, and

Theorem 1 implies that a (1− 1/ logm)-approximate stable matching is reached in at most

O(m2 logm) rounds with probability that goes to one asm→∞.

To prove Theorem 1, we introduce the notion ofdeficit-decreasingpath, that in our setup
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Fig. 2. A deficit-decreasing path of length 5 is represented at the top of the figure:ℓ0 is a poor leader,f3 is an unmatched

follower, and matching edges are highlighted. The path is “solved” by turning each matched edge into an unmatched edge and

vice versa, as show at the bottom of the figure:ℓ0 obtains an additional follower (and therefore its deficit decreases by a unit)

and bothℓ1 and ℓ2 do not change their numbers of followers.

plays the same role as the augmenting path in the context of one-to-one matching [9]. Since we

consider bipartite networks, a path alternates leaders andfollowers.

Definition 8 (Deficit-decreasing path):Given a matchingM of G, a cycle-free pathP =

ℓ0, f1, ℓ1, . . . , fk (of odd length 2k-1) is a deficit-decreasing path relative toM if (ℓi , fi) ∈ M

for all 1 ≤ i ≤ k − 1, ℓ0 is a poor leader, andfk is an unmatched follower.

In words, a deficit-decreasing path starts at a poor leader with an edge not inM, ends at

a follower that is not matched, and alternates edges inM and edges not inM. To justify the

nomenclature, observe that, ifd(M) > 0 andP is a deficit-decreasing path relative toM, a new

matchingM′ such thatd(M′) = d(M) − 1 can be obtained by flipping each unmatched edge of

P into a matched edge, and vice versa. This is depicted in Fig. 2.

The proof of Theorem 1 builds on a technical lemma that, givena matchingM with d(M) ≥ εm,

guarantees the existence of a deficit-decreasing path of length at most 2⌊1/ε⌋. The existence of

such a path allows us to bound the number of rounds needed for aone-unit reduction of the

deficit. Our technical lemma extends a known result by Hopcroft and Karp [15, Theorem 1]

given in the context of one-to-one matching, but our proof ismore subtle because leaders can be

matched to multiple followers and can have different size constraintscℓ. The symmetric difference

of two setsA andB is defined asA⊕B = (A\B)∪ (B\A). Two paths arefollower-disjoint if they

do not share any follower (even though they might share some leader).

Lemma 1:Let G admit a stable matchingN. Let M be a matching ofG with deficit d(M) > 0.

Then, in M ⊕ N there are at leastd(M) follower-disjoint deficit-decreasing paths relative toM.
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Proof: See Appendix A.

We make use of Lemma 1 through the following corollary.

Corollary 1: Let G be a network withm followers, admitting a stable matchingN. Let M

be a matching ofG with deficit d(M) ≥ εm, for someε > 0. Then, inM ⊕ N there exists a

deficit-decreasing path relative toM of length at most 2⌊1/ε⌋ − 1.

Proof: By Lemma 1, ifd(M) ≥ εm andN is a stable matching ofG, then inM⊕N we can

chooseεm follower-disjoint deficit-decreasing paths relative toM, whose cumulative length is

at most 2m (since they do not share followers andG is bipartite). Necessarily, one of them has

length at most 2⌊1/ε⌋ − 1 (note that a deficit-decreasing path has odd length).

We are now ready to present the proof of Theorem 1.

A. Proof of Theorem 1

Let G be a network withm followers and which admits a stable matching. Fix 0< ε < 1. For

t ≥ 0, M(t) denotes the matching at the beginning of roundt. For every 0< x ≤ 1, let

τ(x) = min
{

t ≥ 0 : d(M(t)) < xm
}

be the first round at whose beginning the deficit is strictly smaller thanxm. We are interested

in boundingτ(ε).

Consider any roundt ≥ 0. By Property 2,d(M(t)) ≤ m, and therefore there exists 0< ε′ ≤ 1

such thatd(M(t)) = ε′m (we assumeε′ > 0, since the case ofε′ = 0 is trivial). The following

lemma bounds the number of roundsτ(ε′)− t needed for a one-unit reduction of the deficit. Let

∆ = maxℓ∈L |Nℓ | be the maximum degree of the leaders inG.

Lemma 2:Let d(M(t)) = ε′m for some 0< ε′ ≤ 1. Then

Pr
(

τ(ε′) − t ≤ ⌊1/ε′⌋
)

≥

( pq
∆

)⌊1/ε′⌋

.

Proof: Let h(t) ≥ 1 be the odd length of the shortest deficit-decreasing path relative to M(t).

By Corollary 1,h(t) ≤ 2⌊1/ε′⌋ − 1. We distinguish the cases ofh(t) = 1 andh(t) ≥ 3.

First considerh(t) = 1. With probability at leastpq/∆ the deficit decreases by at least one

unit during the next round of the algorithm. Too see this, consider a deficit-decreasing pathℓ, f .

With probability at leastp/∆, ℓ attempts to recruitf and, conditional on this event,f considers

ℓ’s proposal with probabilityq, resulting in the lower boundpq/∆.
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Now considerh(t) ≥ 3, and letP be a shortest deficit-decreasing path of lengthh(t) ending

at an unmatched followerf . By the same argument as above, the length ofP decreases by one

during the next round with probability at leastpq/∆ (observe that, as long ash(t) > 1, f remains

unmatched during roundt sinceP is a deficit decreasing path of shortest length).

By independence of successive rounds of the algorithm and the boundh(t) ≤ 2⌊1/ε′⌋−1, with

probability at least (pq/∆)⌊1/ε
′⌋, a sequence of⌊1/ε′⌋−1 rounds reduces the length ofP to 1 and

then in one additional roundP gets “solved” and the deficit decreases by one unit.

Consider consecutive phases of⌊1/ε⌋ rounds each. For phasesi = 0, 1, 2, . . ., let Xi be iid

Bernoulli random variables with Pr(Xi = 1) = (pq/∆)⌊1/ε⌋. By Lemma 2, afterT phases (i.e., at

the beginning of roundt∗ = T⌊1/ε⌋), the deficit of the matching is upper bounded by

d(M(t∗)) < max















εm,m+ 1−
T

∑

i=1

Xi















,

since by Property 2 the matching at the beginning of round 0 has deficit d(M(0)) ≤ m. By

independence of the phases, a Chernoff bound implies that for any 0< δ ≤ 1

Pr
(

T
∑

i=1

Xi < (1− δ)T(pq/∆)⌊1/ε⌋
)

< e−T(pq/∆)⌊1/ε⌋δ2/2.

Settingδ = ε and T = cm(∆/pq)⌊1/ε⌋ (wherec is a constant to be specified later), the deficit

of the matching at the beginning of roundt∗ = ⌊1/ε⌋cm(∆/pq)⌊1/ε⌋ is upper bounded by

d(M(t∗)) < max{εm,m+ 1− (1− ε)cm}

with probability at least 1− e−cmε2/2. To conclude the proof of the theorem we need thatεm ≥

m+ 1− (1− ε)cm, which is true for anyc ≥ 1+ 1
m(1−ε) .

V. Exponential convergence

Theorem 1 gives a polynomial bound for reaching a (1− ε)-approximate stable matching for

any constant 0< ǫ < 1 and any network. However, a similar guarantee cannot be derived for the

case of a stable matching, as shown in this section through a counterexample. In particular, we

define a sequence of networks of increasing size and maximum degree that diverges with the

network size, and show that the number of rounds required to converge from an approximate

matchingM with d(M) = 1 to the stable matching (that is, to reduce the deficit of a single unit)
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is exponentially large in the network’s size with high probability from an overwhelming fraction

of the approximate matchingsM such thatd(M) = 1.

For n ≥ 1, let Gn = (Ln ∪ Fn,En) be the network withn leaders andn followers (i.e.,

Ln = {ℓ1, . . . , ℓn} andFn = { f1, . . . , fn}), with edgesEn = {(ℓi, f j) : 1 ≤ i ≤ n, j ≤ i}, and team size

constraintscℓ = 1 for all ℓ ∈ Ln, see Figure 3.Gn has maximum degreen and a unique stable

matching given byM∗n = {(ℓi, fi) : 1 ≤ i ≤ n}.

Fig. 3. The networkGn for n = 6. The matchingM′n is highlighted.

Theorem 2:For any matchingM of Gn, let τ∗(M) denote the number of rounds to converge

to the perfect matching when starting fromM. Then, for any fixed constant 0< γ < 1, τ∗(M) is

exponentially large inγn with high probability for a 1−O(n2−(1−γ)n) fraction of all the matchings

M such thatd(M) = 1.

Here we only provide a sketch of the proof, whose details are presented in Appendix B. To

get an understanding of the algorithm’s dynamics, considerthe matching

M′n = {(ℓi, fi−1) : 2 ≤ i ≤ n},

highlighted in Figure 3 for the case ofn = 6. Observe thatd(M′n) = 1 and, underM′n, ℓ1 is

poor, and the remaining leaders are stable. According to thealgorithm, ℓ1 attempts to recruit

f1 (currently inℓ2’s team). If f1 accepts, thenℓ1 becomes stable andℓ2 becomes poor (and can

in turn attempt to recruit eitherf1 or f2). After each round, there exists a unique poor leader

until the stable matching is reached. The stable matching isreached whenℓn−1 (ℓ5 in Figure 3)

becomes poor and then successfully recruitsfn−1 ( f5 in Figure 3), and finallyℓn successfully

recruits fn (recall that leaders prefer unmatched followers).
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In general, fix any matchingM of Gn such thatd(M) = 1. In M, there is a single poor

leaderℓi0 and a single unmatched followerfiK . M is associated to a unique deficit-decreasing

path ℓi0, fi0, . . . , ℓiK−1, fiK−1, ℓiK , fiK . We define theheight h(M) of M as follows. If K ≥ 1 then

h(M) = iK−1, if K = 0 thenh(M) = 0.

Starting fromM, for everyt < τ(M), the matchingM(t) at the beginning of roundt has deficit

d(M(t)) = 1 (by Property 1), a single poor leader denoted byℓi(t), the single unmatched follower

fiK and heighth(M(t)) = h(M) = iK−1. The stochastic process{i(t)} tracking the position of the

poor leaderℓi(t) is not a classical random walk on{ℓ1, . . . , ℓiK } and its transition probabilities at

each round depend on the current matching. The time to reach stability is upper bounded by

min{t : i(t) = h(M)}, that is, the first round in whichℓh(M) becomes poor (sinceℓh(M) can then

match with fh(M) leaving ℓiK poor, who would in turn match with the unmatched followerfiK ,

thus reaching the stable matching).

We prove a one-to-one correspondence between the matchingsM(t) reachable fromM in

which i(t) ≤ h(M) (note thatd(M(t)) = 1 for each of them) and the nodes of a tree whose

size is exponentially large in the heighth(M). In particular, we can show that the process

{M(t) : t ≥ 0,M(0) = M} is equivalent to a classical random walk on the nodes of the tree,

and that reaching the matching withi(t) = h(M) corresponds to reaching the root of the tree.

A random walk starting at any node of the tree visits the root after a number of steps that is

exponentially large in the heighth(M) with high probability. Finally, the proof of Theorem 2 is

completed by arguing that, for any constant 0< γ < 1, a 1−O(n2−(1−γ)n) fraction of all matchings

M of Gn such thatd(M) = 1 have heighth(M) ≥ γn.

VI. Simulations

In this section, the performance of our algorithm is furtherevaluated through simulation. In

Figure 4, the algorithm’s average convergence time on the sequence of networksGn defined in

Section V is shown (in logarithmic scale). On the one hand, the thick solid line suggests that

the average number of rounds to reach a 0.9-approximate stable matching is upper bounded by

a polynomial of small degree, consistently with Theorem 1. On the other hand, convergence to

the stable matching requires an average number of rounds that grows exponentially inn (thin

solid line), as predicted by Theorem 2. Moreover, the dottedline represents the average time

after which all followers become matched, that grows slowlywith n.
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Fig. 4. Algorithm’s convergence time on the sequence of networks Gn.

Figure 5 shows the algorithm’s performance in reaching successively finer approximations of

the best matching on random networksG(n,m, ρ). Here,G(n,m, ρ) refers to a random bipartite

network withn leaders andm followers, in which each edge exists independently of the others

with probability ρ (we fixedρ = 0.04), and with constraintcℓ = min{m/n, |Nℓ|} for each leader

ℓ . For each of the (n,m) pairs that we considered, 20 randomG(n,m, ρ) were generated, and

the algorithm was run 20 times on each. We observe that, consistently with Theorem 1,τ(ε)

increases both whenε decreases (i.e., when a finer approximation is desired) and when the

numberm of followers increases. The plot visually suggests that a good solution is reached

quickly, while most of the time is spent in the attempt of improving it to the best solution.

VII. D iscussion

The distributed algorithm we proposed, in which leaders andfollowers act according to simple

local rules, is computationally tractable and allows us to derive performance guarantees in the

form of theorems. Despite its simplicity, the algorithm is shown to reach an arbitrarily close

approximation of a stable matching (or of a best matching) inpolynomial time in any network.

However, in general there can be an exponential gap between reaching an approximate solution

and a stable solution.

In the proposed algorithm, leaders do not communicate between each other, and only act in

response to their own status and the status of their neighborhoods. The only collaboration between
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Fig. 5. Algorithm’s average time to reach a (1− ε)-approximate best matching on random bipartite networksG(n,m, ρ), for

ρ = 0.04.

them consists in the fact that the leaders whose size constraints are satisfied do not attempt to

recruit additional matched followers, and this is justifiedsince recruiting more followers might

be costly. How communication between leaders affects performance is an open question, as well

as determining what amounts of communication and complexity are necessary to remove the

exponential gap in the case of unbounded degree networks.

Finally, in Section V, we defined a sequence of networks in which the maximum degree of

the leaders scales linearly with the network size. It would be interesting to understand whether

a counterexample in which the maximum degree scales more slowly (e.g., logarithmically in the

network size) could be derived.

Appendix

A. Proof of Lemma 1

Given the matchingM and the stable matchingN, for brevity we write deficit-decreasing path

instead of deficit-decreasing path inM ⊕N relative toM. Similarly, by telling that leaderℓ and

follower f are matched we mean that (ℓ, f ) ∈ M, unless otherwise specified.

We prove a stronger claim than the one stated in the lemma, proceeding as follows. First, we

show that for each leaderℓ with deficitdℓ(M) > 0 there are at leastdℓ(M) follower-disjoint deficit-
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Fig. 6. A leaderℓ with constraintcℓ, degree|Nℓ| ≥ cℓ and deficitdℓ(M). Matched edges are highlighted.ℓ is matched to exactly

cℓ − dℓ(M) followers (depicted on the right). Among the otherk ≥ dℓ(M) followers in Nℓ, h < k of them are the first followers

on h follower-disjoint deficit-decreasing paths starting atℓ (these paths are denoted byP1, . . . ,Ph), and none of the remaining

k− h (denoted byf1, . . . , fk−h ) is the first follower of a deficit-decreasing paths startingat ℓ.

decreasing paths starting atℓ. Then, we argue thatd(M) follower-disjoint deficit-decreasing paths

can be chosen,dℓ(M) of which start at each leaderℓ with deficit dℓ(M) > 0.

Consider a leaderℓ with dℓ(M) > 0. Assume by contradiction that there are strictly less then

dℓ(M) follower-disjoint deficit-decreasing paths starting atℓ, and refer to Fig. 6 for a schematic

representation.

Sinceℓ has a team size constraintcℓ > 0, there are exactlycℓ−dℓ(M) followers that are matched

to ℓ. Observe that no follower matched toℓ can be the first follower of a deficit-decreasing path

starting atℓ, since a deficit-decreasing path starts with an edge inN\M.

SinceG admits a stable matching, the neighborhoodNℓ of ℓ has size|Nℓ | ≥ cℓ. Therefore,

there are arek ≥ dℓ(M) followers in Nℓ that are not matched toℓ. Assume thath < dℓ(M) of the

followers in Nℓ are the first followers ofh follower-disjoint deficit-decreasing paths starting at

ℓ (these paths are denoted byP1, . . . ,Ph in Figure 6). Denote the remainingk− h > 0 followers

by f1, . . . , fk−h, and assume by contradiction that none among them is the firstfollower of a

deficit-decreasing path starting atℓ (this is equivalent to assuming that there are strictly less

thandℓ(M) follower-disjoint deficit-decreasing paths starting atℓ).

Observe that, in order to become stable,ℓ needs to match with at least one additional follower

among{ f1, . . . , fk−h}. We show that, under the assumption above, a one-unit reduction in the deficit

of ℓ would eventually result in a one-unit increase of the deficitof another leader, implying that

DRAFT



18

PSfrag replacements

Fig. 7. If f ′′ is not matched thenℓ, f ′, ℓ′, f ′′ would be a deficit-decreasing path (shown at the top of the figure, in which

matching edges are highlighted), contradicting the assumption that no follower in{ f1, . . . , fk−h} can be the first follower of a

deficit-decreasing path starting atℓ. Therefore, f ′′ is matched to a leaderℓ′′ (the bottom of the figure represents the case of

ℓ , ℓ′′).

G does not admit a stable matching, generating a contradiction.

Consider any followerf ′ ∈ { f1, . . . , fk−h}, and observe thatf ′ is matched inM since otherwise

ℓ f ′ would be a deficit-decreasing path starting atℓ. Let ℓ′ be the leader such that (ℓ′, f ′) ∈ M,

and observe that ifℓ′ is matched to all followers inNℓ′ thenℓ cannot match tof ′ without causing

a one-unit increase of the deficit ofℓ′. Therefore assume that inNℓ′ there is a followerf ′′ such

that (ℓ′′, f ′′) ∈ M for some leaderℓ′′ , ℓ′ ( f ′′ is matched inM since otherwiseℓ, f ′, ℓ′, f ′′ would

be a deficit-decreasing path starting atℓ, see Fig. 7). In the following two casesℓ cannot match

to f ′ without eventually increasing the deficit of another leader.

(i) ℓ′′ = ℓ. In this caseℓ, f ′, ℓ′, f ′′, ℓ is a cycle, and ifℓ matches tof ′ then the deficit of a

leader in the cycle must increase of one unit.

(ii) ℓ′′ , ℓ andℓ′′ is matched to all followers inNℓ′′ other thanf ′. In this case ifℓ matches to

f ′ then the deficit of a leader on the pathℓ, f ′, ℓ′, f ′′, ℓ′′ must eventually increase by a unit.

Therefore assume that inNℓ′′ there is a followerf ′′′ such that (ℓ′′′, f ′′′) ∈ M for some leader

ℓ′′′ , ℓ′′ (again, f ′′′ is matched inM since otherwiseℓ, f ′, ℓ′, f ′′, ℓ′′, f ′′′ would be a deficit-

decreasing path). Again,ℓ cannot match tof ′ without eventually increasing the deficit of another

leader if eitherℓ′′′ = ℓ or ℓ′′′ = ℓ′ (each similar to the case (i) above), or ifℓ′′′ is matched to all

followers in Nℓ′′ other thanf ′, f ′′ (similar to the case (ii) above).

By iteration, it follows thatℓ cannot match to any followerf ′ ∈ { f1, . . . , fk−h} without eventually

increasing the deficit of another leader, in contradiction with the existence of the stable matching

N. Hence, there are at leastdℓ(M) follower-disjoint deficit-decreasing paths starting atℓ.
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Fig. 8. Given the matching at the top of the figure (matching edges are highlighted), assume that bothℓ0 andℓ1 are poor, and

that f3 is unmatched. The deficit-decreasing pathsP = ℓ0, f1, ℓ1, f2, ℓ2, f3 and P′ = ℓ0, f1, ℓ1, f2 are not follower-disjoint. IfP′ is

solved (shown at the bottom of the figure), thenP is not solved, and vice versa.

To complete the proof of the lemma, we show that we can choosed(M) follower-disjoint

deficit-decreasing paths,dℓ(M) of which start at each leaderℓ with dℓ(M) > 0.

We proceed by contradiction, and make the following assumption. LetP be any set ofd(M)

deficit-decreasing paths,dℓ(M) of which start at each leaderℓ with dℓ(M) > 0 (denote byPℓ

the elements ofP starting atℓ); then, there are two leadersℓ, ℓ′ such that two pathsP ∈ Pℓ,

P′ ∈ Pℓ′ are not follower-disjoint. In order to reach the stable matching N starting fromM, a set

of d(M) deficit-decreasing paths must be solved. However, ifP is solved (by “flipping” matched

edges into unmatched edges, and vice versa) thenP′ is not solved, and ifP′ is solved thenP

is not solved (see Figures 8 and 9 for a schematic representation). If follows that N cannot be

reached fromM by solving thed(M) deficit-decreasing paths inP.

The last argument holds for any choice ofP, and this generates a contradiction on the

reachability ofN starting fromM (observe thatN can be reached fromM in finite time, e.g. by

a cat-and-mouse argument on the space of all the matchings ofG). Hence, we can choosed(M)

follower-disjoint deficit-decreasing paths,dℓ(M) of which start at each leaderℓ with dℓ(M) > 0,

and the lemma is proven.

B. Proof of Theorem 2

LetMn be the set of all the matchings ofGn such thatd(M) = 1. We proceed as follows. First,

we show that eachM ∈ Mn is uniquely identified by the set of the leaders that are not matched

with “horizontal” edges (that is, leadersℓi such that (ℓi , fi) < M). Second, we define treesT∗m,

m≥ 1 such that a random walk onT∗m starting at any node different than the root hits the root
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Fig. 9. If, under the matching highlighted in the figure, bothℓ and ℓ′ are poor andf1 is unmatched then there are two

deficit-decreasing paths that are not follower-disjoint (one starting atℓ ad ending atf1, the other starting atℓ′ ad ending atf1).

If one of them is solved then the other is not solved, and vice versa.

after a number of steps that is exponentially large inm with high probability. Third, for each

matchingM ∈ Mn we define a quantityh(M) that we call theheight of M and we argue that,

when initialized atM, the algorithm’s dynamics is equivalent to a random walk on the treeT∗h(M)

and reaching the stable matching ofGn corresponds to reaching the root ofT∗h(M) (and therefore

it requires a number of rounds that is exponentially large inh(M) with high probability). Finally,

by a counting argument, we show that for any constant 0< γ < 1 a 1−O(n2−(1−γ)n) fraction of

all the matchings inMn have height at leastγn, completing the proof of the theorem.

A. Properties of the matchings inMn.

Matchings inMn enjoy the following structural properties.

Lemma 3:Let M ∈ Mn. The following properties hold.

(1) There are a single poor leaderℓi∗(M) and a single unmatched followerℓ j∗(M) in M.

(2) 1≤ i∗(M) ≤ j∗(M) ≤ n.

(3) (ℓk, fk) ∈ M for all k < i∗(M) and allk > j∗(M).

(4) Let I(M) = { j0, j1, . . . , jK} be the sorted set of indexesj such that (ℓ j , f j) < M. Then

(a) j1 = i∗(M) and jK = j∗(M).

(b) (ℓ jk+1, f jk) ∈ M for all k ∈ {0, . . . ,K − 1}.

Proof: Property (1). Sinced(M) =
∑

ℓ∈L dℓ(M) = 1, there is a single poor leaderℓi∗(M) in M.

Sincecℓ = 1 for all ℓ ∈ L, each leaderℓ , ℓi∗(M) is matched to a single follower. It follows that

there is a unique unmatched followerf j∗(M).
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Property (2). Suppose by contradiction thati∗(M) > j∗(M). SinceNℓ j∗ (M)
= { f1, . . . , f j∗(M)} and

f j∗(M) is unmatched, leaderℓ j∗(M) is matched to one of the followers in{ f1, . . . , f j∗(M)−1}. Hence,

the j∗(M)−1 leadersℓ1, . . . , ℓ j∗(M)−1 are matched to at mostj∗(M)−2 out of thej∗(M)−1 followers

f1, . . . , f j∗(M)−1, and one of them is necessarily poor, contradicting Property (1). Therefore,i∗(M) ≤

j∗(M).

Property (3). We proceed by induction. Ifi∗(M) > 1, then (ℓ1, f1) ∈ M sinceNℓ1 = { f1} andℓ1 is

matched with a follower. Assume that ifi∗(M) > j then (ℓk, fk) ∈ M for all k ≤ j. If i∗(M) > j+1,

then, by the inductive assumption,ℓ j+1 can only be matched tof j+1 sinceNℓ j+1 = { f1, . . . , f j+1}.

This shows that (ℓk, fk) ∈ M for all k < i∗(M). If j∗(M) < n then (ℓn, fn) ∈ M since fn is matched

andℓn is the only leader connected tofn. Assume by induction that ifj∗(M) < j then (ℓk, fk) ∈ M

for all k ≥ j. If j∗(M) < j − 1, then, by the inductive assumption,f j−1 can only be matched to

ℓ j−1 since f j−1 is adjacent toℓ j−1, . . . , ℓn. This shows that (ℓk, fk) ∈ M for all k > j∗(M).

Property (4). IfK = 0 thenM = {(ℓi, fi) : i , i∗(M)}, j∗(M) = i∗(M), and properties (4a) and

(4b) trivially hold. Now considerK ≥ 1. LetI(M) = { j0, j1, . . . , jK} be the sorted set of indexes

j such that (ℓ j , f j) < M. By property (3), we have thatj0 = i∗(M) and jK = j∗(M), therefore

property (4a) follows. Hence, (ℓ j2, f j1) ∈ M since (ℓk, fk) ∈ M for all k ∈ { j1 + 1, . . . , j2 − 1} by

definition ofI(M), andNℓ j2
= { f1, . . . , f j2}. Property (4b) follows by induction.

Lemma 3 states that non-horizontal matching edges do not intersect. In particular, given a

matchingM ∈ Mn, the setI(M) represents the set of (the sorted indexes of) the leaders that are

not matched with horizontal edges (see Figure 10 for an example), ℓi∗(M) for i∗(M) = minI(M) is

the unique unmatched leader, andℓ j∗(M) for j∗(M) = maxI(M) is the unique unmatched follower.

Recall thatM∗n = {(ℓk, fk) : 1 ≤ k ≤ n} is the unique stable matching ofGn, and letI(M∗n) = ∅.

Lemma 3 implies that every matchingM ∈ Mn ∪ {M∗n} is uniquely identified by the setI(M).

In particular, the following result holds.

Lemma 4:Consider the mappingI(·) fromMn∪ {M∗n} to S =
{

A : A ⊆ {1, . . . , n}
}

defined by

M 7→ I(M). ThenI(·) is a bijection.

Proof: The stable matchingM∗n is associated toI(M∗n) = ∅. The mappingI(·) is injective

since if M,M′ ∈ Mn andM , M′ thenI(M) , I(M′). To see thatI(·) is surjective, fixK ≤ n−1

andA = {i0, i1, . . . , iK} ∈ S such that 1≤ i0 < i1 < . . . < iK ≤ n. The matchingM ∈ Mn such that

DRAFT



22

Fig. 10. An example of a matchingM of G6 with d(M) = 1. M is uniquely determined by the setI(M) = {2,4,6}, that

encodes the following:ℓ2 is not matched,ℓ4 is matched withf2, ℓ6 is matched withf4, f6 is not matched. Also note that

P(M) = ℓ2, f2, ℓ4, f4, ℓ6, f6 is the unique deficit-decreasing path relative toM.

I(M) = A is given by

M =
{

(ℓik+1, fik) : 0 ≤ k ≤ K − 1
}

∪
{

(ℓk, fk) : k < A
}

∈ Mn.

Remark 1:Lemma 3 and Lemma 4 imply that every matchingM ∈ Mn, I(M) = {i0, . . . , iK},

is associated to a unique deficit-decreasing path inM ⊕ M∗n relative toM, given by

P(M) = ℓi0, fi0, ℓi1, fi1, . . . , ℓiK , fiK .

Too see this, observe thatM\M∗n is given by the non-horizontal edges inM, while M∗n\M is

given by the horizontal edges that are not inM. Therefore, by Lemma 3,

M\M∗n =
{

(ℓi1, fi0), (ℓi2, fi1), . . . , (ℓiK , fiK−1)
}

,

M∗n\M =
{

(ℓi0, fi0), (ℓi1, fi1), . . . , (ℓiK , fiK )
}

,

and the set of edges inP(M) is equal to M ⊕ M∗n. The uniqueness ofP(M) follows since

I(M) is unique by Lemma 4 and there is no other way to connect the poor leaderℓi0 and the

unmatched followerfiK with a path. This suggests that, given a matchingM ∈ Mn, the unique

deficit-decreasing pathP(M) must be “solved” in order to reach the stable matching ofGn.

B. The tree T∗m

Definition 9: Let T1 be a labeled rooted tree with a singleton node with label 1. Inductively,

for i ≤ 2, let Ti be the labeled rooted tree whose root is labeled withi and its i − 1 children

DRAFT



23

are the roots of copies ofT1, . . . ,Ti−1. We defineT∗m to be the tree with a root with labelm+ 1

whose only child is the root of a copy ofTm (see Figure 11 for a visual representation). Letr∗

denote the root ofT∗m.

Fig. 11. The threeT∗m for m= 5.

We show that the hitting time ofr∗ for a random walk onT∗m starting at any nodeu , r∗

is exponential inm with high probability. For a nodeu , r∗, we call the edge that connectsu

to its parentu’s exit edge. For any subtreeTi ⊂ T∗m, let Zi be the random variable denoting the

number of steps that it takes for a walk starting at the root ofTi to exit Ti (that is, to hit the

parent of the root ofTi). The following lemma provides an exponential lower bound on Zi.

Lemma 5:There exist positive constantsα, γ > 0 such that, for alli ≥ 2,

Pr[Zi ≥ γ · 2
i/(α log2 i)] ≥ 1−

1
log i
.

Proof: We proceed by induction oni. For convenience, defineg(i) = α log2 i and f (i) =

γ · 2i/g(i) for someα, γ > 0. For anyα > 0 and i ≥ 2, we can chooseγ > 0 such thatf (i) ≤ 1;

therefore, asZi ≥ 1 with probability 1, the claim holds trivially for anyi ≤ i∗, where i∗ is a

suitably large constant.

Now consider anyi ≥ i∗ and suppose the claim holds up toi − 1. Every time the walk is on

the root ofTi, it exits Ti with probability 1/i (since the root ofTi has i neighbors: one parent

and i − 1 children). Therefore, lettingEt be the event that the firstt times the walk is on the

root of Ti it doesnot exit Ti, we have Pr[Et] ≥ 1− t/i. Let t = i/(2 logi), and letD j, 1≤ j ≤ t,
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be the event that, when it is on the root ofTi for the j-th time, the walk moves to the root of

one of the subtreesTi−g(i), . . . ,Ti−1 and takes at leastf (i − g(i)) steps to exit that subtree. For

1 ≤ j ≤ t, we have

Pr[D j | Et] ≥
g(i)

i
· Pr[Zi−g(i) ≥ f (i − g(i))]

≥
g(i)

i
·

(

1−
1

log(i − g(i))

)

,

by the induction hypothesis onZi−g(i). Letting χ j be the indicator function of the eventD j for

1 ≤ j ≤ t, the probability that at least two of the eventsD j happen, givenEt, is lower bounded

by:
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By union bound, we can write
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where the last step holds fori sufficiently large so that log(i − g(i)) ≥ 2. This implies that
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Therefore, we conclude that
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log i
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where the last step holds by choosingα sufficiently large. The claim follows since 2· f (i−g(i)) ≥

f (i).

Note that a random walk starting at any nodeu , r∗ has to exitTm before hittingr∗. Therefore,

an application of Lemma 5 toTm yields a lower bound to the hitting time ofr∗ when starting

at any nodeu , r∗.

Corollary 2: The hitting time ofr∗ of a random walk starting at any nodeu , r∗ is 2Ω(n/ log2 n)

with high probability.

C. The dynamics of the algorithm starting from M∈ Mn

For ease of presentation, we set the probability parametersof the algorithms top = q = 1.

Settingp = 1 means that a poor leader always proposes to a follower. Setting q = 1 means that

a follower always accepts an incoming request. Our result holds for any choice ofp andq.

By Lemma 4, every matchingM ∈ Mn ∪ {M∗n} is uniquely identified by the setI(M) = {k :

(ℓk, fk) < M}.

Definition 10 (The height of a matching):Let M ∈ Mn, I(M) = {i0, . . . , iK}. The heighth(M)

of M is defined as follows. IfK = 0 thenh(M) = 0. If K ≥ 1 thenh(M) = iK−1 ∈ {1 . . . , n− 1}.

For a matchingM ∈ Mn such thath(M) > 0 we can writeI(M) = {i0, . . . , h(M), iK}. For each

t ≥ 0, let M(t) be the matching at the beginning of roundt of the algorithm, and for ease of

notation letI(t) = I(M(t)). For a matchingM ∈ Mn let

τ∗(M) = min
{

t : M(t) = M∗n|M(0) = M
}

be the number of steps that the algorithm needs to reach the stable matching starting fromM.

Note that, withp = q = 1, t∗(M) = 1 for everyM ∈ Mn such thath(M) = 0 (that is,|I(M)| =

1), since according to the algorithm leaders prefer unmatched followers. We are interested in

relatingτ∗(m) andh(M) for every matchingM ∈ Mn such thath(M) > 0 (that is,|I(M)| > 1).

We study how the matching evolves over time through the Markov process{I(t) : 0 ≤ t ≤

τ∗(M)}. SinceI(M∗n) = ∅, τ∗(M) = min{t : I(t) = ∅}. The state space of the Markov process

is given by the setS defined in Lemma 4. The transition probabilities are characterized by the

following lemma.
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Lemma 6:Conditional onI(t) = I ∈ S, |I | > 1, the transition probabilities at timet are given

by

Pr
(

I(t + 1) = I ′
∣

∣

∣I(t) = I
)

=
1

min I
if I ′ ∈

{

I ∪ {k} : k < min I
}

∪
{

I\{min I }
}

,

and 0 otherwise. Moreover Pr(I(t + 1) = ∅|I(t) = ∅) = 1, and Pr(I(t + 1) = ∅|I(t) = I ) = 1 for

every I sich that|I | = 1.

Proof: The case ofI(t) = ∅ corresponds to the stable matchingM∗n, which is an absorbing

state for the Markov process. In the case of|I(t)| = 1, we have thath(M) = 0, and p = q = 1

implies that thatI(t + 1) = ∅.

Consider now|I | > 1. Conditional onI(t) = I , the poor leader isℓmin I and has degree minI

and neighborhoodNmin I = { f1, . . . , fmin I }, and chooses one of the followers inNmin I uniformly at

random. Ifℓmin I chooses followerfk for somek < min I then the leaderℓk becomes poor, since

by property (3) of Lemma 3ℓk was matched tofk in M(t), and we have thatI(t+1) = I ∪{k}. If

insteadℓmin I chooses followerfmin I (matched toℓmin(I\min I) in M(t) by property (4) of Lemma 3),

thenI(t + 1) = I\{min I }.

For every matchingM ∈ Mn such thath(M) > 0 andI(M) = {i0, . . . , iK}, define the matching

L(M) = {(ℓ j, f j) : j , iK} andτ(M) = min{t : M(t) = L(M)}, and observe thath(L(M)) = 0 and

τ∗(M) > τ(M) (in particular,τ∗(M) = 1+ τ(M) for p = q = 1).

For every matchingM such that|I(M)| > 1, letR(M) be the set of the matchings inMn that

can be reached fromM (after one or multiple steps). According to the transition probabilities

defined by Lemma 6, it is easy to see that

R(M) =
{

L(M)
}

∪
{

M′ ∈ Mn : I (M′) = A∪ {h(M), iK},A ⊆ {1, . . . , h(M) − 1}
}

.

Observe that everyM′ ∈ R(M)\{L(M)} has heighth(M′) = h(M). The following lemma charac-

terizes the one-to-one correspondence between matchings in R(M) and nodes of the treeT∗h(M).

Lemma 7:Consider the mappingω(·) from R(M) to T∗h(M) defined as follows. Letω(L(M)) =

r, wherer is the root ofT∗h(M). For M′ ∈ R(M)\{L(M)} andI(M′) = I , let ω(M′) be the node

of T∗h(M) with label minI and connected to the root with a path of nodes labeled by the sorted

indexes inI\{min I }. Thenω(·) is a bijection.

The proof is omitted since it directly follows from the construction of the treeT∗h(M) and the

mappingI(·).
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Lemma 8:The stochastic process{I(t) : 0 ≤ t ≤ τ(M)|M(0) = M} is equivalent to a random

walk on T∗h(M) starting atω(M).

Proof: It suffices to show that the transition probabilities between two matchingsM1,M2 ∈

R(M) are nonzero if and only if the nodesω(M1) andω(M2) are adjacent inT∗h(M). To prove

the “only if” direction, assume thatM1,M2 ∈ R(M) are such that there is a nonzero transition

probability from M1 to M2 (and therefore fromM2 to M1). Let I(M1) = I1 andI(M2) = I2.

According to the transition probabilities given above, there are two possible cases. In the first

case,I2 = I1 ∪ {k} for somek < min I1, andω(M1) is a child ofω(M1). In the second case

I2 = I1\{min I1} andω(M2) is the parent ofω(M1). The proof of the other direction is similar.

To summarize, the number of steps that the algorithm needs toreach the stable matching ofGn

starting fromM ∈ Mn with h(M) > 0 is upper bounded by the timeτ(M) to reach the matching

L(M), and reachingL(M) is equivalent to reaching the root ofT∗h(M) starting from the node

ω(M). By Corollary 2,τ(M) is exponentially large inh(M) with high probability. To complete

the proof of the theorem, we show that, for any constant 0< γ < 1, a 1− O(n2−(1−γ)n) fraction

of the matchingsM ∈ Mn haveh(M) ≥ γn. This is done through a counting argument.

D. The fraction of the matchings M∈ Mn such that h(M) ≥ γn

Let N be the number of matchings inMn. Fixed a constant 0< γ < 1, letMγ = {M ∈ Mn :

h(M) < γn} and letNγ = |Mγ|. For j = 0, . . . , n−1, let N( j) be the number of matchingsM ∈ Mn

such thath(M) = j. It follows that

N =
n−1
∑

j=0

N( j), Nγ ≤
⌈γn⌉−1
∑

j=0

N( j).

Lemma 9: N(0) = n and N( j) = (n− j)2 j−1 for all j = 1, . . . , n− 1.

Proof: N(0) = n since there aren matchingsM with h(M) = 0, that is, the matchings

{(ℓ j, f j) : j , k} for 1 ≤ k ≤ n.

Fix j ∈ {1, . . . , n−1}. By Lemma 4, a matchingM ∈ Mn with h(M) = j is uniquely identified

by a setI(M) = {i0, . . . , iK−1, iK} for some 1≤ K ≤ n− 1 andiK−1 = j. SinceI(·) is a bijection,

to determineN( j) we need to count all subsets of{1 . . . , n} of the form {i0, . . . , j, iK}. There are

2 j−1 subsets of{1, . . . , j −1} andn− j ways to chooseiK ∈ { j +1, . . . , n}, thusN( j) = (n− j)2 j−1.
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We now show that for any constant 0< γ < 1, the fraction of matchingsM ∈ Mn such that

h(M) < γn goes to zero exponentially fast inn

Lemma 10:Fix 0 < γ < 1. Then,Nγ/N = O(n2−(1−γ)n).

Proof: We first computeN.

N =
n−1
∑

i=0

N(i) = n+
n−1
∑

i=1

(n− i)2i−1 = n+ n
n−2
∑

i=0

2i −

n−1
∑

i=1

i2i−1.

The second sum can be shown (e.g. by induction) to be equal to (n − 1) + (n − 2)(2n−1 − 1).

Therefore,

N = n+ n(2n−1 − 1)− (n− 1)− (n− 2)(2n−1 − 1) = 2n − 1 = Ω(2n).

Similarly, lettingk = ⌈γn⌉ we have that,

Nγ ≤
k−1
∑

i=0

N(i) = n+ n
k−2
∑

i=0

2i −

k−1
∑

i=1

i2i−1

= n+ n(2k−1 − 1)− (k − 1)− (k− 2)(2k−1 − 1)

= 2k−1(n− k− 2)− 1 = O(n2⌈γn⌉).

Therefore, the fraction of matchings inMn with heighth(M) < γn is Nγ/N = O(n2−(1−γ)n).
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