
Integrated Solution to Quadrotor Stabilization and Attitude Estimation
Using a Pan and Tilt Camera

David Cabecinhas, Sérgio Brás, Carlos Silvestre, Paulo Oliveira, Rita Cunha

Abstract— This work proposes a cascaded architecture com-
prising a nonlinear attitude observer and a nonlinear controller
for position and attitude stabilization of a quadrotor. The
attitude estimates are obtained from rate gyros measurements,
corrupted by bias, and image coordinates from a set of
landmarks on the terrain, obtained by a controllable pan and
tilt camera. Lateral-longitudinal stabilization is achieved with
a nested saturation control law by feedback of the image
measurements, estimated body attitude, and corrected rate
gyros measurements. The vehicle is stabilized vertically using
an additional vertical position sensor. Due to the input-to-
state stability property of controller, the quadrotor position
and attitude are shown to converge to the desired equilibrium
point and the convergence is robust to the estimation errors.
Additionally, the pan and tilt camera is actively actuated to keep
the landmarks visible in the image sensor for most operating
conditions. The performance of the proposed ensemble is
illustrated with some simulation results.

I. INTRODUCTION

Over the last decades, the development of Unmanned
Aerial Vehicles (UAVs) has witnessed a remarkable evolu-
tion. The operation of such autonomous vehicles indoors
and in the vicinity of tall structures, where GPS signals
are unreliable or simply unavailable, calls for alternative
solutions based on local sensor measurements such as vision-
based control [1], [2]. In this work, we propose an inte-
grated feedback control architecture for the stabilization of a
quadrotor based on visual information and attitude estimates
provided by a nonlinear observer.

The literature on vision-based rigid-body stabilization
and estimation highlights important questions and indicates
possible solutions to i) keeping feature visibility along the
system’s trajectories for a large region of attraction [3], [4],
ii) minimizing the required knowledge about the 3-D model
of the observed object [5], iii) guaranteeing convergence in
the presence of camera parametric uncertainty and image
measurement noise [5], iv) establishing observability con-
ditions for attitude estimation [6]. A variety of algebraic
and iterative estimation methods based on point and line
correspondences have been proposed (see for example [7]).
Algorithms for attitude estimation greatly benefit from the
integration with inertial sensors, namely rate gyros and
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accelerometers as well as from the use of dynamic filtering
and observer techniques [8], [9], [10].

The quadrotor is a typical example of an underactuated
vehicle ideally suited for the development and test of new
control strategies due to its simplicity and maneuverability.
The simplified model commonly adopted for both quadrotors
and helicopters is a 6-DoF rigid body actuated in force and
torque with four inputs given by a scalar thrust and three
torque inputs. These rotorcraft have drawn the attention of
the control community in recent years. Several approaches
have concentrated on using nonlinear techniques, such as
backstepping [11], [12] and feedforward control [13], [14],
to solve the trajectory tracking problem for a single vehicle.

The main contribution of this paper is an integrated solu-
tion to motion stabilization and attitude estimation based on
rate gyro measurements and visual information from a set of
landmarks placed on the terrain, which are retrieved by a pan
and tilt camera. The proposed nonlinear observer estimates
the quadrotor attitude and the rate gyros bias, driving the
estimation error exponentially fast to the origin. The pan and
tilt camera controller differs from other solutions present in
the literature [2] as it does not require explicit estimation of
the camera’s position and velocity. In the proposed controller,
only measurements from the available sensors and estimates
from the attitude observer are used, instead of classic full-
state feedback. Notwithstanding, overall stability is still
attained due to the controllers robustness and Input-to-State
Stability (ISS) properties.

NOMENCLATURE

The rotation group is denoted by SO(3) ={
R ∈ R3×3 : RTR = I3,det(R) = 1

}
, where I3 denotes

the 3 × 3 identity matrix, and the associated Lie algebra
is denoted by so(3) and is composed by the 3 × 3 skew-
symmetric matrices so(3) =

{
K ∈ R3×3 : KT = −K

}
. The

skew-symmetric operator is denoted as S(x) : R3 → so(3)
such that S(x)y = x × y =, where x,y ∈ R3, whereas
the inverse map S−1(.) : so(3) → R3 is defined such that
S−1(S(x)) = x. The notation diag(a) describes a diagonal
matrix formed by placing the elements of a ∈ Rn in the
main diagonal. The Frobenius norm of matrices is denoted
by ‖M‖F . Finally, σ : R → R is a saturation function
that satisfies |σ′(x)| = |dσ(x)dx | ≤ 2 for all x, xσ(x) >
0 for all x 6= 0, σ(0) = 0, σ(x) = sign(x) for |x| > 1 , and
|x| < |σ(x)| < 1 for |x| < 1.

II. PROBLEM FORMULATION

Consider a fixed inertial frame {I} and a body frame
{B} attached to the vehicle’s center of mass. The config-
uration of {B} with respect to {I} is given by the pair



Fig. 1. Diagram of the camera and landmarks setup.

(R,p) = ( I
BR ,

IpB). Attached to the rigid body there is a
pan and tilt camera. The camera frame is denoted as {C}. Its
origin coincides with the camera’s center of projection, and
the z-axis is aligned with the optical axis. The observed scene
consists of four points whose coordinates in {I} are denoted
by Ixi ∈ R3, i ∈ 1, . . . , 4. Without loss of generality, the
origin of {I} is assumed to coincide with the centroid of the
feature points so that

∑4
i=1

Ixi = 0 and the landmarks are
assumed to belong to the x–y plane. The problem setup is
illustrated in Fig. 1.

A. Sensor Suite
We assume that a triad of rate gyros is installed onboard

the platform and that it is aligned with {B}, so that it
provides measurements of the body angular velocity ωB

corrupted by a constant unknown bias term b, such that
ωr = ωB + b, ḃ = 0.

As shown in Fig. 1, the camera can describe pan and tilt
motions corresponding to the angles α and β, respectively.
As such, the rotation matrix from {C} to {B} is given by

B

CR = RpanRtilt, (1)
Rpan = Rx(α), Rtilt = Ry(β)

where Rx(·) and Ry(·) denote rotation matrices about the
x-axis and y-axis, respectively. We denote the configuration
of {C} with respect to {I} by ( I

CR ,
IpC), where I

CR is the
rotation matrix from {C} to {I} and IpC the position of the
origin of {C} with respect to {I}. Then, the 3-D coordinates
of the feature points expressed in {C} can be written as
qi = I

CR
T Ixi + CpI , i ∈ 1, . . . , 4, where CpI = − C

I R
IpC ,

and, using the perspective camera model [8], the 2-D image
coordinates of those points yi ∈ R2 can be written as

[yi
T 1]T = δiAqi, (2)

where A ∈ R3×3 is the camera calibration matrix, assumed
to be known, and δi is an unknown scalar encoding depth
information and given by δi = (uT

3qi)
−1, u3 = [0 0 1]T .

B. Quadrotor Model
We model the quadrotor vehicle as a rigid body that is

actuated in force and torque. The kinematic and dynamic
equations of motion for the rigid body can be written as

Ṙ = RS(ωB) (3)
ṗ = Rv (4)
ω̇B = −J−1S(ωB)JωB + J−1n (5)

v̇ = −S(ωB)v +
1

m
f , (6)
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Fig. 2. Quadrotor vehicle setup.

where the position p is expressed in the inertial frame
{I}, R is the rotation matrix from {B} to {I}, and the
angular velocity ωB ∈ R3 and the linear velocity v ∈ R3

are expressed in the body frame {B}. The scalar m and
the matrix J ∈ R3×3 represent the quadrotor’s mass and
moment of inertia, f ∈ R3 and n ∈ R3 denote respectively
the external force and torque expressed in the body frame.
Aerodynamic drag forces due to the fuselage are neglected
given the low speeds at which the quadrotor operates.

Figure 2 shows a sketch of the quadrotor setup, together
with the force generated by each motor Fi and the direction
of rotation for each propeller. The bijective correspondence
between the motor forces and the total thrust T and torque
n = [n1 n2 n3]T can be found in [12]. The external force in
body coordinates is given by

f = −Tu3 +mgRTu3

where u3 = [0 0 1]T and g is the gravitational acceleration.

III. ATTITUDE OBSERVER

In this section, we present a nonlinear observer based on
[15]. The proposed observer is designed to match the rigid
body attitude kinematics by taking the form

˙̂
R = R̂S(ω̂B), (7)

where ω̂B is the feedback term designed to compensate for
the estimation errors. The attitude and bias estimation errors
are defined as R̃ = R̂RT and b̃ = b̂−b, respectively. Using
(3) and (7), the rotation error dynamics are given by

˙̃R = R̃S(R(ω̂B − ωB)). (8)

Some rotational degrees of freedom are unobservable
when features are all collinear. The following necessary con-
dition for attitude estimation based on image measurements
is assumed.

Assumption 1: There are at least four features of which
no three are collinear.

The feedback law is a function of the angular rate mea-
surements and the image coordinates of the landmarks. To
derive it, we start by defining the following matrices

X =
[
Ix1 · · · Ix4

]
, Y =

[
y1 · · · y4

1 · · · 1

]
,

where Ixi are the 3-D coordinates of the feature points
expressed in {I} and yi the corresponding 2-D image
coordinates. We can now state the following lemma.

Lemma 2: Let σ = [σ1 σ2 σ3 σ4]T ∈ R4 \ {0} and ρ =
[ρ1 ρ2 ρ3 ρ4]T ∈ R4 \ {0} be such that Y σ = 0, Xρ =



0, and 1Tρ = 0, where 1 = [1 1 1 1]T . Consider that the
features verify Assumption 1 and the camera configuration
is such that the image is not degenerate (neither a point nor
a line). Then, the depth variables δi can be written as

δi = α
ρi
σi
,

where α ∈ R, ρi 6= 0, and σi 6= 0 for i ∈ 1, . . . , 4.
Due to space constraints the proof of this lemma is omitted.
However, it can be found in [15].

Writing (2) in matrix form and using Lemma 2, we have
Y = A(I

CR
TX − CpI1

T )αD−1σ Dρ, where Dρ = diag(ρ).
From the feature centroid constraint X1 = 0, it follows that

αI

CR
TX = A−1Y D−1ρ Dσ(I4 −

1

4
11T ),

which encodes information about the attitude of the
camera up to a scale factor. We can use the proper-
ties of the rotation matrix and the positive depth con-
straint δi > 0 to obtain the normalized vector readings
Cx̄i = I

CR
T Ix̄i = sign(α)αI

CR
T Ixi/(‖αI

CR
T Ixi‖), where

sign(α) = sign
(
ρi
σi

)
and Ix̄i = Ixi/||Ixi||, i = 1, ..., 4.

Note that no discontinuity is introduced by the use of the
sign(.) function.

A. Observer Design
Consider the Lyapunov function

V =
‖R̃− I3‖2F

2
+

1

2kb
‖b̃‖2 = tr(I3 − R̃) +

1

2kb
‖b̃‖2,

where kb > 0. By using (8) and noting that tr(AS(a)) =
−S−1(A−AT )Ta, A ∈ R3×3, a ∈ R3, we obtain

V̇ = sT

ω(ω̂B − ωB) +
1

kb

˙̃
bT b̃, (9)

where sω = RTS−1(R̃− R̃T ).
Consider now the following attitude feedback law

ω̂B = ωr − b̂− kωsω = ωB − b̃− kωsω, (10)

where kω > 0. Applying (10) in (9) and defining
˙̂
b := kbsω, (11)

the Lyapunov function derivative becomes V̇ = −kω||sω||2.
Considering the feedback law (10) and the update law (11),
the closed loop attitude error dynamics can be written as

˙̃R = −kωR̃(R̃− R̃T )− R̃S(Rb̃)

˙̃
b = kbR

TS−1(R̃− R̃T )
(12)

Exploiting the results derived for Linear Time-Varying
(LTV) systems in [16], it can be shown that the trajectories
of the system (12) converge to the desired equilibrium point.
Global asymptotic stability of the origin is however pre-
cluded by topological limitations associated with the points
that verify ||R̃− I3||2F = 8 [17].

Theorem 3: Assume that ωB is bounded and ḃ = 0. Then,
for any initial condition that verifies

‖b̃(t0)‖2

8− ‖R̃(t0)− I3‖2F
< kb, (13)

the estimation error x̃ = (R̃, b̃) is bounded and ‖R̃(t) −
I3‖2F < 8 for all t ≥ t0. Moreover, the attitude and

bias estimation errors converge exponentially fast to the
equilibrium point (R̃, b̃) = (I3, 0) for any initial condition
satisfying (13).
The proof of this theorem is omitted due to space constraints.
However, it can be obtained following a similar reasoning of
the proof of Theorem 1 in [15].

Consider the identity QS−1(A−AT ) =
S−1(QAQT −QATQT ), where A ∈ R3×3, Q ∈ SO(3),
and the relation I

CR = RB
CR = IX̄CX̄†, where B

CR
is given by (1), CX̄ = [Cx̄1, . . . ,

Cx̄4,
Cx̄i × Cx̄j ],

IX̄ = [Ix̄1, . . . ,
Ix̄4,

Ix̄i × Ix̄j ], for any linearly
independent Ix̄i and Ix̄j . Using the following derivation,
the feedback term sω can be expressed as an explicit
function of the sensor readings and known quantities

sω = S−1(B

CR(CX̄†)T IX̄T R̂− R̂T IX̄CX̄†BCR
T ),

where CX̄† = CX̄T (CX̄CX̄T )−1.
Remark 4: Note that the conditions of Theorem 3 are

not restrictive, since ωB is intrinsically bounded due to the
practical limitation on the energy of the system and the
condition (13) can always be verified inside the almost global
domain of attraction by tuning the gains.

IV. PAN AND TILT CONTROLLER

In this section, we address the problem of keeping the
features inside the image plane by exploring the camera’s
ability to describe pan and tilt angular motions. The strategy
adopted to achieve this goal amounts to controlling the
camera pan and tilt angular velocities, α̇ and β̇, using directly
the image measurements yi and the angular velocity readings
ωr, so as to keep the image of the features’ centroid, denoted
as ȳ at a close distance from the center of the image plane.

We use the controller proposed in [15], which with the
proper redefinition of axes is given by the following expres-
sion[
α̇

β̇

]
= kc

[
0 − 1

cos β

1 0

]
ȳ−
[
1 0 − tanβ
0 1 0

]
RT

panω̂B, (14)

where ω̂B = ωr − b̂, kc > 0, and ȳ is bounded by the size
of the image frame.

This controller guarantees that ȳ converges to the center
of the image provided that the linear velocity of the camera
and the error of the rate gyros bias converge to zero. In fact,
in [15] it is shown that the controller is input-to-state stable
(ISS) with respect to v and qzb̃, where v is the camera’s
linear velocity and qz the projection of the features’ centroid
in the z-axis of the camera frame. The distance between the
image of the centroid and the origin is ultimately bounded
by ‖Πv/qz‖ and ‖b̃‖, where Π ∈ R3×3 is the x − y plane
projection matrix, and it converges exponentially fast to that
bound.

V. QUADROTOR CONTROLLER
The control objective consists of designing a control law

for the quadrotor actuations f and n, which ensures the
convergence of the horizontal position in frame {I} to
zero with the largest possible basin of attraction, while
maintaining the landmarks visible in the image sensor and
the vehicle’s vertical coordinate stable.

The proposed controller makes use of the unit quaternions
to represent the attitude, in contrast with the rotation matrix



parametrization used previously. Unit quaternions q ∈ S4,
are written in the form q =

[
q0 q

T
]T

, where the scalar part
q0 ∈ R is related to the rotation angle θ ∈ [0, π) and the
vector part q = [q1 q2 q3]T ∈ R3 to the axis of rotation
n ∈ S3 through

q(θ,n) =

[
q0
q

]
=

[
cos(θ/2)
n sin(θ/2)

]
.

The methodology adopted to address the quadrotor vehicle
control problem is in line with the state feedback controller
proposed in [13]. However, as the full system state is not
directly available for feedback, the controller is modified
to use the image measurements and attitude estimates to
stabilize the quadrotor position at the desired location.

A. Stabilization of the Vertical Error Dynamics

The control objective is to drive the vehicle to a given
reference altitude h?. Let h0 be the altitude of frame {I}.
Then, the altitude of the vehicle and its height in the inertial
frame are related by h(t) = h0 + z(t), where z(t) is the z-
coordinate of the vehicle in frame {I}. The dynamic equation
for the altitude,

mḧ = (1− 2q21 − 2q22)T −mg, (15)

is derived from the altitude definition and the linear dynamics
of the vehicle system represented in (4) and (6). The control
law for the thrust T drives the vehicle to a fixed altitude h?
through

T =
mg − k1(h− h?)− k2 ḣ

h−h0

1− (2q21 + 2q22)
(16)

where k1 and k2 are positive parameters. The resulting
closed-loop altitude dynamics are

mḧ = −k1(h− h?)− k2
h− h0

ḣ, (17)

which amount to a double integrator driven by a PD con-
troller with variable derivative gain.

A subsequent choice of the attitude control law guarantees
that the quadrotor never overturns, and thus 2q21 + 2q22 < 1
for all time, precluding the loss of altitude control through
thrust actuation. For now, we take that fact as an assumption
and state the following lemma, regarding the altitude control.

Lemma 5: Consider the dynamic system described by
the closed-loop system comprising of (15) and (16) with
k1, k2 > 0. If the initial conditions verify z(0) > 0, then the
control law is well defined and z(t) > 0 for all time, even
in the presence of attitude observer errors. Additionally, the
cascade of the attitude observer and the altitude controller is
globally exponentially stable.

Proof: Consider the auxiliar state

ξ = (h− h0) exp

(
1

k2

(
mḣ+

∫ t

0

k1(h(τ)− h?)dτ
))

and notice that, with the imposed closed-loop dynamics (17),
it has a constant value as ξ̇ = 0. Since ξ(t) = ξ(0) is positive
and the exponential of a number is always positive, it results
that h(t) − h0 > 0 (or equivalently z(t) > 0) for all time
and thus collisions with the ground are always avoided.

Global asymptotic stability of (h, ḣ) = (h?, 0) is estab-
lished from LaSalle’s invariance principle and the Lyapunov
function

V =
1

2
ḣ2 +

1

2
k1(h− h?)2,

which has a negative semi-definite time derivative. An addi-
tional consequence of the convergence of (h, ḣ) to (h?, 0)
and the constancy of the auxiliar state ξ is that z(t) =
h(t)− h0 > ε and for all time, for some ε > 0.

Furthermore, LTV system theory asserts that the conver-
gence is indeed exponential. Let x =

[
ḣ h− h?

]T
and

compute

ẋ =

[
A(t) B
−C 0

]
x =

[
− k2
z(t) −k1
1 0

]
x. (18)

Let P = 1
k2

and notice that

AT (t)P + PA(t) = −2
k2

k1z(t)
= −Q(t)

with Q(t) bounded as 0 < qm < Q(t) < qM . In these
conditions, the LTV system (18) is Uniformly Globally
Exponentially Stable [16].

The interconnection of the attitude observer and the alti-
tude subsystem can be regarded as a cascade of two exponen-
tially stable systems [18, Proposition 2.1] with k2

z(t) bounded
for all trajectories. In these circumstances, the cascade is
also exponentially stable. Finally, impact with the ground is
also avoided when the altitude subsystem is perturbed by the
orientation errors. This can be established by letting ∆1(t) be
the perturbations due to the estimation errors and considering
that the state
ξ = (h−h0) exp

(
1
k2

(
mḣ+

∫ t
0
k1(h(τ)− h?)−∆1(τ)dτ

))
is constant for the perturbed vertical dynamics

mḧ = −k1(h− h?)− k2
h− h0

ḣ+ ∆1(t).

B. Stabilization of the Lateral and Longitudinal Dynamics
The lateral-longitudinal-attitude dynamics of the quadrotor

vehicle, with the thrust defined as (16), are described by the
following system of equations

ẏ = vy, mv̇y = d(q)q1 +m(q)q2q3 + δy, (19)
ẋ = vx, mv̇x = −d(q)q2 +m(q)q1q3 + δx,

q̇0 = −1

2
qTωB, q̇ =

1

2
(q0I4 + S(q))ωB,

Jω̇B = −S(ωB)JωB + n,

where the components x, y, vx and vy are written in frame
{I},

d(q) =
2mg q0

1− (2q21 + 2q22)
, (20)

m(q) = − 2mg

1− (2q21 + 2q22)
,

and δx, δy are asymptotically vanishing signals defined as

δx =
2q1q3 + 2q0q2

1− (2q21 + 2q22)
(−k1(h− h?)− k2

ḣ

z
),

δy =
2q2q3 − 2q0q1

1− (2q21 + 2q22)
(−k1(h− h?)− k2

ḣ

z
)).



The control law for the attitude subsystem is chosen as
the proportional-differential law

n = KP (η −KDω̂B) (21)

where KP > 0 and KD > 0 are design parameters and
η = q?− q̂ is the attitude error with q? defined as the virtual
control input for the x − y system. The quadrotor attitude
subsystem in closed-loop with the control feedback (21)
results in the following dynamics, derived for the attitude
and angular velocity estimations,

˙̂q0 = −1

2
q̂T ω̂B

˙̂q =
1

2
(q̂0I4 + S(q̂))ω̂B

J ˙̂ωB = −S(ω̂B)Jω̂B + kP ((q? − q̂)− kDω̂B) + ∆2(t),

where the external input

∆2(t) = J(
˙̃
b + kω ṡω)− S(ω̂B)J(−b̃− kωsω)

− S(−b̃− kωsω)J(ω̂B − b̃− kωsω)

includes the errors resulting from the observer measurements
and vanishes exponentially fast. According to Proposition
5.7.1 in [13], proper tuning of the torque control law (21)
ensures boundedness of the attitude subsystem trajectories
and consequent stabilization of the vertical error dynamics,
even in the presence of observer errors. In addition, the
properly tuned control law ensures that the quadrotor does
not overturn for initial attitude and bias estimation errors
verifying

√
1
2 q̃0(0)2 + 1

2 b̃(0)T b̃(0) < ε.
To achieve convergence of the overall system, the virtual

control input q? is generated from the quadrotor position and
velocities by a nested saturation control law. Consider the
new state variables

ζ1 =
1

z

[
y
x

]
, ζ2 =

1

z

[
vy
vx

]
+ λ1σ(

K1

λ1
ζ1)− vz

z
ζ1,

where σ(x) = (σ(x1), . . . , σ(xn)) is a saturation function
and vz = ż. Notice that the states ζ1 and ζ2 are readily
obtained from x/z, y/z and Iv/z, whose estimates can be
derived from the camera sensor and attitude estimate.

Fix for q? the nested saturation structure

q? = −P2λ2σ(
K2

λ2
ζ̂2), (22)

where

P2 =

1 0
0 −1
0 0


and ζ̂2 is the estimate for ζ2 obtained from the image
measurements yi and the attitude estimate R̂. The time
derivatives of the states are then

ζ̇1 = ζ2 − λ1σ(
K1

λ1
ζ1),

mζ̇2 =
D

z

(
−P2λ2σ(

K2

λ2
ζ̂2) + η

)
+mK1σ

′(
K1

λ1
ζ1)ζ̇1 + δ1 + δ2 + ∆3,

where
D =

[
d(q) m(q)q3 0
m(q)q3 −d(q) 0

]

the exogenous inputs δ1 and δ2 are given by

δ1 =

[
δx
δy

]
/z, δ2 =

k1(h−h?)+k2
ḣ
z )

z ζ1 +m
v2z
z2 ζ1 −m

vz
z ζ̇1

and the errors due to the attitude estimator are encapsulated
in ∆3 = D

z q̃.
From definition (20) and the attitude and vertical con-

trollers, we have the bounds 0 < dL ≤ d(q, t) ≤ dU and
0 < zL < z(t) < zU . The following result is an adaptation
of Proposition 5.7.2 and Theorem 5.7.5 in [13] and gives
guarantees for the proposed quadrotor stabilization law.

Theorem 6: Let KD be fixed according to Proposition
5.7.1 in [13] and let K?

i and λ?i , i = 1, 2, be such that
the following inequalities are satisfied
λ?2
K?

2

<
λ?1
4
, 4λ?1K

?
1 <

1

m

dL

zU
λ?2
8
, 24

K?
1

K?
2

<
1

6

dL

dU
zL

zU
.

(23)
Then, there exist positive numbers K?

P and ε? such that,
taking

λi = εiλ?i and Ki = εK?
i , i = 1, 2, (24)

for all KP > K?
P and 0 < ε ≤ ε?, the state trajectories of

the system (19) in closed-loop with the controller defined by
(16), (21) and (22) converge asymptotically to the origin for
any initial condition z(0) > 0, (x(t), vx(t), y(t), vy(t)) ∈
R4, (q̂(0), ω̂B(0)) ∈ Q× Ω and |q̃0(0)| < q0(0).

Proof: The proof follows from the arguments in [13]
where the statement is proven for constant z(t) = Z and
exogenous disturbances δ2(t) = 0, ∆(t) = 0. The statement
of Theorem 6 is proven by noting that the additional dis-
turbances δ2(t) and ∆(t) are asymptotically vanishing. The
lateral-longitudinal subsystem does not have finite escape
time and the trajectory (ζ1(t), ζ2(t)) exists and is bounded
for any t > 0. Since the disturbance δ2(t) is asymptotically
vanishing, there exists a finite time T ? such that for t >
T ? the disturbances are within the bounds for which the
convergence of (ζ1, ζ2) to zero is ensured by using gains
(24), verifying (23). The remainder of the claims in the
theorem statement follows identically from [13].

Gathering the previous results regarding the pan and
tilt camera, stabilization of the vertical position, attitude
and lateral-longitudinal subsystems, we can now state the
following theorem which summarizes the main results of the
paper.

Theorem 7: Consider a quadrotor described by the dy-
namic system (3)-(6) equipped with a pan and tilt camera
modeled by (1) with dynamics (14), and apply the set
of controllers (14), (16), (21) and (22), using the attitude
and rate gyro bias estimator (10)-(11). Then, for any ini-
tial condition z(0) > 0, (x(t), vx(t), y(t), vy(t)) ∈ R4,
(q̂(0), ω̂B(0)) ∈ Q × Ω and |q̃0(0)| < q0(0) such that the
landmarks are visible in the image plane of the camera,
the vehicle’s position, attitude, velocities converge asymp-
totically to IpB = [0 0 h?−h0]T , I

BR = I3, vB = 0, ωB =
0, respectively, whereas the camera’s velocity and image
coordinates converge to ωC = 0 and ȳ = 0, respectively.

Proof: The stated result follows immediately from
Theorems 6 and 3. Theorem 6 states that convergence of
the vehicle position and velocity to zero is achieved, even in
the presence of attitude estimation errors. Convergence of the



landmarks’ centroid image coordinates to zero is achieved if
the vehicle velocity and bias error converge to zero, which
is guaranteed by Theorem 3.

VI. SIMULATION RESULTS
In this section, we present the results from a simulation

run of the proposed control architecture. At the initial
configuration the quadrotor is assumed at rest. The camera
points towards a set of landmarks that are visible and the
centroid of the landmarks is not coincident with origin of the
image plane. The objective of the simulation is to hover the
quadrotor over the centroid of the landmarks at a reference
vertical position. The vehicle parameters are m = 1 kg,
J = 0.5I3 kg m2, λ1 = 10, λ2 = 0.3, K1 = 0.3, K2 = 0.3,
KP = 10, KD = .5, k1 = 0.1 and k2 = 6.

Figure 3 presents the time evolution of the quadrotor
position error expressed in inertial coordinates. We can verify
that the error converges from the initial e = [8 − 6 − 3]T m
to zero and is negligible after about 20 seconds.
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Fig. 3. Inertial position error of the quadrotor.

The position of the landmarks’ centroid in the image
plane is displayed in Figure 4. The centroid ȳ converges
asymptotically to the origin as the velocity of the quadrotor
converges asymptotically to zero. The disturbance effect of
the quadrotor linear velocity and observer errors on the time
evolution of ȳ can be observed in the figure by noting that
the convergence to the origin is not monotonic.
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Fig. 4. Landmarks’ centroid position in image coordinates.

VII. CONCLUSIONS
This paper proposed a cascaded architecture comprising

a nonlinear attitude observer and a nonlinear controller for
the stabilization of a quadrotor vehicle based on image
measurements of a set of landmarks obtained from a pan
and tilt camera and biased rate gyros. The vehicle was
stabilized vertically to a given altitude with a PD control law
based on image measurements and a vertical position sensor.
The lateral-longitudinal stabilization was achieved with a
nested saturation control law using feedback of the image
measurements, estimated body attitude and angular rate. Both

controllers were shown to be ISS with respect to the attitude
and rate gyros bias estimation error, which allows for the
closed-loop stability of the cascaded architecture. During
the whole stabilization procedure the pan and tilt camera
was actuated so as to keep the image of the landmarks’
centroid at the center of the image plane. Simulation results
exhibited good performance and attested the applicability of
the proposed technique.
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