
Ensuring Stability in Networked Systems with Nonlinear MPC for
Continuous Time Systems
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Abstract— For networked systems, the control law is typically
subject to network flaws such as delays and packet dropouts.
Hence, the time in between updates of the control law varies
unexpectedly. Here, we present a stability theorem for nonlinear
model predictive control with varying control horizon in a
continuous time setting without stabilizing terminal constraints
or costs. It turns out that stability can be concluded under the
same conditions as for a (short) fixed control horizon.

I. INTRODUCTION

In recent years, networked control systems (NCS) received
growing popularity due to their lower implementation costs
and greater interoperability compared to standard control
systems, cf. [8]. NCS designs have been implemented in
different areas such as robotics, automotive and aeronautical
applications, see, e.g., [11], [12]. On the backside, however,
the stability and performance analysis of feedbacks designed
for networked control systems is more complex, cf. [18].

In this paper we investigate stability and performance of a
nonlinear model predictive controller (MPC) in a prediction
consistent network scheme. By now, MPC has been under-
stood quite well even in the nonlinear case, see, e.g. [4],
[15]. The beauty of the method lies in its simplicity: First,
an optimal control is computed over a finite optimization
horizon. Then, a portion of this control is implemented —
throughout this paper the length of this portion is called
control horizon — and last the optimization horizon is shifted
in time rendering the method iteratively applicable. Predic-
tion consistency formalizes the equivalence of the control
input history for the actuator and the controller. Due to
computing and transmission times, delays and dropouts, this
equivalence is subject to different time levels within the NCS
components. Hence, the control histories do not coincide
automatically but this property can be forced using certain
communication schemes, cf. [1], [6], [14]. At the center of
these schemes is the requirement of long control sequences
being transmitted from the controller to the actuator. MPC
is ideally suited to obtain such a sequence since it not only
delivers such a control by construction, but its internal model
can also be used to compensate for time delays between the
NCS components.

The prediction consistent approach naturally leads to the
fact that the control horizon varies over time. The goal
of this paper is to provide the theoretical foundation for
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ensuring stability of MPC without stabilizing terminal costs
or constraints for such varying control horizons in a nonlinear
continuous time setting. To this end, we extend results from
[16] where a stability condition was introduced for a fixed,
typically short control horizon to the networked context. In
particular, the condition allows us to prove stability for a
large range of possibly time varying control horizons in
analogy to [7] where the same assertion was shown for
discrete time systems. This main result is complemented by
an analysis of structural properties with respect to the over-
shoot bound and the decay rate of the imposed controllability
condition.

The paper is organized as follows. In Section II the
detailed problem formulation is stated. The results from [16]
are briefly summarized in Section III and then extended to the
time varying case in Section IV. Finally, we show numerical
results to illustrate our results and draw some conclusions.

II. PROBLEM SETTING

We consider a nonlinear control systems governed by a
differential equation

ẋ(t) = f(x(t), u(t)). (1)

Here, x(t) and u(t) denote the state and the control at
time t ≥ 0, respectively. The system dynamics is given
by f : Rn × Rm → Rn, state and control constraints are
represented by suitable subsets X ⊂ Rn and U ⊂ Rm,
respectively. The trajectory which emanates from initial state
x0 and is manipulated by the control function u : R≥0 → Rm
is denoted by x(t;x0, u). We call a control function u
admissible for x on the interval [0, T ) if the conditions

x(t;x, u) ∈ X, t ∈ [0, T ], and u(t) ∈ U, t ∈ [0, T ), (2)

hold which is denoted by u ∈ Ux([0, T )). Furthermore, a
control function u : R≥0 → Rm is said to be admissible for
x if, for each T > 0, u ∈ Ux([0, T )) holds for its restriction
to [0, T ). Then, we write u ∈ Ux([0,∞)).

Here, we consider a networked situation, that is System (1)
is connected to an external controller via a network which
may be subject to delays and packet dropouts. Within the
network, we suppose the clocks at sensor, controller and
actuator to be synchronized, see [19, Section III.C] for a
relaxation of this assumption. These clocks are denoted by
ts, tc and ta, respectively.

Our goal is to stabilize System (1) at an equilibrium x? for
which we suppose that a control input u? exists satisfying
f(x?, u?) = 0. To solve this task in an optimal fashion, we



introduce continuous running costs ` : Rn × Rm → R≥0

which satisfy

`(x?, u?) = 0 and inf
u∈Rm

`(x, u) ≥ η(‖x− x?‖), x 6= x?,

for a K∞-function η. As usual, a continuous function η :
R≥ → R≥0 is said to belong to K∞ if η(0) = 0, it is strictly
increasing, and unbounded. Utilizing the running costs `, we
define the cost functional

J∞(x, u) :=
∫ ∞

0

`(x(t;x, u), u(t)) dt

which we wish to minimize for a given initial value x = x0 ∈
Rn. The corresponding optimal value function is denoted by

V∞(x) := inf
u∈Ux([0,∞))

J∞(x, u). (3)

Since optimal control problems on an infinite time horizon
are computationally hard, we use model predictive control
(MPC) in order to approximately solve this task. To this
end, we firstly set x̂ := x0. Then, our MPC scheme consists
of the following three steps:
• Compute a minimizing control function u? for the

optimal control problem on a truncated and, thus, finite
prediction horizon T depending on x̂, i.e.

min
u∈U x̂[0,T )

JT (x̂, u) = min
u∈U x̂[0,T )

∫ T

0

`(x(t; x̂, u), u(t))dt.

(4)
• Define the MPC feedback law µT : [0, T )×Rn → Rm

by µT (t, x̂) := u?(t), t ∈ [0, T ). Then, for given
control horizon δ ∈ [0, T ], implement the first piece
u?(t)|t∈[0,δ) of the computed control at the plant in
order to obtain

xµT,δ(δ; x̂) = x(δ; x̂, u?).

Whenever we want to reflect the control horizon δ in
the notation we write µT,δ = µT .

• Shift the prediction (optimization) horizon forward in
time by δ and obtain the new state measurement x̂ which
coincides in nominal MPC with xµT,δ(δ; x̂).

Iterative application of this procedure generates a solution
on the infinite time horizon. The resulting input signal
and trajectory at time t are denoted by µMPC(t;x0) and
xMPC(t;x0), respectively. Here, we tacitly assume that Prob-
lem (4) is solvable and the minimum is attained in each step
of the proposed MPC algorithm. For a detailed discussion of
feasibility issues we refer to [4], [15].

In order to compensate for the mentioned network flaws,
we utilize a communication protocol which transmits time
stamped information between the network components: For
one, the sensor transmits the latest state measurement x̂ to-
gether with the measurement time instant ts to the controller.
Secondly, the controller sends predicted control functions
µT,∆,σ = u?[0,∆) with δ ≤ ∆ ≤ T where σ ∈ R corresponds
to the time at which the control should be applied. Here,
we assume that the controller computes the input functions
µT,∆,σ at a predefined sampling rate (typically with sampling
time << ∆) based on the most recent measurement available

in the buffer. To store these controls, we add a buffer to the
actuator and to the controller, cf. Fig. 1.

Fig. 1. Scheme of the networked control system

The idea of introducing time stamps is the following:
Given the latest measurement time instant ts, we can use the
synchronized clocks to compute the transmission delay τsc
from sensor to controller. Now, in order to be implementable,
we require that σ in the computation of µT,∆,σ is chosen
such that the control function µT,∆,σ arrives at the actuator
buffer at a time ta ≤ σ. To accomplish this, we need to
know the computing and transmission delays τsc, τc and
τca. Since the latter delays are not known at computation
time, bounds τc

max and τca
max are imposed which gives

us σ = ts + τsc + τc
max + τca

max, see also Fig. 2 for a
schematical sketch. Now, we use a model based predictor

Fig. 2. Timeline connections within the scheme

within our controller as in [1], [13], [14], [17] to compensate
for these delays. If τc + τca > τc

max + τca
max holds, the

packet is considered to be lost.
While the actuator buffer allows us to store µT,∆,σ in order

to compute the control input

u(t) = µT,∆,σ(t− σ, x(σ)) (5)

the role of the controller buffer is to establish the following
consistency property:

Definition 1: (i) A feedback control µT,∆,σ(·, x(σ)) is
consistently predicted if the control ũ[ts,σ) used for the
prediction of x(σ) in the controller is identical to the control
u[ts,σ) applied by the actuator.
(ii) A networked control scheme is prediction consistent if
at each time t ∈ R the applied control in the actuator (5)
is well defined, i.e. t ≤ σ + ∆, and µT,∆,σ is consistently
predicted.
The concept of prediction consistency allows us to separate
the analysis of the feedback law, e.g., in terms of stability
and performance, from the influence of the network on the
closed–loop, e.g., in terms of robustness, cf. [2]. Examples



for prediction consistent network arcitectures can be found,
e.g., in [1], [6], [14].

Note that MPC is ideally suited for such an application.
For one, a model of the plant is already at hand, i.e. the
prediction of the state measurement x̂ can be done by
evaluating the system dynamics (1) using the control stored
in the controller buffer. Secondly, the outcome of the MPC
algorithm is already an optimal control defined on a control
horizon of length T . Hence, for ∆ ≤ T a control signal of
length ∆ is readily available for transmission.

The delays τsc and τca and thus the length δ of the portion
of each µT,∆,σ used at the actuator may vary with time
depending on the current network load. In principle, one
could make this value independent of time by setting δ = ∆,
however, for robustness reasons it is desirable to always use
the most recent control input, i.e., to keep δ as small as
possible [2].

Hence, time varying control horizons δ should be con-
sidered and our goal is thus to find a condition which
ensures asymptotic stability of the MPC closed–loop in this
situation. To this end, we aim at employing the value function
VT (·) as a common Lyapunov function and show the relaxed
Lyapunov inequality

VT (xµT (δ; x̂)) ≤ VT (x̂)− α
∫ δ

0

`(xµT (t; x̂), µT (t, x̂)) dt

(6)
with α ∈ (0, 1] for each feasible state x ∈ X and all δ ∈
[τc, T − τc], cf. [5] for a discrete setting.

III. RECAP

Our main tool in order to establish the relaxed Lyapunov
Inequality (6) is a stability condition introduced in [16] for
fixed control horizon δ. Assumption 2 is needed to state the
respective result.

Assumption 2: Let C ≥ 1 and µ > 0 be given. Suppose
that, for each x ∈ X and t ∈ R≥0, a control function ux ∈
Ux[0,∞) exists which satisfies

`(xux(t;x), ux(t)) ≤ Ce−µtmin
u∈U

`(x, u) =: Ce−µt`?(x).

Assumption 2 is an exponential controllability condition
in terms of the stage cost with overshoot C and decay rate
µ. Then the main result deduced in [16] reads as follows:

Theorem 3: Suppose that η(‖x − x?‖) ≤ `?(x), x ∈ X ,
with η ∈ K∞ and Assumption 2 hold. Furthermore, let T >
δ > 0 and α ∈ (0, 1) be chosen such that αT,δ given by

1−
(
eµδ−1

) 1
C(

eµT −1
) 1
C−
(
eµδ−1

) 1
C

·
(
eµ(T−δ)−1

) 1
C(

eµT −1
) 1
C−
(
eµ(T−δ)−1

) 1
C

(7)
satisfies the condition αT,δ ≥ α. Then, for each x0 ∈ X ,
the MPC closed–loop solution xMPC

µT,δ
(·;x0) is asymptotically

stable and satisfies the suboptimality bound

JMPC
∞ (x0) =

∫ ∞
0

`(xMPC
µT,δ

(t;x0), µMPC
T,δ (t;x0))dt ≤ V∞(x0)

α
.

(8)

Inequality (8) gives a performance estimates which com-
pares the resulting MPC closed–loop costs with the theoret-
ically achievable minimal costs on the infinite time horizon.
Here, the monotonicity of the optimal value function VT (·)
in the prediction horizon T — an inherent property of
unconstrained MPC schemes — is crucial in order to deduce
this bound on the, in general, unknown quantity V∞(·). Note
that, for given suboptimality index α ∈ (0, 1), the stability
condition αT,δ ≥ α always holds for a sufficiently large
prediction horizon T , cf. [16, Section 4.1].

IV. RESULTS

As pointed out in the previous section, in the networked
context we would like to have a stability criterion for time
varying control horizon δ. Unfortunately, the stability con-
dition presented in the previous Section III assumes a fixed
control horizon. In this section we show how to extend the
result to varying δ. In particular, we show that the inequality
αT,δ ≥ α for some control horizon δ ∈ (0, T ) implies
αT,δ ≥ α for every δ ∈ [min{δ, T−δ},max{δ, T−δ}]. This
result is the key to derive a stability theorem for time varying
control horizons without imposing additional assumptions.

To this end, we show symmetry and monotonicity prop-
erties of the performance bound αT,δ with respect to the
control horizon δ. Indeed, symmetry is a direct consequence
of the presented formula.

Corollary 4: The performance index αT,δ given by For-
mula (7) satisfies αT,δ = αT,T−δ , i.e. αT,δ is symmetric with
symmetry axis δ = T/2.

In contrast to the symmetry property given in Corollary
4, deducing monotonicity of Formula (7) in δ on (0, T/2]
is not straightforward. To this end, we apply results from
[5] and [20]. In the first of these references a discrete
time counterpart of Theorem 3 was presented based on a
corresponding version of Assumption 2. In the second article,
the relation between both the discrete and continuous time
approaches was investigated. To this end, so called iterative
refinements were used, i.e. a sequence of discretizations such
that each element is a partition of its predecessor. Then,
monotone convergence of the corresponding suboptimality
bounds to αT,δ given by Formula (7) was shown for the
discretization parameter tending to zero. We combine these
results to show that monotonicity carries over from the
discrete to the continuous time setting.

Proposition 5: For δ ∈ (0, T/2), the performance es-
timate αT,δ given by Formula (7) has the monotonicity
property

αT,δ ≤ αT,δ̃ for δ̃ ∈ [δ, T/2]. (9)

Proof: We show (9) for T, δ, δ̃ ∈ Q. The assertion for
real values T, δ, δ̃ ∈ R then follows from the fact that Q is
dense in R and that αT,δ is continuous in T and δ.

Consider T, δ, δ̃ ∈ Q with δ̃ ∈ [δ, T/2]. Since δ and δ̃
are rational numbers, there exist τ ∈ Q and m, m̃,N ∈ N
such that mτ = δ, m̃τ = δ̃ Nτ = T hold, i.e. τ is a
common denominator. Then, using the abbreviations Nk :=



2kN , mk := 2km, we define αk = αk(N,m) by

1−

Nk∏
mk+1

(γki − 1)
Nk∏

Nk−mk+1

(γki − 1)[
Nk∏

mk+1
γki −

Nk∏
mk+1

(γki − 1)
][

Nk∏
Nk−mk+1

γki −
Nk∏

Nk−mk+1

(γki − 1)
]

(10)
with γki := C

∑i−1
n=0 σ

2−k with σ := e−µτ ∈ (0, 1).
Analogously, α̃k = αk(N, m̃) is defined with m̃k := 2km̃
instead of mk. Summarizing, αk and α̃k only deviate in the
parameters m and m̃. Furthermore, note that m ≤ m̃ holds.

Formula (10) represents a discrete time counterpart of
Formula (7), cf. [20] for details. In particular, αk and
α̃k are monotonically increasing in k, cf. [20, Proposition
3.3]. Additionally αk and α̃k converge to αT,δ and αT,δ̃ ,
respectively, cf. [20, Theorem 3.2]. Next, we can use the
fact that the discrete time suboptimality bounds αk(N, ·),
k ∈ N0, are monotonically increasing in the parameter m
and, thus, αk = αk(N,m) ≤ αk(N, m̃) = α̃k holds for
each k ∈ N0, cf. [5, Proposition 7.3]. Hence, this inequality
also holds for the limit, i.e.

αT,δ = lim
k→∞

αk(N,m) ≤ lim
k→∞

αk(N, m̃) = αT,δ̃

which shows (9) for T, δ, δ̃ ∈ Q.
Note that αT,δ defined by Formula (7) is differentiable on

(0, T ). From Proposition 5 we can thus conclude ∂αT,δ
∂δ ≥ 0

for all δ ∈ (0, T/2] and ∂αT,δ
∂δ ≤ 0 on [T/2, T ).

Remark 6: Note that the discretization procedure used in
the proof of Proposition 5 was employed in a purely the-
oretical fashion. Checking the assumptions on the (discrete
time) dynamics from [20] is not needed since we only use
properties of Formula (10) which are independent of its
connection to discrete time dynamics.

Combining Corollary 4 and Proposition 5 yields the fol-
lowing theorem as a direct consequence.

Theorem 7: Let Assumption 2 and αT,δ ≥ α > 0 hold
for a minimal control horizon δ ∈ (0, T ). Then, αT,δ ≥ α
holds for all δ ∈ [δ, T − δ]. Hence, if the stability condition
αT,δ ≥ α holds for a desired guaranteed performance bound
α, then at least the same performance can be guaranteed for
all control horizons δ ∈ [δ, T − δ] and, thus, also for time
varying control horizons (δi)i∈N0 ⊂ [δ, T − δ].

Proof: Combining the properties shown in Corollary 4
and Proposition 5 immediately implies the claimed inequality
αT,δ ≥ αT,δ ≥ α. The assertion for time varying control
horizons can be concluded analogously to the stability theo-
rem for fixed δ, cf. [16], with the same modifications being
carried out in [5] to extend the discrete time stability theorem
from fixed to time varying control horizon (VT (·) is used as
a common Lyapunov function).

Remark 8: It is possible to replace the exponential con-
trollability Assumption 2 by alternative controllability con-
ditions. In this case, however, in the continuous time setting
no closed formulas for αT,δ as in Theorem 3 are known and
thus checking monotonocity may become a difficult task.

Remark 9 (Sampled-data systems): If a sampled-data im-
plementation of system (1) is necessary, the methodology
proposed in [20] can be used to determine the required
sampling rate such that the continuous time estimate is
approximated arbitrarily well. This allows to transfer our
results to a sampled-data framework.

So far, we showed that using larger control horizons is
not harmful with respect to the performance. Next, for a
given prediction horizon, we compute parameter combina-
tions (C, µ) for which stability is ensured by Theorem 3 in
dependence of the control horizon δ, cf. Fig. 3.

Fig. 3. Parameter pairs (C, σ) for which αT,δ ≥ 0 is ensured by Theorem
3 for T = 1.

The respective structurally different impact of the over-
shoot bound C and the decay rate µ from Assumption 2 is
investigated in the next two propositions.

Proposition 10: Let a decay rate µ > 0 and times T ≥
δ > 0 be given. Then, if Assumption 2 is satisfied with
a sufficiently small overshoot bound C ≥ 1 the stability
condition αT,δ > 0 is satisfied and, as a consequence,
asymptotic stability of the MPC closed–loop is guaranteed.

Proof: Let C be equal to 1. Then, αT,δ from (7) equals

αT,δ = 1− (eµδ − 1)(eµ(T−δ) − 1)[
eµδ(eµ(T−δ) − 1)

] [
eµ(T−δ)(eµδ − 1)

]
= 1− e−µT > 0.

Since (7) is continuous with respect to C, choosing the
overshoot C > 1 sufficiently close to one ensures αT,δ > 0
and, thus, the assertion.

Note that the performance estimate is bounded by 1−e−µT
independent of the overshoot C. Hence, a sufficiently large
prediction horizon T may be needed in order to guarantee
a desired suboptimality bound α ∈ (0, 1). Moreover, the
obtained bound does not depend on the control horizon δ.

In the following proposition the roles of C and µ are
reversed. In contrast to the previous observation that, for
given decay rate µ and prediction horizon T , the maximal
achievable performance was bounded, here, an arbitrary
performance α ∈ (0, 1) can be obtained by choosing the
decay rate appropriately without prolonging the prediction
horizon T or changing the overshoot C.



Proposition 11: Let an overshoot C ≥ 1, times T ≥ δ >
0 and a desired performance bound α ∈ (0, 1) be given.
Then, if Assumption 2 is satisfied with a sufficiently large
decay µ > 0 the condition αT,δ ≥ α is satisfied.

Proof: Let the function f : R>0 → R be defined
by f(x) = x1/C . Then, its first derivative is given by the
monotonically decreasing function

f ′(x) =
1

Cx1−1/C
.

Consequently, for real numbers x̄ ≥ x > 1, the inequality
f(x)− f(x− 1) ≥ f(x̄)− f(x̄− 1) holds which implies

(eµT−1)1/C− (eµδ−1)1/C ≥ (eµT )1/C− (eµδ)1/C,

(eµT−1)1/C− (eµ(T−δ)−1)1/C ≥ (eµT )1/C− (eµ(T−δ))1/C.

Using these inequalities and the fact that the nominator
of the second summand in Formula (7) is smaller than
(eµδ)1/C(eµ(T−δ))1/C = (eµT )1/C leads to the estimate

αT,δ ≥ 1− (eµT )1/C

(eµT )1/C
[
(eµ(T−δ))1/C − 1

] [
(eµδ)1/C − 1

]
= 1−

([
(eµ(T−δ))1/C − 1

] [
(eµδ)1/C − 1

])−1

.

Since the right hand side of this expression converges to one
for µ approaching infinity, a (sufficiently large) decay rate µ
exists such that αT,δ ≥ α is ensured.

Propositions 10 and 11 provide some insight into the
structure of the proposed controllability Assumption 2. The
integral

∫ T
0
Ce−µt dt is the destinctive feature. This quantity

converges to zero for µ approaching infinity. For given µ,
however,

∫ T
0
e−µt dt is a lower bound. This explains why,

independently of the overshoot C, the performance guarantee
cannot be arbitrarily well. Note that Proposition 11 cannot
be obtained in a discrete time setting [5].

V. EXAMPLE

We illustrate our results by computing the α-values in the
relaxed Lyapunov Inequality (6) along simulated trajectories
for various control horizon sequences and comparing them
with our theoretical findings. We consider a continuously
stirred tank reactor (CSTR) with energy balance and reaction
A→ B given by the dynamics

ẋ1 =
q(xf1 − x1)

V
− k0x1e

−Ea/x2

ẋ2 =
q(xf2 − x2)

V
+

h

ρ · c
k0x1e

−Ea/x2 +
α

V · ρ · c
(u− x2)

where the states x1 and x2 denote the concentration in mol
m3

and the temperature in K, and the control u corresponds to
the temperature of the cooling jacket in K, cf. [9], [10].

Here, the aim is to stabilize the equilibrium x? =
(0.5, 350) and u? = 300. The system is subject to the
physically motivated state constraints X = [0, 1] × [0,∞).
Additionally, control constraints U = [250, 450] are imposed.
The control u is considered to be piecewise constant on
intervals of length δ = 10−2. The optimal control in each
MPC step is computed over an optimization horizon T = 0.3

name symbol quantity unit
flowrate q 100 m3/sec

CSTR volume V 100 m3

pre-exponential factor k0 7.2 · 1010 1/sec
activ. energy [gas const.] Ea 8750 1/K

heat of the reaction h 5 · 104 J/mol
A/B mixture density ρ 1000 kg/m3

A/B mixture heat capacity c 0.239 J/(kg ·K)
heat transfer α 5 · 104 W/K

feed concentration xf1 1 mol/m3

feed temperature xf2 350 K

TABLE I
PARAMETERS FOR THE CSTR EXAMPLE.

(although the CSTR can be practically stabilized using MPC
with T = 0.02, we use the larger T in our simulations in
order to have more flexibility in choosing δ).

We use the initial value x0 = (0.35, 370) and define the
running costs via

`(x, u) =
(
x?2
x?1

)2

(x− x?1)2 + (x− x?2)2 + 10−3(u− u?)2

which render the state components equally weighted. The
error tolerance for the used optimization and integration
method were set to 10−7 and 10−6, respectively. Moreover,
we added a truncation region of the stage costs ` of ε =
10−12 to compensate for a possible practical stability region
and numerical errors, cf. [3, Theorem 21] for details. The
performance index αT,δ can then be evaluated along the
simulated closed–loop trajectory via

αT,δ = inf
n∈{n|∃k∈N0:n=kδ}

αT,δ(n) (11)

where the local performance index αT,δ(n) is given by

αT,δ(n) =
VT (xµ(nδ;x0))− VT (xµ((n+ 1)δ;x0))

δ∫
0

(`(xµ(t;xµ(nδ;x0)), µ(t;xµ(nδ;x0))))dt− ε

with µ = µT,δ if the denominator of the right hand side is
strictly positive and αT,δ(n) = 1 otherwise. Note that αT,δ
is negative if the value function increases.

Fig. 4 shows the closed–loop solution in dependency
of different fixed and time varying control horizon se-
quences. Although the trajectories corresponding to δ ∈
{0.15, 0.25, 0.30} appear to be less efficient due to avoiding
the turning point close to (0.4, 325), a computation of the
performance index α0.3,δ reveals the opposite, cf. Fig. 5: If
the control horizon is increased, the performance index rises
as expected from our theoretical results in Section IV.

For this particular example, symmetry of αT,δ with respect
to the control horizon δ is not observed. Instead, the per-
formance index increases (almost) monotonically. There are,
however, examples in which the suboptimality degree decays
rapidly for longer control horizons, cf. [7]. Utilizing the out-
come of Fig. 5, we restricted δ to [0.1, 0.3] and computed the
closed loop solutions shown in Fig. 4. From this, we observed
that the suboptimality bound α0.3,0.1 ≈ 0.3346 (obtained for
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Fig. 4. Closed–loop solutions for different fixed control horizons δ and
400 closed-loop solutions for randomly time varying δ ∈ [0.1, 0.3].
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Fig. 5. Development of α0.3,δ for fixed control horizons δ. α0.3,0.1 yields
a lower bound for time varying control horizon δ ∈ [0.1, 0.3].

fixed control horizon δ = 0.1) holds for control horizons
randomly varying in a rather large interval. For short control
horizons on the other hand, the relaxed Lyapunov Inequality
(6) — our main tool in order to ensure stability — is violated,
cf. Fig. 5. In an a posteriori analysis, we found that the
closed–loop costs JMPC

∞ (x0) are almost constant with respect
to δ. In conclusion, this example demonstrates that packet
dropouts and non-negligible delays can be compensated via
time varying control horizons without affecting our (nominal)
stability and performance estimates.

VI. CONCLUSIONS

We presented stability and performance estimates for
nonlinear model predictive control with time varying con-
trol horizon in a continuous time setting. In particular,
we deduced symmetry and monotonicity properties for the
stability condition introduced in [16] which were exploited
in order to show that no additional assumptions are needed
compared to the analysis of schemes with fixed (short)
control horizons. The results can be used in order to obtain

(nominal) stability and performance estimates for prediction
consistent networked control schemes.
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[4] L. GRÜNE AND J. PANNEK, Nonlinear Model Predictive Control:
Theory and Algorithms, Communications and Control Engineering,
Springer, 1st ed., 2011.
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[6] L. GRÜNE, J. PANNEK, AND K. WORTHMANN, A Prediction Based
Control Scheme for Networked Systems with Delays and Packet
Dropouts, in Proceedings of the 48th IEEE Conference on Decision
and Control held jointly with the 28th Chinese Control Conference
CDC/CCC 2009, Shanghai, China, 2009, pp. 537–542.
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