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Controllability of the bilinear Schr 6dinger equation with several
controls and application to a 3D moleculé

Ugo Boscait, Marco Caponigrg, and Mario Sigalotfi

Abstract— We show the approximate rotational controllabil- ~ A. The model

ity of a polar linear molecule by means of three nonresonant . . L .
linear polarized laser fields. The result is based on a genera Wg consider 6_1 polar linear molecule in 'ts_ ground vi
approximate controllability result for the bilinear Schr 6dinger ~ Pronic state subject to three nonresonant (with respect to

equation, with wavefunction varying in the unit sphere of the vibronic frequencies) linearly polarized laser fielflke
an infinite-dimensional Hilbert space and with several conl control is given by the electric field® = (u1,us2,u3)
potentials, under the assumption that the internal Hamiltonian depending on time and constant in space. We neglect in
has discrete spectrum. this model the polarizability tensor term which correspond
to the field-induced dipole moment. This approximation is
I. INTRODUCTION correct if the intensity of the laser field is sufficiently vkea
] S ~ Despite its simplicity, this equation reproduces very well
Rotational molecular dynamics is one of the most imMihe experimental data on the rotational dynamics of rigid
portant examples of quantum systems with an infiniteymglecules (see [20]).
dimensional Hilbert space and a discrete spectrum. Molec—Up to normalization of physical constants (in particular, i

ular orientation and alignment are well-established ®pignits such that: = 1), the dynamics is ruled by the equation
in the quantum control of molecular dynamics both from

the experimental and theoretical points of view (see [19],¢M =— AY(0, o, ) + (uy(t) sinf cos

[20] and references therein). For linear molecules driven b ot ) )

linearly polarized laser fields in gas phase, alignment mean + uz(t) sin 0 sin ¢ + us(t) cos 0)1(0, ¢, 1)

an increased probability direction along the polarization @)
axis whereas orientation requires in addition the same (@here6, ¢ are the spherical coordinates, which are related

opposite) direction as the polarization vector. Such @sitr to the Euclidean coordinates by the identities
have a variety of applications extending from chemical reac ) ) )
tion dynamics to surface processing, catalysis and nalesca x=sinfcosp, y=snfsing, 2= coso,

design. A large amount of numerical simulations have begphjle A is the Laplace—Beltrami operator on the sphere

done in this domain but the mathematical part is not y&kalled in this context thangular momentum operatpri.e.,
fully understood. From this perspective, the controli&pil

2
problem is a necessary step towards comprehension. A — Lﬁ (sin9£> %8_2
We focus in this paper on the control by laser fields of sin§ 90 90 sin® 6 O
the rotation of a rigid linear molecule iR3. This con- The wavefunction)(-, -, t) evolves in the unit spher§ of

trol problem corresponds to the control of the Schrodingey = L2(S?, C).
equation on the unit spherg?. We show that the system .
driven by three fields along the three axes is approximatefyr The main results
controllable for arbitrarily small controls. This means, i  In the following we denote by(T'; 1o, u) the solution at
particular, that there exist control strategies which @rintime T’ of equation[(ll), corresponding to controland with
the initial state arbitrarily close to states maximizing th initial condition(0; o, u) = 1o, belonging toS.
molecular orientation [21]. Our main result says thdil(1) is approximately controllable
with arbitrarily small controls.
* This research has been supported by the European Reseanasiico ~ 1heorem 1.1:For every yY, ¢! belonging to S and

ERC StG 2009 “GeCoMethods”, contract number 239748, by thNRA every e,01,02,035 > 0, there existT > 0 and u €
project GCM, program “Blanche”, project number NT09-50a49 oo 1 _

1 Ugo Boscain is with Centre National de Recherche Sciene'fiquL ([O OT] [0’51] X [0’62] X [0’63]) such that HU)
(CNRS), CMAP, Ecole Polytechnique, Route de Saclay, 91128 PaIaisea@A’(Tﬂ/f 7“)” <é&. ) . .
Cedex, France, and Team GECO, INRIA-Centre de RecherchiaySac The proof of the result is based on arguments inspired by
ugo.boscainlpolytecnique.edu those developed in [11], [7]. There are two main difficulties

Marco Caponigro is with Department of Mathematical Sci- . .
ences and Center for Computational and Integrative Biologut- Preventing us to apply those results to the case under consid

gers - The State University of New Jersey, Camden NJ 081024 USeration: firstly, we deal here with several control paramsete

marco.caponigro@rutgers.edu while those general results were specifically conceived for
Mario Sigalotti is with INRIA-Centre de Recherche Sacalgaiin

GECO and CMAPEcole Polytechnique, Route de Saclay, 91128 Palaiseaﬁ1e smgle-lnput cqse. No.tlce that, because _Of symmetry
Cedex, Francenario.sigalotti@inria.fr obstructions, equatioi](1) is not controllable with onlyeon


http://arxiv.org/abs/1204.6017v1

of the three controls, us, us. Secondly, the general theory constant control functiom : [0,7] — U such that||¢; —

developed in [11], [7] is based on nonresonance conditior% (i)|| < e.

on the spectrum of the drift Schrodinger operator (titer- Definition 2.3: Let (A4, B, U, ®) satisfy (2() . We say that
nal Hamiltoniar). The Laplace—Belatrami operator &?, (2) is approximately simultaneously controllakfefor every
however, has a severely degenerate spectrum. It is knownin N, 1, ..., in H, T in U(H), ande > 0 there exists
indeed, that the-th eigenvalue—i¢(¢ + 1) has multiplicity ~a piecewise constant control: [0, 7] — U such that

2¢ 4+ 1. In [11] we proposed a perturbation technique in .

order to overcome resonance relations in the spectrum of HTW - T%WH <& k=1,...r

the drift. This technique was applied in [8] to the case of th@ ghort review of controllability results

orientation of a molecule confined in a plane driven by one Th lability of )i I blished:i
control. The planar case is already technically challeggin e controllability of systeni]2) is a well-establisheditop

and a generalization to the case of three controls in theesp \@hen the state spagé is fi.nite-dimensional (see for instange
will hardly provide an apophantic proof of the approximat 12] and referenqe thgreln), thanks to general contrditgbi .
controllability result. We therefore provide a general tiaul methods fgr left-invariant control systems on compact Lie
input result which can be applied to the control probler’rgrOUpS ([10], [14]).

- ; ; A WhenH is infinite-dimensional, it is known that the bilin-
defined in[(1), up to the computation of certain Lie algebras g - '
associated with its Galerkin approximations. ear Schrodinger equation is not controllable (see [2]])[22

The structure of the paper is the following: in the next Secl_—lence,_ one has to lOOk. for weaker con.tr-oIIablhty propesrtle
s, for instance, approximate controllability or contibility

tion we present the general multi-input abstract frameworR i o -

and we recall some previously known controllability an hetweentelglenstziteshof_thelz Stc:lodlnlger opterator (whlchhare

non-controllability results. In Sectidn]Il we prove our ma the (TOS re evar; trllo ):jsma sta ES)' ?h cer altn ﬁa(sje;DV\I/E ere

sufficient condition for approximate controllability. iy, € dimension of the domain where the controfle IS
efined is equal to one a description of the reachable set

in Section[IV¥ we prove that the abstract result applies tﬁas been provided [3], [4], [5]. For dimension larger than

system (L). one or for more general situations, the exact description
of the reachable set appears to be more difficult and at
the moment only approximate controllability results are
Definition 2.1: Let # be an infinite-dimensional Hilbert available. Most of them are for the single-input case (see,
space with scalar produgt,-) and A, By, ..., B, be (pos- in particular, [6], [7], [11], [15], [16], [18], [17]), excet for
sibly unbounded) linear operators oH, with domains some approximate controllability result for specific sysse
D(A),D(Bu),...,D(By). LetU be a subset oR”. Let us ([13]) and some general approximate controllability resul

Il. ABSTRACT FRAMEWORK

introduce the controlled equation between eigenfunctions based on adiabatic methods [9].
d .
B (1) = (Atus (0)By+- -4y (£)B,)(0), ult) € U C RP. B Notation
dt 2) S.etblg.k) = (¢, Biow), I =1,...,p. For everyn in N,
We say that(4, By, ..., B,,U,®) satisfies(2) if the fol-  define the orthogonal projection
lowing assumptions are verified: T H D Zwi B)p; € H.

(A1) @ = (¢r)ren IS an Hilbert basis of{ made of j<n

eigenvectors ofA associated with the family of  Gjen 4 linear operato€ on # we identify the linear

eigenvaluesily)en; operatorr,, Qm,, preservingspan{¢r,...,d,} with its n x

(A2) ¢y, € D(B;) foreveryk e N,j=1,....p] n complex matrix representation with respect to the basis
RA3) A+ w1 B + - tupBp span{gbk | kGN} —H (¢1 ¢n)

is essentially skew-adjoint for everye U;

(A4) if j # k and\; = A\, then (¢;, Bigy) = 0 for  Ill. MAIN ABSTRACT CONTROLLABILITY RESULT IN THE
everyl=1,...,p. MULTI-INPUT CASE
If (A,By,...,B,,U,®) satisfies (A) then, for every  Let us introduce the sety of spectral gaps associated
(u1,...,up) € RP, A4+ w1 By + --- + u,B, generates a with the N-dimensional Galerkin approximation as

unitary groupet(AtwiBit+upBy) |t s therefore possible ,

to define the propagatoi’ at time 7' of system [(1) Ev={N Xl [ 4 k=1,...,N, A # A}
associated with g-uple of piecewise constant controls For everyos € Ty, let

u(t) = (u1(t),...,up(t)) by concatenation. If, moreover,

. N N) N
the potentialsB;, ..., B, are bounded operators then theB™ (1., vp)j0 = (v1 B +o 0 B k03—
l(;?/vﬂnltlon can be extended by continuity to evéry? control The N x N matrix B (v1,...,v,) corresponds to the

choice of the controls;, ...,v, and to the “activation” of

Definition 2.2: Let (A, B, U, ®) satisfy (2(). We say that the spectral gap.. Define

(2) is approximately controllabléf for every 1,1, in the
unit sphere of}{ and everys > 0 there exist a piecewise My = {B™)(v1,...,v,) |0 € En,v1,...,0, € [0,1]}



and Controllability issues for systeni](2) anld (4) are equivalen
(A(m) Indeed, consider piecewise constant controls [0, T,] —

—{aw e [1/6,00), 2(t) = 24 #Xoncs 0 (0) 3005 < 0T

MIlo [07 1_]’ - ( ) Zk Uk X[sk 1, sk)() with Jj=1...,p

o >} achlevmg controllablhty (steering systerfil (4) from; to

szj, j=1,...,rinatmeT) . Then the controls;(t) =

The setM} represents “compatible dynamics” for the S5 4,0 )X[tk 4o d =1,...,p defined byu!) = ”z(f)/z

dimensional Galerkin approximatiorcqmpatible that is, andty = 0,t, = (s — sk 1)2k+tk 1, steer systeni{2) from

with higher dimensional Galerkin approximations). ;o quj, j=1,...,rinatmeT,.

Theorem 3.1 (Abstract multi-input controllability result
Let U = [0,6]? for somed > 0. If for everyny € N there C. Interaction framework
existn > ng such that

{MEEu(nHVNZnEQEMN S.t.Q_<

Let w fo s)ds, and w;(t fo vj(s)ds for j =
LieM? = su(n), @) L....p Letw( t) be the solution oﬂ]4) with |n|t|al condition
1o € H associated with the controlg(t), vi (%), ..., vp(t)
then the system and set
_ —w(t)A
jj‘:(A+ulBl+-..+upo)I’ fu/E[]7 y(t)_e (t) d)(t)
is approximately simultaneously controllable. Forw, vy, ..., v € R setO(w, v, ..., v,) = e “A(v1 By +
-+ v,(t)By)e4, theny(t) satisfies
A. Preliminaries .
The following technical result, which we shall use in the §(t) = Ow(t), vi(t), - vp(t))y(t). )
proof of Theoreni_3]1, has been proved in [7]. Note that
Lemma 3.2:Let x be a positive integer angh, ...,y €
R\ {0} be such thaty;| # |y,| for j =2,..., k. Let O(w,v1,...,0p)jk = (Pr, O(w, v1,...,0p)0;)
cp(t) _ (eitwl7 s eitvﬁ). _ ei()\kfkj)w (Ulbﬁc) + .4 vpbgz)) .
Then, for everyr, € R, we have Notice that|y(t)| = |¢(t)|, for everyt € [0,7;] and
conve (|70, 00)) 2 vSt x {(0, 0)}, for every (p + 1)-uple of piecewise constant controls:

[0,T,] — [1/d,4+0), v1,...,vp : [0,Ty] — [0, 1].
wherev = [];~, cos (g7) > 0. Moreover, for everyR > . o
0 and ¢ € S' there exists a sequende,)rcn such that D. Galerkin approximation

trt1 —tx > R and Definition 3.3: Let N € N. The Galerkin approximation
h of (B) of orderN is the system ir{
lim — (v€,0,...,0
h—oo h ; 5 ) T = @(N) (w, V1y. - ,UP)I (6)
B. Time reparametrization where M) (w, vy, - Up) = TNO(W, v, Up) TN =
For every piecewise constant functior(t) = CICRUS ’vp)jk)_j,]gzl'
K
1 ZEX[s. - .s.)(t) such that z, > 0, for ever ) i . )
ka:l k1X[ kil.’Kk)(a)nd ui(t) = kZK v(j)X (t)y E. First step: choice of the order of the Galerkin approxi-
= yeee o By J - k=1 Y%k X[sk—1,5k) i
with j =1,...,p, we consider the system mation
) In order to prove approximate simultaneous controllapilit
o — ()= () A+vi(t)B1 + -+ vp(t)By)¢(t). (4) we should taker in N, ¢1,...,7, in H, T in U(H), and

¢ > 0 and prove the existence of a piecewise constant control
System [(#) can be seen as a time-reparametrisation of [0,T] — U such that

system[(R). Let)(t) be the solution of[{2) with initial condi-

tion 1y € H associated with the piecewise constant control HTW - T%m” <e, k=1,...,r
u(+) with componentss;(-) = Zszl u,(j)X[t.kfl_,tk)(‘-), j=
Lo s =20 g 50 =0, 0 = ul? 2 for Notice that forn, large enough there existé € SU(no)
ZL ~
everyk = 1,....K, j = 1,...,p, then the solutionj(z) Such that
of (4) with the initial conditiom)y € H associated with the T U
g j ) — \"ln B n, <
controlsz(t), vy (t), ..., v,(t) satisfies (@3, Tk} = (Tng b5 Unno V)| < €

for everyl < k <r andj € N. This simple fact suggest to

K
" /t Z iX[t ) (8)ds | =b(t). prove approximate simultaneous controllability by stundyi
Zp R the controllability of [®) in the Lie grougtU (no).



F. Second step: control iSU (n) Note that by choosingy (k) = w,’j@{l) +Rfork>1and

Letn > n, satisfy hypothesi§{3). It follows from standard0(0) = R we have thatu,(t) is non-decreasing.
controllability results on compact Lie groups (see [14ptth  Following the smoothing procedure of [7, Proposition 5.5]
for everyU € SU(n) there exists a path/ : [0,T,] — Mn  One can construct the desired sequence of conjrolThe
such that idea is to approximates(t) by suitable piecewise linear

(T functions with slope greater thah/6. Then z, can be
exp M(s)ds =U, constructed from the derivatives of these functions. [

0
As a consequence of last proposition by [1, Lemma 8.2]
where the chronological notationp fo Vs dsis used for the \ywe have that

flow from time 0 to ¢ of the time-varying equatiog = V;(q)
(see [1]). More precisely, there exists a finite partition in
intervals (1), of [0,T,] such that for every € I, either
there existvy,...,v, € [0,1] ando € X such that

exp /0 O™ (z,(s),v1(5), ..., vp(s) ds

t
- e§f>/ B((j](\;))(vl(s),...,vp(s))ds
0

uniformly with respect ta € [0,T,] ash tends to infinity.

M(t) = wnB((,N)(vl, e Up)Th,

or
(n)
M(t) = A _ M]n, H. Fourth step: control of the infinite-dimensional system
n

Next proposition states that, roughly speaking, we can
pass to the limit asN tends to infinity without losing
M(t);r =0, foreveryte[0,T,],j <n,k>n. (7) the controllability property proved for the finite-dimeosal
case. Its proof can be found in [7, Proposition 5.6]. It is

In particular,

G. Third step: control ofM v based on the particular forrfil(7) of the operators involved,
Lemma 3.4:For every N € N, § > 0, and for ev- since the fact that the operator has several zero elements
ery piecewise constant;,...,v, : [0,7,] — [0,1] and guarantees that the difference between the dynamics of the

o :[0,T,] — Xn there exists a sequendey,(-))neny Of  infinite-dimensional system and the dynamics of the Gaterki
piecewise constant functions frofh, 7,,] to [1/8, cc), such approximations is small.
that Proposition 3.5: For everys > 0, for everyé > 0, and for

t every trajectoryU € SU(n) there exist piecewise constant
‘/ 0N (z4(s),v1,. .., vp)ds controlsw; : [0,T,] — [0,6],5 = 1,...,p such that the
0 associated propagatdi* of (2) satisfies
B d "
/ o (1(8)s - 0y (s))ds [16nd5, Umn)| = l(65, T, 00| <€
uniformly with respect ta € [0,7,] ash tends to infinity.  for every¢ € span{é1,. .., ¢,} with ||¢|| = 1 and for every
In other words, every piecewise constant patb\ityy can  j in N.
be approximately tracked by systefn (6). We recall now a controllability result for the phases

Proof. Fix N < N. We are going to construct the control(see [7, Proposition 6.1 and Remark 6.3]). This property,
2, by applying recursively Lemmia 3.2. Consider an intervadtated in the proposition below, together with the congroll

—0

[tk;tr+1) in which v;(t), 5 = 1,...,p, and o(t) are bility up to phases proved in the previous section, is swfiti
constantly equal to; € [0,1], j = 1,...,p, ando € X¥x  to conclude the proof of Theorem B.1.
respectively. Apply Lemma 3.2 withy = o, {72,..., 7} = Proposition 3.6:Assume that, for everyf € U(H), m

En\{o}, R =T andr = 7o (k) to be fixed later depending in N, § > 0, ands > 0, there existl;, > 0 and piecewise
onk. Then, for every) > 0, there existh = h( )>1/nand  constant controls; : [0,7,] — [0,6], j = 1,...,p such that

a sequencéw)_, such thatw} > to, wk —wk | > R, the associated propagat®t of equation[(R) satisfies
and such that .
(5. Yo — K¢y, T, D)| <,
l ei(AlfAm)w(’fé
h 4 for everyj € N and ¢ € span{¢, ..., o} with ||¢] = 1.
=1 f . .
— ) Then [2) is simultaneously approximately controllable.
( lBl +Upo )lm§ N <
|(le N) iy +Usz()N) Yo oAM= Aml ’ IV. 3D MOLECULE

Let us go back to the system presented in the introduction

Setry =t + (¢ —t h, a =0,...,h, and define - X ;
Ta kot (e k)a/h, o for the orientation of a linear molecule,

the piecewise constant function
i = —AY + (u1 cos B 4 ug cos psin 0 + ug sin @ sin 0),

ZZw () (8) ©)

k>0 a=1 wherey(t) € H = L*(S?,C).



A basis of eigenvectors of the Laplace—Beltrami operatawhere

A is given by the spherical harmonid$™ (6, ), which
sastisfy
AY[™ (0, ) = —L(L+ 1)Y,™(0,¢).

We are first going to prove that for evefye N the system
projected on th€4/ + 4)-dimensional linear space

L=span{Y, ", .. YV Y Y

£+1

cey

is controllable. More precisely, chosen a reordefitig) xen
of the spherical harmonics in such a way that

{¢k | k = 17 R 74€+4} = {}/éig7 e 7}/Z€7}/é:—€717 * YZJFI

{+1 >

we are going to prove that
LieMy™t = su(40 + 4).
A. Matrix representations

Denote by.J, the set of integer pair§(j, k) | j = £, +
1, k = —j,...,j}. Consider an ordering : {1,...,4¢ +

4} — J,. Lete, ;, be the(4¢+4)-square matrix whose entries

are all zero, but the one at lineand columnk which is equal
to 1. Define

Ejr = ¢€jr—erj, Fjr=tlejrtier;, Dji=1iej;—iekk.

By a slight abuse of language, also s€f;) .k =

ej k- The analogous identification can be used to define

By i) Fuo(i)wir)s Do) wik)-

Thanks to this notation we can conveniently represent
the matrices corresponding to the controlled vector field
(projected onL). A computation shows that the control

potential in thez direction, —i cos#, projected onZ, has

a matrix representation with respect to the chosen basis

¢
B3 = Z Pe.mEo,m), (04+1,m)
m=—¢
with
(+1)2—m?

Plm ="\ 20+ 1)(20 1 3)°

Similarly, we associate with the control potentials in th

x andy directions,—i cos ¢ sin § and —i sin psin f respec-
tively, the matrix representations
4
Z (=qe,mFt,m), (t+1,m=1) + Qt,—mF(6,m), (t4+1,m+1))
m=—¢
14

By = Z (@e.mEe,m), (0+1,m=1) + @t,—mE0,m),(041,m+1));

m=—/{

B =

where

[=m+2)(l —m+1)
Lm = 120+ 1)20+3)

The matrix representation of the Schrodinger operator
is the diagonal matrix

A= 3" agmeir.op
(J,k)ET,

for (5, k) € Jy.
Now considerd = A — Lf(ré(—fl))l, in such a way that
tr(A) = 0. Hence, A =} ; 1 c 5, @ik €(j.h),(i.k) Where

Qg = —ij(j +1),

2043
Q) =1 5

fork=—4,...,¢,

and

20+1
A k) = —1 2

fork=—¢—-1,...,0+1.

B. Useful bracket relations
From the identity

[ej,ka en,m] = 6kn€j,m - 5jmen,k (10)

we get the relation§E; s, Exn] = Ejn, [Fjk Fenl =
—E;,, and[E; k, F n] = Fj,, and

[Ejk Fjrx] =2Dj . (11)

The relations above can be interpreted following a “tri@ng|l
rule”: the bracket between an operator coupling the states
Y/ and Y;” and an operator coupling the statgg” and

v couples the statek;” andY;? . On the other hand, the
bracket is zero if two operators couple no common states.
Moreover,

(A, Bk, e1,m)) = 200+ 1) Fru iy (e41.0)
[Aa F(E,k),(EJrl,h)] = _2(£ + 1)E(E,k),(l+17h)-
From [10) we find also that

(12a)
(12b)

[Ee,m),e+1,m) Ee,m),(¢+1,m'—1)] 7 0

if and only if m’ =m or m’ = m + 1, with

[Eem),(¢+1,m)> E(e,m),(e+1,m-1)] = Ee41,m—1),(+1,m)

and

(Et,m), (t+1,m) Ee.m+1),(0+1,m)] = Ee,m), (6,m+1)-

<. Controllability result

We prove the following result, which allows us to apply
the abstract controllability criterium obtained in theyiseus
section. We obtain then Theoreim ]1.1 as a corollary of
Theorem311. Notice that the conclusions of Theofem 3.1
allow us to claim more than the required approximately
controllability, since simultaneous controllability i®t@ined
as well.

Proposition 4.1: The Lie algebra I. generated by
A, By, B, Bs is the whole algebrau(4¢ + 4).

Thanks to the matrix relations obtained in Secfion IV-B,
the proof of the proposition can be easily reduced to the
proof of the following lemma.

Lemma 4.2:The Lie algebral. contains the elementary

matrices
fork=—¢,...

E(fyk),(erl,kJrj) aﬂa .7 = _1107 1.



Proof of Lemma[4.2. First, we want to prove that

{Ew,—j),(t+1,—j) + B jy, 1,5 17 =0,...,£} C L. (13)

We use the fact that

ad ™ A= (—1)7(€ + 1)2%H Z PP B m) (041,m)-

m=—/

Indeed, forj =0

Z pE,m[F(é,m),(f-i-l,m)v A]

l=—m

=2((+1) Z Pe.mEe,m),(0+1,m) >

l=—m
and, by induction, forj > 1,
ad¥ "' A = [Bs,[Bs,ad, ' Al
=1 Y+ 1)2%

[B37A] -

(B, [Bs, Et.m),(t41,m))]

m=—/

= (=17 (0 +1)2%! Z Pt

m=—/{

14

(B3, | Z Pe.nFlon),(e41,0) Ee,m), (641,m))]
h——

= (e

Z P Bsy =2P6mDg.m) (t41.m)]

m=—/{

= (—
Z .
>l

m=—/
4
= (=1 (e+ 124 N ppt
m=—/
Then [I3B) follows from the fact thasy,,, # pe,, for every
n #m,—m.
Now note that

1) (€4 1)2%
14

Z Pe.nFle ), (e41,0) Dt,m), (641,m)]
h=——t

E¢,m),(t+1,m)-

14
By — [A7 Bl]/(2(£ + 1)) =2 Z q@,—mE(l,m),(erl,erl)

m=—/

and

¢
By +[A,B1]/2(+1) =2 > qemE(e,m),(e41,m-1)-

m=—/

Moreover
l

[ Z qe.mE,m), (04+1,m-1)> E0,0),(641,0], E(0,0),(e41,0)] =

m=—~
= —q01[Ew,0),0,1)s E(e,0),641,0)]

= qe.0lEr41,-1),0041,0)5 (0,0, (041,0)]
=qe1Ew 1), (041,00 + 9,0E@00),041,-1)-

and, for0 < k </,
4

[[Z q,—iEw o), (0+1,—0-1)F
j=k

ct k1B, —kt1),(041,-k) T @0k E@ k), (041,k-1)F
+ .ot qeeEw e, er1,0-1) B -k (041,- 1)+

E. k), (041,10 Ee,— k), (e+1,~k) + B k), (6+1,5)]

= —qo,~k+1[E0,—k),(t,—k+1), Bt,—k),(0+1,— k)]

= e k[Ees1,k-1),0641,%) k), (041.0))

= qo,—k+1E@,—k+1),0041,— k) + @0k E0 k), (041,5-1)-
Then we get By g ov1,-e-1) Ew,—e41),(041,-0) +

Ewo, 41,01y -0 Eeoy,e+1,-1) + Ew1),¢+1,00 € L.
Similarly we can prove that the Lie algebra contains
E00),(641,641)-

Now, sinceE(y, ), (¢+1,m—1) € L and using the relation

2

Eemy esrom—1 Bem),(+1,m) T E@,—m),(¢4+1,-m) =

(Er+1,m—1),(4+1,m)s Ee,m), (t+1,m—1)] = —E(,m),(0+1,m)

we obtain thatF ) (r+1,m) and Eg, ), (+1,—m) belONg
to L for everym = —¢,...,—1

Similarly, Et.m),(e+1,m) e L implies that
Etmy1),(041,m) and Eg ) (141,-m—1) belong to L
for everym = —¢,...,—1 O

REFERENCES

[1] A. A. Agrachev and Y. L. SachkowControl theory from the geometric
viewpoint volume 87 ofEncyclopaedia of Mathematical Sciences
Springer-Verlag, Berlin, 2004. Control Theory and Optiatian, II.

[2] J. M. Ball, J. E. Marsden, and M. Slemrod. Controllailifor
distributed bilinear systemsSIAM J. Control Optim.20(4):575-597,
1982.

[3] K. Beauchard. Local controllability of a 1-D Schrodergequation.J.
Math. Pures Appl. (9)84(7):851-956, 2005.

[4] K. Beauchard and J.-M. Coron. Controllability of a quamt particle
in a moving potential wellJ. Funct. Anal, 232(2):328-389, 2006.

[5] K. Beauchard and C. Laurent. Local controllability of lidear and
nonlinear Schrodinger equations with bilinear conttblMath. Pures
Appl, 94(5):520-554, 2010.

[6] K. Beauchard and V. Nersesyan. Semi-global weak statiin of
bilinear Schrodinger equation€. R. Math. Acad. Sci. Parig848(19-
20):1073-1078, 2010.

[7] U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalo#\ weak
spectral condition for the controllability of the biline&chrddinger
equation with application to the control of a rotating plan#olecule.
arXiv:1101.4313v1, 2011.

[8] U. Boscain, T. Chambrion, P. Mason, M. Sigalotti, and Dug8y.
Controllability of the rotation of a quantum planar molezul In
Proceedings of the 48th IEEE Conference on Decision and rGlont
pages 369-374, 2009.

[9] U. Boscain, F. Chittaro, P. Mason, and M. Sigalotti. Azhtic

control of the schroedinger equation via conical intelisest of the

eigenvalues. Accepted for publication IEEE Trans. Autom. Control

2011.

R. W. Brockett. System theory on group manifolds andetapaces.

SIAM J. Contro) 10:265-284, 1972.

[11] T. Chambrion, P. Mason, M. Sigalotti, and U. Boscainn€ollability

of the discrete-spectrum Schrodinger equation driven rbexernal

field. Annales de I'Institut Henri Poincaré, analyse non lineai2008.

D. D’Alessandro. Introduction to quantum control and dynamics.

Applied Mathematics and Nonlinear Science Series. BocarRaiL:

Chapman, Hall/CRC., 2008.

[13] S. Ervedoza and J.-P. Puel. Approximate controligbilor a system

of Schrddinger equations modeling a single trapped Aam. Inst. H.
Poincaré Anal. Non Linéaire26:2111-2136, 2009.

[20]

[12]



[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

V. Jurdjevic and H. J. Sussmann. Control systems on kéeigs. J.
Differential Equations 12:313-329, 1972.

M. Mirrahimi. Lyapunov control of a quantum particle andecaying
potential. Ann. Inst. H. Poincaré Anal. Non Linéajr26(5):1743-1765,
2009.

V. Nersesyan. Growth of Sobolev norms and controligbiof the
Schrddinger equationComm. Math. Phys290(1):371-387, 2009.
V. Nersesyan. Global approximate controllability f&chrodinger
equation in higher Sobolev norms and application&nn. Inst. H.
Poincaré Anal. Non Linéaire27(3):901-915, 2010.

V. Nersesyan and H. Nersisyan. Global exact contrditpbn infinite
time of Schrddinger equationAccepted for publication in J. Math.
Pures Appl. 2011.

T. Seideman and E. Hamilton. Nonadiabatic alignmentiriignse
pulses: concepts, theory and directionfdv. At. Mol. Opt. Phys.
52:289, 2006.

H. Stapelfeldt and T. Seideman. Aligning moleculeshvgtrong laser
pulses.Rev. Mod. Phys.75:543, 2003.

D. Sugny, A. Keller, O. Atabek, D. Daems, C. Dion, S. @ngand
H. R. Jauslin. Reaching optimally oriented molecular stdte laser
kicks. Phys. Rev. A69:033402, 2004.

G. Turinici. On the controllability of bilinear quamu systems. In
M. Defranceschi and C. Le Bris, editordjathematical models and
methods for ab initio Quantum Chemistiolume 74 ofLecture Notes
in Chemistry Springer, 2000.



	I Introduction
	I-A The model
	I-B The main results

	II Abstract framework
	II-A Short review of controllability results
	II-B Notation

	III Main abstract controllability result in the multi-input case
	III-A Preliminaries
	III-B Time reparametrization
	III-C Interaction framework
	III-D Galerkin approximation
	III-E First step: choice of the order of the Galerkin approximation 
	III-F Second step: control in SU(n)
	III-G Third step: control of MN
	III-H Fourth step: control of the infinite-dimensional system

	IV 3D molecule
	IV-A Matrix representations
	IV-B Useful bracket relations 
	IV-C Controllability result

	References

