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A variant of nonsmooth maximum principle for state constrained
problems

Md. Haider Ali Biswas and M.d.R. de Pinho

Abstract— We derive a variant of the nonsmooth maximum applied to normal linear convex problems (see prob|éif)
principle for prob]ems with pure state constraints. Thg interest beIow)El. In what follows, and for simplicity, we opt to refer
of our result resides on the nonsmoothness itself since, whe 4 the statement of this new nonsmooth maximum principle

applied to smooth problems, it coincides with known results - . . .
Remarkably, in the normal form, our result has the special stated as Theorem 3.1 in [7] which plays a crucial role in

feature of being a sufficient optimality condition for linear- ~ Our developments.
convex problems, a feature that the classical Pontryagin ma Here we extend Theorem 3.1 in [7] to cover state con-
imum principle had whereas the nonsmooth version had not. strained problems. In doing so we follow closely the ap-
This work is d_|st|nctto previous work in the I|t_erature smce,_fpr proach of [9] and [10] where the main result in [8] is
state constrained problems, we add the Weierstrass conditns . . .
to adjoint inclusions using the joint subdifferentials with respect Qe”era"zed to cover s-tate const.ralned problems |.n twasstep
to the state and the control. Our proofs use old techniques first the convex case is treated in [9] using techniques based
developed in [16], while appealing to new results in [7]. on [16] and then convexity is removed in [10].
| INTRODUCTION In this paper we show that_the proofs in [9] ar_1d [10]
adapted easily to allow extension of Theorem 3.1 in [7] to
Itis commonly accepted that optimal control appears witQate constrained problems. In this way we obtain a new
the publication of the seminal book [14] where the statemeRiriant of the nonsmooth maximum principle, improving on
and proof of the Pontryagin Maximum Principle played §10] by adding the Weierstrass condition to the previous
crucial role (we refer the reader to the survey [13] for aRongitions while keeping the interesting feature of being a

interesting historic account of the pioneering result§)c&  gyfficient condition for normal linear-convex problems.
then we have witnessed continuous developments.

Generalization of the classical maximum principle to prob- Il. PRELIMINARIES
lems with nonsmooth data appeared in 1970’s as mainly tlfe Notation

result of the work of Francis Clarke (see [3] and references Here and throughouB represents the closed unit ball
therein). The nonsmooth maximum principle, nowadays @entered at the origin regardiess of the dimension of the
well established result, was then extended and refined by, dderlying space ant | represents the Euclidean norm or
number of authors. One of the first attempts to extend it the induced matrix norm of?*%. The Euclidean distance
cover problems with state constraints came up in [16].  fynctionwith respect to a given set ¢ R is

A special feature of the classical Pontryagin maximum . )
principle is that it is also a sufficient optimality condiio da: R* = R, yr—rda(y) =inf {|ly —z| : z € A}.
for the normal form of the so called linear-convex problems. A function 4: [0,1] — RP lies in W([0, 1]; R?) if and
Regrettably, the nonsmooth version had no such featuignly if it is absolutely continuous; ir.!([0, 1]; R?) iff it is
Nonsmooth necessary optimality conditions in the vein qfntegrable; and irL>°([0, 1); R?) iff it is essentially bounded.
maximum principles were proposed in [8] overcoming thiSrhe norm ofL1([0, 1]; R?) is denoted by-||, and the norm
setback. Regrettably those necessary conditions did Rot igf L([0,1);RP) is |-]|....
clude the Weierstrass condition responsible for the vemy;a  \ne make use of standard concepts from nonsmooth anal-
Maximum Principle. More recently the setbacks in [8] wergsjs. et A — R* be a closed set witlt € A. The limiting
taken care of in [6] where a new variant of the nonsmootRiormal cone to4 at z is denoted byN 4 (z).
maximum principle is derived by appealing to [5]. As in [8], Given a lower semicontinuous functiof: R¥ — R U
Lipschitz continuity of dynamics with respect to both state |} and a pointz € R* where f(z) < +oo, 8f(Z)
and control is assumed, the special ingredient responsitignotes thelimiting subdifferentialof f at z. When the
for sufficiency of the nonsmooth maximum principle whenynction f is Lipschitz continuous near, the convex hull
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B. The Problem

Consider the problem denoted throughout b¥) of
minimizing
b

l(z(a),z(D)) +/ L(t,x(t),u(t)) dt

a

subject to the differential equation

i(t) = f(t.a(t)ult) ae. telab],
the state constraint
h(t,z(t)) <0 forall t¢€[a,b],

the boundary conditions
(z(a),z(b)) € C,
and the control constraints

u(t) e U(t) a.e. telab].

Here the intervalla,b] is fixed. We have the state(t) €
R™ and the controk(t) € R¥. The function describing the
dynamics isf : [a, b)) x R" xR¥ — R™. Moreoverh andL are
scalar functions: : [a,b] x R" — R, L : [a,b] x R" x R¥ —
R, U is a multifunction and”' ¢ R™ x R™.

We shall denote byS) the problem one obtains fro(iP)
in the absence of the state constraiit, z(¢)) < 0 and we
refer to it as astandard optimal control problem

Throughout this paper we assume that the following basic aitention now goes to problents)

assumptions are in force:

B1 the functionsL and f are £ x B-measurable,
B2 the multifunctionU hasL x B-measurable graph,
B3 the setC is closed and is locally Lipschitz.

For (P) (or (S)) a pair (xz,u) comprising an absolutely

continuous functione, the state, and a measurable function

u, the control, is called aadmissible procesH it satisfies
all the constraints.

An admissible procesg*, v*) is astrong local minimum
of (P) (or (9)) if there existse > 0 such that(z*,u*)
minimizes the cost over all admissible procesges:) such
that

lz(t) — 2*(t)] < e for all t € [a,b]. )

It is alocal Wt-minimumif there exists some > 0 such
that it minimizes the cost to all processes u) satisfying

(@ and
/b |(t) — @ ()] dt < e.

Let R : [a,b] —]0,4+0c] be a given measurable function.

Then the admissible proce$s*,v*) is a local minimum

of radius R if it minimizes the cost over all admissible

processesx, u) such that
() — 2" (t)]

and

<

X

e ) -t (0)] < R(D)
b
/|:b(t)—:b*(t)| dt <

a.e.

for somees > 0.

C. Assumptions

In what follows the pair(z*,«*) will always denote the
solution of the optimal control problem under considenatio
Let us take any function defined infa, b] x R™ x R* and

taking values inR™ or R.
Al There exist constants? and k¢ for almost everyt €
[a,b] and every(x;,u;) (i = 1,2) such that

i € {x:|x—a"(t)] e}, u; € U(t)

we have
lp(t, w1, u1) — B(t, 22, us)| < kL1 — 22|+ k| u1 —ual.

A2 The set valued function— U (t) is closed valued and
there exists a constant> 0 such that for almost every
t € [a,b] we have

lu(t)| <c YueU(t).

When Al is imposed onf and/or L, then the Lipschitz
constants are denoted by, kf, kL and kL. Observe
that if U is independent of time, theA2 states that the
set U is compact. AssumptiorA2 requires the controls
to be bounded, a strong hypothesis but nevertheless quite
common in applications. It also simplifies the proofs of the
forthcoming results where limits of sequence of controls
needed to be taken.

D. Auxiliary Results

, .e., we assume
that the state constraint is now absent. We next state an
adaptation of Theorem 3.1 in [7] essential to our analysis
in the forthcoming sections. It is “an adaptation” because i
holds under stronger assumptions than those in [7].

Theorem 2.1: Letz*,u*) be a strong local minimum for
problem(S). If B1-B3 are satisfiedf and L satisfyAl and
U is closed valued, then there exjst W ([a, b]; R™) and
a scalar )y > 0 satisfying thenontriviality condition[NT]:

[pl]oo + Ao > 0,
the Euler adjoint inclusior{El]:
(=p(£),0) € 8, ({9, £) = JoL ) (5, 2° (1), u* (1)
{0} x Kp(t) 0 du o (u* (1)) ave,

the globalWeierstrass conditiofiV]:
Vo ueU(t),

(p(t), f(t, 27 (1), u)) + Ao L(t, 27 (1), u) <
(p(t), f(t, 2" (t), u™ (1)) + Ao L(t, 2" (1), u*(t)) ae,
and thetransversality conditiofiT]:
(p(a), =p(b)) € N&(z*(a), 2" (b)) + Aod"U(z"(a), 2" (b))

In the abovekK is a constant depending merely éf, kZ,
kf andkL.
In [7] the analysis is done folocal minimum of radius
R instead of strong minimum and it holds under a weaker
assumption thar\1.



We point out that the conditions given by the classical
nonsmmoth maximum principle (see [5]) are [NT], [W], [T] (i) (—p(¢),0) €
and [EI] is replaced by 0%, ({alt), £t (1), w* (1)) = Mo L(t,a" (1), u* (1))
—p(t) € ) —{0} x N§y (u*(t)) ae,
O ({p(0), (6 (1), w (1)) =MoL (0w (). (i e ),

We refer the reader to [6] for a discussion €h (2) and [El].  (q(t), f(t,2"(t),u)) — Ao L(t,2*(t),u) <
(q(t), f(t, 2™ (), u"(t))) — MoL(t,z"(t),u"(t)) a.e,
I1l. MAIN RESULTS

We now turn to probleniP). We derive a new nonsmooth (iv) (pla),—q(b)) €
maximum principle for this state constrained problem in the NL(z*(a), (b)) + Aodl(x*(a), z* (b)),
vein of Theorem 3.1 in [7] in two stages. Firstly the result
is established under a convexity assumption on the “vgdocit(v) (t) € Bh(t, 2" (1))

set” (seeC below). Then such hypothesis is removed. This p-a.e,
is proved following an approach in [17] and similar to what, . .
is done in [10]. (Vi) supp{p} C {t € [a,b] : h(t,z*(t)) = 0},
) ) where
On h we impose the following:
A3 For all « such that|z(t) — 2*(t)| < e the function (1) = p(t) +f[a-,t)'7(s)“(ds) t € [a,b) ©6)
t — h(t,z) is continuous. Furthermore, there exists a a = pt)+ [, v(s)u(ds) t=b
. . [a,b] :
constantk, > 0 such that the function — h(t,z) is
Lipschitz of rankky, for all t € [a, b]. B. Maximum Principle in the Nonconvex Case
The need to impose continuity of— h instead of merely Now we replace the subdifferenti@l.» by a more refined
semi upper continuity is discussed in [9]. subdifferentiald;’ h defined by
Recall that our basic assumptioBd-B3 are in force. N
Suppose thatf and L satisfy A1 and thatA2 holds. For 97 h(t,x) = co{: A(ti, ;) = (t,2) : )
future use, observe that these assumptions also assert that h(ti,zi) > 0 Vi, Oph(t;,x;) — £}

following conditions are satisfied:
Theorem 3.1: Letz*,u*) be a strong local minimum for

lp(t, 2" (1), u) — (L, 2™ (t),u" (1)) < (3)  problem (P). Assume thaif and L satisfy A1, h satisfies
k¢|u —u*(t)| for all u € U(t) a.e.t A3 and thatA2 as well as the basic assumptioBd-B3
hold. Then there exist an absolutely continuous function
p, an integrable functiony, a non-negative measure €

lo(t, x*(t),u)| < k(t) for all u € U(t) a.e.t.  (4) C®([a,b];R), and a scalar\o > 0 such that conditions (i)—

_ (vi) of Propositior[1 hold withd; h as in [T) replacingd,. i

In the aboveg is to be replaced by’ and L. Moreover, and whereyg is as defined ir@).
it is a simple matter to see that the s¢ig,x,U(¢)) and

and there exists an integrable functibrsuch that

L(t,z,U(t)) are compact for al: € z*(t) + £B. For the convex case see [2] for preliminary results for
problems with additional mixed state control constraints.

A. Convex Case Removal of convexity will the be focus of future work.

Consider the additional assumption on the “velocity set”: The above theorem adapts easily when we asgurne:*)
C The velocity set to be a weak local minimum instead of a strong local
minimum (see discussion above). It is sufficient to replace

{(U, l) = (.f(ta €, u)v L(tvxvu))a u € U(t)} U(f) by U(t) n ]Bg(u*(t))

is convex for all(t, z) € [a, b] x R". Theorem 31l can now be extended to deal with a local

Wht-minimum for (P).
Theorem 3.2: Let(z*,u*) be merely a localW?!!-
Ouh(t,x) := (5) minimum for problem(P). Then the conclusions of Theorem
co{limé; : & € Duh(ts, i), (b xs) — (t,2)}. 2.7 hold.
We omit the proof of this Theorem here since it can be
Proposition 1: Let(z*,u*) be a strong local minimum easily obtained mimicking what is done in [17].
for problem(P). Assume thaf and L satisfyAl, assump- _
tions B1-B3, A2 and C hold andh satisfiesA3. Then there C. Linear Convex Problems
existp € Wh'([a,b;R"), v € L'([a,b];R), a measure  The distinction between TheordmB.1 and classical non-
1€ C%([a,b);R), and a scalar\, > 0 satisfying smooth maximum principle (see [17]) is well illustrated by
(i) pfla,b]} + ||p||oe + Ao >0, an example provided in [9]. We recover such example here

Introduce the following subdifferential



showing that Theoreii 3.1 can eliminate processes wherga®ves our claim. No adaptation is required in this case. For

the classical nonsmooth maximum principle cannot.

Example: Consider the problem on the intenjal 1]:

1
Minimize (w1|x — ur| + walz — ue| + )dt
0
subject to

$(t) = 4un (t)ul(t) + 4’LU2(1f)U2(t) for a. e.t,

(L) z(t) = —1 for all ¢,
up(t), ua(t) € [-1,1] for a. e.t,
(w1 (t), wa(t)) € W for a. e.t,
z(0) =0

where

W= {(wy,wz) € R? : wy, wy >0, wy +wy = 1}.

The process(x*,uj,us, wi,w3) = (0,0,0,1,0) is an

completeness we state such proposition here.
We say that a procegs™*, v*) is anormal extremal if it
satisfies the conclusions of TheorE€ml3.1 wiih= 1.

Proposition 2: ([9]) If the process(z*,u*) is a normal
extremal for problem(LC'), then it is a minimum.

Let us return to our previous example. Problei) is what
we call a linear convex problem. It is now obvious that the
procesgx*, uf, u3, wi, ws) := (0,0,0,1,0) does not satisfy
the conclusions of Theorem 3.1, if it did, then it would be a
minimum as asserted by Propositldn 2 and it is not.

IV. PROOFS OF THE MAIN RESULTS

Since our proofs are based on those in [9] and [10] we
we only give a brief sketch of them, refereing the reader to
the appropriate literature for details.

admissible process with cos$t and along the trajectory
the state constraint is inactive.
the classical nonsmooth maximum principle holds when
we take all the multipliersO but Ay = 1. However,
(x*, uf, uy, wi, wh) is not optimal. In fact, if we consider
the processz, uy, us*, wy, ws) = (—4at, —a, 0, 1,0), with
a € (0,1/4), we see that this process has ces3/4a.
Now let us apply Theoremi 3.1 to our problem for the
process(z*, uj, us, wi, ws). Since the state constraint is
inactive, we deduce that measureis null. Considering

the Euler Lagrange equation in (ii) of Theordm]3.1 we
deduce that there should exists an absolutely continuous
function p and a scalar\, > 0 satisfying (i) of Theorem
B and such thap(1) = 0, —p(t) = —Xo(1 + e(t)) and

0 = 4p(t) + Aoe(t) wheree(t) takes values if—1,1f. A
simple analysis will convince the reader that this situatio

is impossible. This means that Theorem] 3.1 does not hold
excluding(z*, uj, u3, w},w;) as a minimum. W

Consider the problem

b
Minimize I(z(a), z(D)) +/ L(t,z(t),u(t))dt

subject to
z(t) = A(t)x(t) + B(t)u(t) for a. e.t € [a,b],
D(t)z(t) <0 forall t € [a,b],
u(t) € U(t) for a. e.t € [a, b],
(z(a),z(b)) € E

whereFE is convex, the multifunctio® is convex valued, the
functions! and (z,u) — L(t,z,u) are convex, the function
A 1 ]0,1] — R™*™ is integrable, the functio®B : [0,1] —
R"** is measurable, and the functidn : [0,1] — R*"
is continuous. Ther{LC) is what we refer to as a linear
convex problem with state constraints.

Theoren{ 311 (and of course TheorEml 3.2) keeps the sig-
nificant feature of being a sufficient condition of optimalit
in the normal form for probleniLC'). This follows directly
from the observation that the proof of Proposition 4.1 in [9]

2The functione appears from the subdifferential of the cost which is
clearly nonsmooth due to the presence of the modulus.

! All the results are proved assuming that= 0. The case
It is easy to see thaff L 0 is treated by a standard and well known technique.

A. Sketch of the Proof of Propositigh 1
« First the validity of the Proposition is established for

the simpler problem

Minimize [(z(b))
subject to
#(t) = f(t,2(t), u(t)) a.et € [a,b]
u(t) e U(t) a.et € [a, ]
h(t,z(t)) <0 for all t € [a, D]
(x(a), (b)) € {xs} x E.
Problem(Q) is a special case ofP) in which E =
{z.} x Ep andl(xq, xp) = I(zp).
Our proof consists of the following steps

Q1 Define a sequence of problems penalizing the state-
constraint violation. The sequence of problems is

Q)

b
Minimizel(x(b))—i—i/ ht(t,z(t)) dt

a

subject to
z(t) = f(t,z(t),u(t)) a.e.tela,b]

(x(a),z(b)) € {xa} X Eb,

whereh™ (¢, z) := max{0, h(t,z)}.

Assume thaflH] hm inf{Q;} = inf{Q}.

SetIV to be the ‘set of measurable functions
[a,b] — R w(t) € U(t) a.e. such that a solution
of the differential equatiori:(¢t) = f(¢,z(t),u(t)),
for almost everyt € [a,b], with z(t) € z*(¢) +
eB for all ¢t € [a,b] and z(a) = z, and z(b) €
Ey,. We provideW with the L' metric defined by
A(u,v) :=|| u—wv ||, and set

(Q:)

Q2
Q3

b
Ji(u) = 1(x(b)) —l—i/ Rt (t, z(t)) dt.

Then (W, A) is a complete metric space in which
the functionalJ;: W — R is continuous.



Q4 Apply Ekeland’s theorem to the sequence of prob- We impose here the following additional assumptias,
lems of the form the necessity of which for the forthcoming development of
) { Minimize J;(u) our proof will become clear soon.

subjectto uwe W A4 The integrable function is Lipschitz continuous on a

which are closely related t@Q;). neighbourhaod of

The conclusion of application of Ekeland’s theorem (¢ (a), z* (), max_h(t, z*(1)))
shows that(z;,u;) solves the following optimal ’ Ttelab]

control problem: ~ . ) .
and! is monotone in the: variable, in the sense that

b . .
Minimize 1(x(b)) +i/ (¢, @ (t)) di+ f@/n? %mehesl(y,x,z’) > Uy, z,2), for all (y,z) €
a X .
b
V&, [u(t) —uit)] dt The following proposition is a straightforward adaptation

(E;) subject to

#(t) = f(t, 2(1), u(t)) ae.t € [a, ] of Proposition 9.5.4 of [17].

u(t) € U(t) a.e.t € [a,b] Proposition 3: Let(z*,u*) be a strong local minimum for
z(a) = 2q problem (R). Assume the basic hypothesas, A2 and A3
z(b) € L. and the data for the probleniR) satisfies the hypothesis

The fact thate; — 0 allows us to prove that A4. Then there exist an absolutely continuous funcfion
u; converges strongly tau* and z; converges [a,b] — R", an integrable functiony : [a,b] — R™, a non-
uniformly to z*. negative measurg € C%([a,b];R), and a scalar\y > 0

Q6 Rewriting these conditions and taking limits as insuch that
[9] we get the required conclusions.

Q7 Finally we show tha€ implies IH. p{la, B} +plloe + A0 >0, (8)
The remaining of the proof has three stages. We first (=p(t),0) € S, (q(t), f(t, x*(t), u*(1))) 9)
extend Propositiof]1 to problems wheréa) € E,,
andE, is a closed set. This is done following the lines —{0} x N, (u*(t)) ae.
in the end of the proof of Theorem 3.1 in [16].
Next we consider the case when the costlis= (p(a),—q(b),/ u(ds)) € (10)
{(z(a),z(b)). This is done using the technique in Step [a,b)
2 of section 6 in [11]. And finally, following again Néa(z*(a)) x {0,0} +
the a_p_proach in section 6 in [11], we derlve_necessary Nodl(a* (a), * (b), maxe(q p) h(t, 2 (£)),
conditions when(z(a),z(b)) € E, completing the
proof. v(t) € Oh(t,z*(t)) p-a.e, (11)
In order to proof our result, an important piece of analysis
added to the proof of Theorem 3.1 in [9] concerns the v oueU(), (12)

Weierstrass condition (iii) of Propositién 1. The inforriaat (q(t), f(t,z*(t),uw)) < (q(t), f(t,z*(t),u*(t))) a.e.,
extracted while taking limits allow us to do that without tha
much ado. supp{u} C (13)

t b : h(t,x*(t)) = ; h *
B. Sketch of the Proof of Theorém]3.1 {t € lo, 0] hlt,2"(1)) = maxsea) h(s, 27 (5))}

We now proceed to prove our main Theole 3.1. We recaWhereq is defined as in[{6).
that under our hypotheses bolld (3) alH (4) hold and that theWe now turn to the derivation of Theordm B.1. Consider
set f(t,z,U(t)) is compact. the set

Our proof consists of several steps. We first consider the o
following 'minimax’ optimal control problem where the stat V' := {(z, u, ¢) : (z,u) satisfiesi(t) = f(t,z(t), u(t)),
constraint functionalmax h(t, z(t)) appears in the cost. u(t) e U(t) a.e, e € R", (x(a),e) € C

t€lab] and ||z — x*||p~ < e}
Minimize 1((a), 2(b), max h(t, () (14)
’ Tielan] and letdy : V x V — R be a function defined by
~ overz ¢ Wh! and measurable satisfying L
(R) S a(t) = f(t, (), u(t)) ae.t € [a, b] dv((z,u,e), (¢, v, ) = (15)

u(t) € U(t) a.e.t € [a,b] |z(a) — 2'(a)| + |e — €| + f; |u(t) — u/(t)|dt

(z(a), (b)) € Ea x R™. , . .
For all i, we choose:; | 0 and define the function

wherel : R" xR"xR — Ris a given function andz, C R" -~ L
is a given closed set. We observe tl{ét) is the optimal li(z,y, 2",y 2) :=
control problem with free endpoint constraints. max{l(z,y) — l(z*(a),z* (b)) + &2, 2, |2’ — y'|}.



Then dy defines a metric on the séf and (V,dy) is a
complete metric space such that

o If (24,u;,e;) = (z,u,e) in the metric spacéV,dy ),
then||z; — x||p~ — 0,
« The function

V. CONCLUSIONS

In this work we derive a variant nonsmooth maximum
principle for state constrained problems. The novelty g th
work is that our results are also sufficient conditions of
optimality for the normal linear-convex problems. The fesu

presented in the main theorem is quite distinct to previous

(z,u,e) = l;i(x(a), e, x(b), e,tren[aa,)a h(t,z(t)))

is continuous or(V, dy ).
We now consider the following optimization problem

Minimize {I;(z(a), e, z(b), e, maxe (4 ) h(t, (1)) :

(x,u,e) € V}. 1

We observe that [2]

Li(z* (a), z* (b), 2*(b), z* (b), max h(t,z*(t))) = 7.

tela,b] [3]
Since I; is non-negative valued, it follows that 4
(z*,u*,z* (b)) is ane?-minimizer for the above minimiza- [5]
tion problem. According to Ekeland’s Theorem there exists

a sequencé(x;,u;, e;)} in V such that for each, we have
(7]

Z(xl (a’)a €i, Ty (b)v €4, MaAXic[qa,b] h(ta €Lg (t))) < (16) (8]
li(z(a), e, (), e;maxye (o ) h(t, (1)) +
eidv ((w,u,e), (z;,u;, €7)) [9]
for all (z,u,e) € V and we also have [10]
dy (@, us, €4), (2%, u”, 27(b))) < & 17)
[11]

Thus the condition(17) implies thaf — x*(b) andu; —
u* in the L' norm. By using subsequence extraction, we
conclude that,; — v* a.e. ande; — z* uniformly. [12]

Now we define the arg; = e;. Accordingly we gety; —
z*(b) uniformly. From the minimization property (16), we
say that(z;,y;, w; = 0,u;) is a strong local minimum for

(23]

the optimal control problem 14]
Minimize [15]
li (.I'(Cl), y(a)a .CC(b), y(b)7 maXtG[a,b] h(ta LC(t))) [16]
+eillz(a) — zi(a)| + y(a) — yi(a)| + w(b)]
(B) overz,y,w € W and measurable satisfying
' o(t) = f(t,x(t), u(t)),y(t) = 0, 7]

w(t) = |u(t) —u;(t)| a.e,
u(t) e U(t) a.e,
(z(a), y(a), w(a)) € C x {0},

Now we observe that the cost function ()E—) satisfies
all the assumptions of the Propositioh 3 and thus this is an
example of optimal control problem where the special case of
maximum principle of Propositioh] 3 applies. Rewriting the
conclusions of Propositidn 3 and taking limits we obtained
the required conditions. The remain of the proof follows
closely the approach in [10].

work in the literature since for state constrained problexes
add the Weierstrass conditions to adjoint inclusions utieg
joint subdifferentials with respect to the state and thetrabn
The illustrated example presented in the paper justifies our
results.
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