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A variant of nonsmooth maximum principle for state constrained
problems

Md. Haider Ali Biswas and M.d.R. de Pinho

Abstract— We derive a variant of the nonsmooth maximum
principle for problems with pure state constraints. The interest
of our result resides on the nonsmoothness itself since, when
applied to smooth problems, it coincides with known results.
Remarkably, in the normal form, our result has the special
feature of being a sufficient optimality condition for linear-
convex problems, a feature that the classical Pontryagin max-
imum principle had whereas the nonsmooth version had not.
This work is distinct to previous work in the literature sinc e, for
state constrained problems, we add the Weierstrass conditions
to adjoint inclusions using the joint subdifferentials with respect
to the state and the control. Our proofs use old techniques
developed in [16], while appealing to new results in [7].

I. INTRODUCTION

It is commonly accepted that optimal control appears with
the publication of the seminal book [14] where the statement
and proof of the Pontryagin Maximum Principle played a
crucial role (we refer the reader to the survey [13] for an
interesting historic account of the pioneering results). Since
then we have witnessed continuous developments.

Generalization of the classical maximum principle to prob-
lems with nonsmooth data appeared in 1970’s as mainly the
result of the work of Francis Clarke (see [3] and references
therein). The nonsmooth maximum principle, nowadays a
well established result, was then extended and refined by a
number of authors. One of the first attempts to extend it to
cover problems with state constraints came up in [16].

A special feature of the classical Pontryagin maximum
principle is that it is also a sufficient optimality condition
for the normal form of the so called linear-convex problems.
Regrettably, the nonsmooth version had no such feature.
Nonsmooth necessary optimality conditions in the vein of
maximum principles were proposed in [8] overcoming this
setback. Regrettably those necessary conditions did not in-
clude the Weierstrass condition responsible for the very name
Maximum Principle. More recently the setbacks in [8] were
taken care of in [6] where a new variant of the nonsmooth
maximum principle is derived by appealing to [5]. As in [8],
Lipschitz continuity of dynamics with respect to both state
and control is assumed, the special ingredient responsible
for sufficiency of the nonsmooth maximum principle when
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applied to normal linear convex problems (see problem(LC)
below)1. In what follows, and for simplicity, we opt to refer
to the statement of this new nonsmooth maximum principle
stated as Theorem 3.1 in [7] which plays a crucial role in
our developments.

Here we extend Theorem 3.1 in [7] to cover state con-
strained problems. In doing so we follow closely the ap-
proach of [9] and [10] where the main result in [8] is
generalized to cover state constrained problems in two steps;
first the convex case is treated in [9] using techniques based
on [16] and then convexity is removed in [10].

In this paper we show that the proofs in [9] and [10]
adapted easily to allow extension of Theorem 3.1 in [7] to
state constrained problems. In this way we obtain a new
variant of the nonsmooth maximum principle, improving on
[10] by adding the Weierstrass condition to the previous
conditions while keeping the interesting feature of being a
sufficient condition for normal linear-convex problems.

II. PRELIMINARIES

A. Notation

Here and throughoutB represents the closed unit ball
centered at the origin regardless of the dimension of the
underlying space and| · | represents the Euclidean norm or
the induced matrix norm onRp×q. The Euclidean distance
functionwith respect to a given setA ⊂ R

k is

dA : Rk → R, y 7→ dA(y) = inf {|y − x| : x ∈ A} .
A function h : [0, 1] → R

p lies in W 1,1([0, 1];Rp) if and
only if it is absolutely continuous; inL1([0, 1];Rp) iff it is
integrable; and inL∞([0, 1];Rp) iff it is essentially bounded.
The norm ofL1([0, 1];Rp) is denoted by‖·‖1 and the norm
of L∞([0, 1];Rp) is ‖·‖

∞
.

We make use of standard concepts from nonsmooth anal-
ysis. LetA ⊂ R

k be a closed set with̄x ∈ A. The limiting
normal cone toA at x̄ is denoted byNA(x̄).

Given a lower semicontinuous functionf : Rk → R ∪
{+∞} and a pointx̄ ∈ R

k where f(x̄) < +∞, ∂f(x̄)
denotes thelimiting subdifferentialof f at x̄. When the
function f is Lipschitz continuous nearx, the convex hull
of the limiting subdifferential, co∂f(x), coincides with the
(Clarke) subdifferential. Properties of Clarke’s subdifferen-
tials (upper semi-continuity, sum rules, etc.), can be found
in [4]. For details on such nonsmooth analysis concepts, see
[4], [15], [17] and [12].

1 With respect to generalizations of [8] we also refer the reader to a
different version of a nonsmooth maximum principle in [1] making use of
“compatible” feedback controls.
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B. The Problem

Consider the problem denoted throughout by(P ) of
minimizing

l(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t)) dt

subject to the differential equation

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],

the state constraint

h(t, x(t)) 6 0 for all t ∈ [a, b],

the boundary conditions

(x(a), x(b)) ∈ C,

and the control constraints

u(t) ∈ U(t) a.e. t ∈ [a, b].

Here the interval[a, b] is fixed. We have the statex(t) ∈
R

n and the controlu(t) ∈ R
k. The function describing the

dynamics isf : [a, b]×R
n×R

k → R
n. Moreoverh andL are

scalar functionsh : [a, b]×R
n → R, L : [a, b]×R

n×R
k →

R, U is a multifunction andC ⊂ R
n × R

n.
We shall denote by(S) the problem one obtains from(P )

in the absence of the state constrainth(t, x(t)) 6 0 and we
refer to it as astandard optimal control problem.

Throughout this paper we assume that the following basic
assumptions are in force:

B1 the functionsL andf areL × B-measurable,
B2 the multifunctionU hasL × B-measurable graph,
B3 the setC is closed andl is locally Lipschitz.

For (P ) (or (S)) a pair (x, u) comprising an absolutely
continuous functionx, the state, and a measurable function
u, the control, is called anadmissible processif it satisfies
all the constraints.

An admissible process(x∗, u∗) is astrong local minimum
of (P ) (or (S)) if there existsε > 0 such that(x∗, u∗)
minimizes the cost over all admissible processes(x, u) such
that

|x(t) − x∗(t)| 6 ε for all t ∈ [a, b]. (1)

It is a local W 1,1-minimumif there exists someε > 0 such
that it minimizes the cost to all processes(x, u) satisfying
(1) and

∫ b

a

|ẋ(t)− ẋ∗(t)| dt 6 ε.

Let R : [a, b] →]0,+∞] be a given measurable function.
Then the admissible process(x∗, u∗) is a local minimum
of radius R if it minimizes the cost over all admissible
processes(x, u) such that

|x(t) − x∗(t)| 6 ε, |u(t)− u∗(t)| 6 R(t) a.e.

and
∫ b

a

|ẋ(t)− ẋ∗(t)| dt 6 ε

for someε > 0.

C. Assumptions

In what follows the pair(x∗, u∗) will always denote the
solution of the optimal control problem under consideration.

Let us take any functionφ defined in[a, b]×R
n×R

k and
taking values inRn or R.

A1 There exist constantskφx and kφu for almost everyt ∈
[a, b] and every(xi, ui) (i = 1, 2) such that

xi ∈ {x : |x− x∗(t)| 6 ε}, ui ∈ U(t)

we have

|φ(t, x1, u1)−φ(t, x2, u2)| 6 kφx |x1−x2|+kφu |u1−u2|.

A2 The set valued functiont → U(t) is closed valued and
there exists a constantc > 0 such that for almost every
t ∈ [a, b] we have

|u(t)| 6 c ∀u ∈ U(t).

When A1 is imposed onf and/or L, then the Lipschitz
constants are denoted bykfx , kfu, kLx and kLu . Observe
that if U is independent of time, thenA2 states that the
set U is compact. AssumptionA2 requires the controls
to be bounded, a strong hypothesis but nevertheless quite
common in applications. It also simplifies the proofs of the
forthcoming results where limits of sequence of controls
needed to be taken.
D. Auxiliary Results

Attention now goes to problem(S), i.e., we assume
that the state constraint is now absent. We next state an
adaptation of Theorem 3.1 in [7] essential to our analysis
in the forthcoming sections. It is “an adaptation” because it
holds under stronger assumptions than those in [7].

Theorem 2.1: Let(x∗, u∗) be a strong local minimum for
problem(S). If B1–B3 are satisfied,f andL satisfyA1 and
U is closed valued, then there existp ∈ W 1,1([a, b];Rn) and
a scalarλ0 > 0 satisfying thenontriviality condition[NT]:

||p||∞ + λ0 > 0,

the Euler adjoint inclusion[EI]:

(−ṗ(t), 0) ∈ ∂C
x,u

(
〈p, f〉 − λ0L

)
(t, x∗(t), u∗(t))

−{0} ×K|p(t)|∂C
u dU(t)(u

∗(t)) a.e.,

the globalWeierstrass condition[W]:
∀ u ∈ U(t),

〈p(t), f(t, x∗(t), u)〉+ λ0L(t, x
∗(t), u) 6

〈p(t), f(t, x∗(t), u∗(t))〉+ λ0L(t, x
∗(t), u∗(t)) a.e.,

and thetransversality condition[T]:

(p(a),−p(b)) ∈ NL
C (x

∗(a), x∗(b)) + λ0∂
Ll(x∗(a), x∗(b)).

In the aboveK is a constant depending merely onkfx , kLx ,
kfu andkLu .

In [7] the analysis is done forlocal minimum of radius
R instead of strong minimum and it holds under a weaker
assumption thanA1.



We point out that the conditions given by the classical
nonsmmoth maximum principle (see [5]) are [NT], [W], [T]
and [EI] is replaced by

−ṗ(t) ∈ (2)

∂C
x

(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x

∗(t), u∗(t))
)
.

We refer the reader to [6] for a discussion on (2) and [EI].

III. MAIN RESULTS
We now turn to problem(P ). We derive a new nonsmooth

maximum principle for this state constrained problem in the
vein of Theorem 3.1 in [7] in two stages. Firstly the result
is established under a convexity assumption on the “velocity
set” (seeC below). Then such hypothesis is removed. This
is proved following an approach in [17] and similar to what
is done in [10].

On h we impose the following:

A3 For all x such that|x(t) − x∗(t)| 6 ε the function
t → h(t, x) is continuous. Furthermore, there exists a
constantkh > 0 such that the functionx → h(t, x) is
Lipschitz of rankkh for all t ∈ [a, b].

The need to impose continuity oft → h instead of merely
semi upper continuity is discussed in [9].

Recall that our basic assumptionsB1–B3 are in force.
Suppose thatf and L satisfy A1 and thatA2 holds. For
future use, observe that these assumptions also assert that
following conditions are satisfied:

|φ(t, x∗(t), u)− φ(t, x∗(t), u∗(t))| 6 (3)

kφu|u− u∗(t)| for all u ∈ U(t) a.e.t

and there exists an integrable functionk such that

|φ(t, x∗(t), u)| 6 k(t) for all u ∈ U(t) a.e.t. (4)

In the aboveφ is to be replaced byf and L. Moreover,
it is a simple matter to see that the setsf(t, x, U(t)) and
L(t, x, U(t)) are compact for allx ∈ x∗(t) + εB.

A. Convex Case

Consider the additional assumption on the “velocity set”:

C The velocity set

{(v, l) = (f(t, x, u), L(t, x, u)), u ∈ U(t)}

is convex for all(t, x) ∈ [a, b]× R
n.

Introduce the following subdifferential

∂̄xh(t, x) := (5)

co{lim ξi : ξi ∈ ∂xh(ti, xi), (ti, xi) → (t, x)}.

Proposition 1: Let(x∗, u∗) be a strong local minimum
for problem(P ). Assume thatf andL satisfyA1, assump-
tions B1–B3, A2 and C hold andh satisfiesA3. Then there
exist p ∈ W 1,1([a, b];Rn), γ ∈ L1([a, b];R), a measure
µ ∈ C⊕([a, b];R), and a scalarλ0 > 0 satisfying

(i) µ{[a, b]}+ ||p||∞ + λ0 > 0,

(ii) (−ṗ(t), 0) ∈
∂C
x,u

(
〈q(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x

∗(t), u∗(t))
)

−{0} ×NC
U(t)(u

∗(t)) a.e.,

(iii) ∀ u ∈ U(t),
〈q(t), f(t, x∗(t), u)〉 − λ0L(t, x

∗(t), u) 6
〈q(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x

∗(t), u∗(t)) a.e.,

(iv) (p(a),−q(b)) ∈
NL

C (x
∗(a), x∗(b)) + λ0∂l(x

∗(a), x∗(b)),

(v) γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e.,

(vi) supp{µ} ⊂ {t ∈ [a, b] : h(t, x∗(t)) = 0} ,
where

q(t) =





p(t) +
∫
[a,t) γ(s)µ(ds) t ∈ [a, b)

p(t) +
∫
[a,b]

γ(s)µ(ds) t = b.
(6)

B. Maximum Principle in the Nonconvex Case

Now we replace the subdifferential∂̄xh by a more refined
subdifferential∂>

x h defined by

∂>
x h(t, x) := co{ξ : ∃(ti, xi)

h−→ (t, x) : (7)

h(ti, xi) > 0 ∀i, ∂xh(ti, xi) → ξ}.

Theorem 3.1: Let(x∗, u∗) be a strong local minimum for
problem (P ). Assume thatf and L satisfy A1, h satisfies
A3 and that A2 as well as the basic assumptionsB1–B3
hold. Then there exist an absolutely continuous function
p, an integrable functionγ, a non-negative measureµ ∈
C⊕([a, b];R), and a scalarλ0 > 0 such that conditions (i)–
(vi) of Proposition 1 hold with∂>

x h as in (7) replacing∂̄xh
and whereq is as defined in(6).

For the convex case see [2] for preliminary results for
problems with additional mixed state control constraints.
Removal of convexity will the be focus of future work.

The above theorem adapts easily when we assume(x∗, u∗)
to be a weak local minimum instead of a strong local
minimum (see discussion above). It is sufficient to replace
U(t) by U(t) ∩ Bε(u

∗(t)).

Theorem 3.1 can now be extended to deal with a local
W 1,1-minimum for (P ).

Theorem 3.2: Let(x∗, u∗) be merely a localW 1,1-
minimum for problem(P ). Then the conclusions of Theorem
3.1 hold.

We omit the proof of this Theorem here since it can be
easily obtained mimicking what is done in [17].

C. Linear Convex Problems

The distinction between Theorem 3.1 and classical non-
smooth maximum principle (see [17]) is well illustrated by
an example provided in [9]. We recover such example here



showing that Theorem 3.1 can eliminate processes whereas
the classical nonsmooth maximum principle cannot.

Example: Consider the problem on the interval[0, 1]:

(L)





Minimize
∫ 1

0

(w1|x− u1|+ w2|x− u2|+ x)dt

subject to
ẋ(t) = 4w1(t)u1(t) + 4w2(t)u2(t) for a. e.t,
x(t) > −1 for all t,
u1(t), u2(t) ∈ [−1, 1] for a. e.t,
(w1(t), w2(t)) ∈ W for a. e.t,
x(0) = 0

where

W := {(w1, w2) ∈ R
2 : w1, w2 > 0, w1 + w2 = 1}.

The process(x∗, u∗
1, u

∗
2, w

∗
1 , w

∗
2) := (0, 0, 0, 1, 0) is an

admissible process with cost0 and along the trajectory
the state constraint is inactive. It is easy to see that
the classical nonsmooth maximum principle holds when
we take all the multipliers0 but λ0 = 1. However,
(x∗, u∗

1, u
∗
2, w

∗
1 , w

∗
2) is not optimal. In fact, if we consider

the process(x, u1, u2∗, w1, w2) = (−4αt,−α, 0, 1, 0), with
α ∈ (0, 1/4), we see that this process has cost−3/4α.
Now let us apply Theorem 3.1 to our problem for the
process(x∗, u∗

1, u
∗
2, w

∗
1 , w

∗
2). Since the state constraint is

inactive, we deduce that measureµ is null. Considering
the Euler Lagrange equation in (ii) of Theorem 3.1 we
deduce that there should exists an absolutely continuous
function p and a scalarλ0 > 0 satisfying (i) of Theorem
3.1 and such thatp(1) = 0, −ṗ(t) = −λ0(1 + e(t)) and
0 = 4p(t) + λ0e(t) wheree(t) takes values in[−1, 1]2. A
simple analysis will convince the reader that this situation
is impossible. This means that Theorem 3.1 does not hold
excluding(x∗, u∗

1, u
∗
2, w

∗
1 , w

∗
2) as a minimum. �

Consider the problem

(LC)





Minimize l(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t))dt

subject to
ẋ(t) = A(t)x(t) +B(t)u(t) for a. e.t ∈ [a, b],
D(t)x(t) 6 0 for all t ∈ [a, b],
u(t) ∈ U(t) for a. e.t ∈ [a, b],
(x(a), x(b)) ∈ E

whereE is convex, the multifunctionU is convex valued, the
functionsl and (x, u) → L(t, x, u) are convex, the function
A : [0, 1] → R

n×n is integrable, the functionB : [0, 1] →
R

n×k is measurable, and the functionD : [0, 1] → R
1×n

is continuous. Then(LC) is what we refer to as a linear
convex problem with state constraints.

Theorem 3.1 (and of course Theorem 3.2) keeps the sig-
nificant feature of being a sufficient condition of optimality
in the normal form for problem(LC). This follows directly
from the observation that the proof of Proposition 4.1 in [9]

2The function e appears from the subdifferential of the cost which is
clearly nonsmooth due to the presence of the modulus.

proves our claim. No adaptation is required in this case. For
completeness we state such proposition here.

We say that a process(x∗, u∗) is a normal extremal if it
satisfies the conclusions of Theorem 3.1 withλ0 = 1.

Proposition 2: ([9]) If the process(x∗, u∗) is a normal
extremal for problem(LC), then it is a minimum.

Let us return to our previous example. Problem(L) is what
we call a linear convex problem. It is now obvious that the
process(x∗, u∗

1, u
∗
2, w

∗
1 , w

∗
2) := (0, 0, 0, 1, 0) does not satisfy

the conclusions of Theorem 3.1, if it did, then it would be a
minimum as asserted by Proposition 2 and it is not.

IV. PROOFS OF THE MAIN RESULTS

Since our proofs are based on those in [9] and [10] we
we only give a brief sketch of them, refereing the reader to
the appropriate literature for details.

All the results are proved assuming thatL ≡ 0. The case
of L 6= 0 is treated by a standard and well known technique.

A. Sketch of the Proof of Proposition 1

• First the validity of the Proposition is established for
the simpler problem

(Q)





Minimize l(x(b))
subject to
ẋ(t) = f(t, x(t), u(t)) a.e.t ∈ [a, b]
u(t) ∈ U(t) a.e.t ∈ [a, b]
h(t, x(t)) 6 0 for all t ∈ [a, b]
(x(a), x(b)) ∈ {xa} × Eb.

Problem(Q) is a special case of(P ) in which E =
{xa} × Eb and l(xa, xb) = l(xb).
Our proof consists of the following steps

Q1 Define a sequence of problems penalizing the state-
constraint violation. The sequence of problems is

(Qi)





Minimize l(x(b)) + i

∫ b

a

h+(t, x(t)) dt

subject to
ẋ(t) = f(t, x(t), u(t)) a.e.t ∈ [a, b]

(x(a), x(b)) ∈ {xa} × Eb,

whereh+(t, x) := max{0, h(t, x)}.
Q2 Assume that[IH] lim

i→∞
inf{Qi} = inf{Q}.

Q3 SetW to be the set of measurable functionsu :
[a, b] → R

k, u(t) ∈ U(t) a.e. such that a solution
of the differential equatioṅx(t) = f(t, x(t), u(t)),
for almost everyt ∈ [a, b], with x(t) ∈ x∗(t) +
εB for all t ∈ [a, b] and x(a) = xa and x(b) ∈
Eb. We provideW with theL1 metric defined by
∆(u, v) :=‖ u− v ‖L1

and set

Ji(u) := l(x(b)) + i

∫ b

a

h+(t, x(t)) dt.

Then (W,∆) is a complete metric space in which
the functionalJi : W → R is continuous.



Q4 Apply Ekeland’s theorem to the sequence of prob-
lems of the form

(Oi)

{
Minimize Ji(u)

subject to u ∈ W

which are closely related to(Qi).
The conclusion of application of Ekeland’s theorem
shows that(xi, ui) solves the following optimal
control problem:

(Ei)





Minimize l(x(b)) + i

∫ b

a

h+(t, x(t)) dt+

√
εi
∫ b

a
|u(t)− ui(t)| dt

subject to
ẋ(t) = f(t, x(t), u(t)) a.e.t ∈ [a, b]
u(t) ∈ U(t) a.e.t ∈ [a, b]
x(a) = xa

x(b) ∈ Eb.

The fact thatεi → 0 allows us to prove that
ui converges strongly tou∗ and xi converges
uniformly to x∗.

Q6 Rewriting these conditions and taking limits as in
[9] we get the required conclusions.

Q7 Finally we show thatC implies IH.
The remaining of the proof has three stages. We first
extend Proposition 1 to problems wherex(a) ∈ Ea,
andEa is a closed set. This is done following the lines
in the end of the proof of Theorem 3.1 in [16].
Next we consider the case when the cost isl =
l(x(a), x(b)). This is done using the technique in Step
2 of section 6 in [11]. And finally, following again
the approach in section 6 in [11], we derive necessary
conditions when(x(a), x(b)) ∈ E, completing the
proof.

In order to proof our result, an important piece of analysis
added to the proof of Theorem 3.1 in [9] concerns the
Weierstrass condition (iii) of Proposition 1. The information
extracted while taking limits allow us to do that without that
much ado.

B. Sketch of the Proof of Theorem 3.1

We now proceed to prove our main Theorem 3.1. We recall
that under our hypotheses both (3) and (4) hold and that the
setf(t, x, U(t)) is compact.

Our proof consists of several steps. We first consider the
following ’minimax’ optimal control problem where the state
constraint functionalmax

t∈[a,b]
h(t, x(t)) appears in the cost.

(R̃)





Minimize l̃(x(a), x(b), max
t∈[a,b]

h(t, x(t)))

overx ∈ W 1,1 and measurableu satisfying
ẋ(t) = f(t, x(t), u(t)) a.e.t ∈ [a, b]
u(t) ∈ U(t) a.e.t ∈ [a, b]
(x(a), x(b)) ∈ Ea × R

n.

wherel̃ : Rn×R
n×R → R is a given function andEa ⊂ R

n

is a given closed set. We observe that(R̃) is the optimal
control problem with free endpoint constraints.

We impose here the following additional assumptionA4,
the necessity of which for the forthcoming development of
our proof will become clear soon.

A4 The integrable functioñl is Lipschitz continuous on a
neighbourhood of

(x∗(a), x∗(b), max
t∈[a,b]

h(t, x∗(t)))

and l̃ is monotone in thez variable, in the sense that
z′ > z implies l̃(y, x, z′) > l̃(y, x, z), for all (y, x) ∈
R

n × R
n.

The following proposition is a straightforward adaptation
of Proposition 9.5.4 of [17].

Proposition 3: Let(x∗, u∗) be a strong local minimum for
problem (R̃). Assume the basic hypotheses,A1, A2 andA3
and the data for the problem(R̃) satisfies the hypothesis
A4. Then there exist an absolutely continuous functionp :
[a, b] → R

n, an integrable functionγ : [a, b] → R
n, a non-

negative measureµ ∈ C⊕([a, b];R), and a scalarλ0 > 0
such that

µ{[a, b]}+ ||p||∞ + λ0 > 0, (8)

(−ṗ(t), 0) ∈ ∂C
x,u〈q(t), f(t, x∗(t), u∗(t))〉 (9)

−{0} ×NC
U(t)(u

∗(t)) a.e.

(p(a),−q(b),

∫

[a,b)

µ(ds)) ∈ (10)

NL
Ca

(x∗(a))× {0, 0}+
λ0∂l̃(x

∗(a), x∗(b),maxt∈[a,b] h(t, x
∗(t)),

γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e., (11)

∀ u ∈ U(t), (12)

〈q(t), f(t, x∗(t), u)〉 6 〈q(t), f(t, x∗(t), u∗(t))〉 a.e. ,

supp{µ} ⊂ (13){
t ∈ [a, b] : h(t, x∗(t)) = maxs∈[a,b] h(s, x

∗(s))
}
,

whereq is defined as in (6).

We now turn to the derivation of Theorem 3.1. Consider
the set

V := {(x, u, e) : (x, u) satisfiesẋ(t) = f(t, x(t), u(t)),
u(t) ∈ U(t) a.e., e ∈ R

n, (x(a), e) ∈ C
and‖x− x∗‖L∞ 6 ε}

(14)
and letdV : V × V → R be a function defined by

dV ((x, u, e), (x
′, u′, e′)) = (15)

|x(a)− x′(a)|+ |e− e′|+
∫ b

a
|u(t)− u′(t)|dt

For all i, we chooseεi ↓ 0 and define the function

l̃i(x, y, x
′, y′, z) :=

max{l(x, y)− l(x∗(a), x∗(b)) + ε2i , z, |x′ − y′|}.



Then dV defines a metric on the setV and (V, dV ) is a
complete metric space such that

• If (xi, ui, ei) → (x, u, e) in the metric space(V, dV ),
then‖xi − x‖L∞ → 0,

• The function

(x, u, e) → l̃i(x(a), e, x(b), e, max
t∈[a,b]

h(t, x(t)))

is continuous on(V, dV ).

We now consider the following optimization problem

Minimize {l̃i(x(a), e, x(b), e,maxt∈[a,b] h(t, x(t))) :

(x, u, e) ∈ V }.

We observe that

l̃i(x
∗(a), x∗(b), x∗(b), x∗(b), max

t∈[a,b]
h(t, x∗(t))) = ε2i .

Since l̃i is non-negative valued, it follows that
(x∗, u∗, x∗(b)) is an ε2i -minimizer for the above minimiza-
tion problem. According to Ekeland’s Theorem there exists
a sequence{(xi, ui, ei)} in V such that for eachi, we have

l̃i(xi(a), ei, xi(b), ei,maxt∈[a,b] h(t, xi(t))) 6 (16)

l̃i(x(a), e, x(b), e,maxt∈[a,b] h(t, x(t))) +

εidV ((x, u, e), (xi, ui, ei))

for all (x, u, e) ∈ V and we also have

dV ((xi, ui, ei), (x
∗, u∗, x∗(b))) 6 εi. (17)

Thus the condition (17) implies thatei → x∗(b) andui →
u∗ in the L1 norm. By using subsequence extraction, we
conclude thatui → u∗ a.e. andxi → x∗ uniformly.

Now we define the arcyi ≡ ei. Accordingly we getyi →
x∗(b) uniformly. From the minimization property (16), we
say that(xi, yi, wi ≡ 0, ui) is a strong local minimum for
the optimal control problem

(R̃i)





Minimize
l̃i(x(a), y(a), x(b), y(b),maxt∈[a,b] h(t, x(t)))
+ εi[|x(a) − xi(a)|+ |y(a)− yi(a)|+ w(b)]

over x, y, w ∈ W 1,1 and measurableu satisfying
ẋ(t) = f(t, x(t), u(t)), ẏ(t) = 0,
ẇ(t) = |u(t)− ui(t)| a.e.,
u(t) ∈ U(t) a.e.,
(x(a), y(a), w(a)) ∈ C × {0}.

Now we observe that the cost function of(R̃i) satisfies
all the assumptions of the Proposition 3 and thus this is an
example of optimal control problem where the special case of
maximum principle of Proposition 3 applies. Rewriting the
conclusions of Proposition 3 and taking limits we obtained
the required conditions. The remain of the proof follows
closely the approach in [10].

V. CONCLUSIONS

In this work we derive a variant nonsmooth maximum
principle for state constrained problems. The novelty of this
work is that our results are also sufficient conditions of
optimality for the normal linear-convex problems. The result
presented in the main theorem is quite distinct to previous
work in the literature since for state constrained problems, we
add the Weierstrass conditions to adjoint inclusions usingthe
joint subdifferentials with respect to the state and the control.
The illustrated example presented in the paper justifies our
results.
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