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Abstract

This paper proposes a generalization of the conjugate gradient (CG) method used to solve the
equation Ax = b for a symmetric positive definite matrix A of large size n. The generalization
consists of permitting the scalar control parameters (= stepsizes in gradient and conjugate gradient
directions) to be replaced by matrices, so that multiple descent and conjugate directions are updated
simultaneously. Implementation involves the use of multiple agents or threads and is referred to
as cooperative CG (cCG), in which the cooperation between agents resides in the fact that the
calculation of each entry of the control parameter matrix now involves information that comes from
the other agents. For a sufficiently large dimension n, the use of an optimal number of cores gives the
result that the multithread implementation has worst case complexity O(n2+1/3) in exact arithmetic.
Numerical experiments, that illustrate the interest of theoretical results, are carried out on a multicore
computer.

1 Introduction

The paradigm of cooperation between agents in order to achieve some common objective has now become
quite common in many areas such as control and distributed computation, while repesenting a multitude
of different situations and related mathematical questions [7, 11, 10].

In the field of computation, the emphasis has been mainly on the paradigm of parallel computing in
which some computational task is subdivided into as many subtasks as there are available processors.
The subdivision naturally induces a communication structure (or graph), connecting processors and
the challenge is to achieve a subdivision that maximizes concurrency of tasks (hence minimizing total
computational time), while simultaneously minimizing communication overhead. This paradigm arose as
a consequence of the usual architecture of most early multiprocessor machines, in which interprocessor
communication is a much slower operation than a mathematical operation carried out in the same
processor. Disadvantages of this approach arise from the difficulty of effectively decomposing a large
task into minimally connected subtasks, difficulties of analysis and the need for synchronization barriers
at which all processors wait for the slowest one, in order to exchange information with the correct time
stamps (i.e., without asymmetric delays).

More recently, in the area of control, interest has been focused on multiagent systems, in which a
number of agents cooperate amongst themselves, in a distributed manner and also subject to a commu-
nication graph that describes possible or allowable channels between agents, in order to achieve some
(computational) task. Similarly, in the area of computation, multicore processors have now become
common – in these processors, each core acommodates a thread which is executed independently of the
threads in the other cores. Thus, in the context of this paper, which is focused on solution of the linear
system of equations Ax = b for a symmetric positive definite matrix A of large size n, we will assume
that each agent carries out a task that is represented by one thread that executes on one core, so that,
in this sense, the words agent and thread can be assumed to represent the same thing. In what follows,

∗ABs work was supported by grants BPP/CNPq and, additionally, CNE from FAPERJ and Universal/CNPq. GN and
FP were supported by DS and PNPD fellowships, respectively, from CNPq.

†A. Bhaya, G. Niedu, F. Pazos are with the Department of Electrical Engineering, Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil, amit@nacad.ufrj.br. P.-A. Bliman is with Inria, Rocquencourt BP105, 78153 Le Chesnay cedex,
France, pierre-alexandre.bliman@inria.fr

1

http://arxiv.org/abs/1204.0069v1


unless we are specifically talking about numerical implementation, we will give preference to the word
agent.

With the advent of ever larger on-chip memory and multicore processors that allow multithread
programming, it is now possible to propose a new paradigm in which each thread, with access to a
common memory, computes its own estimate of the solution to the whole problem (i.e., decomposition
of the problem into subproblems is avoided) and the threads exchange information amongst themselves,
this being the cooperative step. The design of a cooperative algorithm has the objective of ensuring that
exchanged information is used by the threads in such a way as to reduce overall convergence time.

The idea of information exchange between two iterative processes was introduced into numerical
linear algebra long before the advent of multicore processors by Brezinski [3] under the name of hybrid
procedures, defined as (we quote) “a combination of two arbitrary approximate solutions with coefficients
summing up to one...(so that) the combination only depends on one parameter whose value is chosen
in order to minimize the Euclidean norm of the residual vector obtained by the hybrid procedure...
The two approximate solutions which are combined in a hybrid procedure are usually obtained by two
iterative methods.” The objective of minimizing the residue is to accelerate convergence of the overall
hybrid procedure. This idea was generalized and discussed in the context of distributed asynchronous
computation in [1].

More specifically, this paper explores the idea of cooperation between p agents (or threads) in the
context of the conjugate gradient (CG) algorithm applied to an n-dimensional linear system Ax = b, for a
symmetric positive definite matrix A of large size n. Throughout the paper it is assumed that p < n, and
even that p≪ n: the number of agents may be “large”, but it is usually “much smaller” than the “huge”
size of matrix A. The famous CG algorithm, proposed in [6], has several interesting properties, both as an
algorithm in exact arithmetic and as one in finite precision arithmetic [9, 4]. However, it is well known
that, due to its structure, it cannot be parallelized in the conventional sense. In this paper, we revisit
the CG algorithm from a multithread perspective, which can be seen as a direct generalization of the
control approach to the CG algorithm proposed in [2, pp.77-82], in which the scalar control parameters
(stepsizes in gradient and conjugate gradient directions) are replaced by matrices (i.e., multivariable
control). The cooperation between agents resides in the fact that the calculation of each entry of the
control matrix now involves information that comes from the other agents. The method can also be seen
as a generalization of the traditional CG algorithm in which multiple descent and conjugate directions
are updated simultaneously.

The paper is organized as follows. Section 2 briefly recalls the construction, as well as the main
convergence results, of Conjugate Gradient method. Section 3 then presents the new algorithm, called
cooperative Conjugate Gradient (cCG) method. In order to simplify this presentation of the new algorithm,
the case of p = 2 agents is first introduced in Section 3.1. The general case p ≥ 2 is then stated in full
generality in Section 3.2, together with analysis results. Complexity issues are broached in Section 4.
The results stated therein concerns execution of cCG algorithm in exact arithmetic. Section 5 is then
devoted to numerical experiments with the multi-thread implementation. Section 6 provides conclusions
and directions for future work.

Notation For the fixed symmetric definite positive matrix A ∈ R
n×n, we define A-norm in R

n by

‖x‖A .
= (xTAx)1/2, x ∈ R

n (1)

and define A-orthogonality (or conjugacy) of vectors by:

x ⊥A y ⇔ xTAy = 0, x, y ∈ R
n . (2)

We will also have to consider matrices whose columns are vectors of interest. Accordingly, we will say
that X,Y ∈ R

n×p are orthogonal (resp. A-orthogonal) whenever each column of X is orthogonal (resp.
A-orthogonal) to each column of Y , that is when

XTY = 0 (resp. XTAY = 0) . (3)

For any set of vectors ri ∈ R
n, i = 0, 1, . . . , k, we denote respectively {ri}k0 and [ri]

k
0 the set of these

vectors, and the matrix obtained by their concatenation: [ri]
k
0 =

[

r0 r1 . . . rk
]

∈ R
n×(k+1). The
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notation span [ri]
k
0 will denote the subspace of linear combinations of the columns of the matrix [ri]

k
0 .

When R
n is the ambient vector space, we thus have

span [ri]
k
0

.
=

{

v ∈ R
n : ∃γ ∈ R

k+1, v =

k
∑

i=0

γiri = [ri]
k
0γ

}

. (4)

Similarly, for matrices Ri ∈ R
n×p, i = 0, . . . , k, the notation {Ri}k0 (respectively, [Ri]

k
0 ∈ R

n×(k+1)p)
is used for the set of these matrices (respectively, the matrix obtained as concatenation of the matri-
ces R0, R1, . . . , Rk, i.e., [Ri]

k
0 =

[

R0 R1 . . . Rk

]

∈ R
n×(k+1)p.) Also, we write span [Ri]

k
0 for the

subspace of linear combinations of the columns of [Ri]
k
0 :

span [Ri]
k
0

.
=
{

v ∈ R
n : ∃γ ∈ R

(k+1)p, v = [Ri]
k
0γ
}

. (5)

Notice that this notation generalizes the definition provided earlier for vectors, and that span [R] is
already meaningful for a single matrix R ∈ R

n×p. As an example, dim span[R] = rank R.
Last, for any matrix R ∈ R

n×p and for any set J of indices in {1, . . . , p}, we will denote

R|j∈J
.
= (Rij)1≤i≤n,j∈J .

2 The Conjugate Gradient Method

One approach to solving the equation
Ax = b , (6)

with A symmetric positive definite and of large dimension, is to minimize instead the convex quadratic
function

f(x) =
1

2
xTAx − bTx , (7)

since the unique optimal point is x∗ = A−1b. Several algorithms are based on the standard idea of
generating a sequence of points, starting from an arbitrary initial guess, and proceeding in the descent
direction (negative gradient of f(x)), with an adequate choice of the step size. In mathematical terms:

xk+1 = xk − αkrk, rk = ∇f(xk) = Axk − b , (8)

where αk is the step size. The vector rk represents both the gradient of the cost function f at the current
point xk, and the current residue in the process of solving (6).

Amongst the possible choices for αk, a most natural one consists in minimizing the value of the
function f at xk+1, that is in taking

αk = argmin
α∈R

f(xk − αrk) (9)

The algorithm obtained using this principle is the Steepest Descent Method, and one shows easily that
the optimal value is given by the Rayleigh quotient

αk =
rT

krk
rT

kArk
(10)

Algorithm (8)-(10) is convergent, but in general one cannot expect better convergence speed than the
one provided by

‖xk − x∗‖A ≤
(

κ− 1

κ+ 1

)k

‖x0 − x∗‖A (11)

where κ is the condition number

κ
.
=

λmax(A)

λmin(A)
. (12)

The main weakness of Steepest Descent is the fact that steps taken in the same directions as earlier
steps are likely to occur. The Conjugate Direction Methods avoid this drawback. Based on a set of n
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mutually conjugate nonzero vectors {di}n−1
0 (that is di ⊥A dj for any i 6= j, i, j = 0, . . . , n − 1), the

family of conjugate direction methods use the sequence generated according to

xk+1 = xk + αkxk, αk = − rT

kdk
dT

kAdk
. (13)

It is a classical result that the residue rk+1 is orthogonal to the directions di, i = 0, . . . , k; and that xk+1

indeed minimizes f on the affine subspace x0 + span [di]
k
0 [8]. As a consequence of this last property,

conjugate direction methods lead to finite time convergence (in exact arithmetic).
The Conjugate Gradient method, developed by Hestenes and Stiefel [6], is the particular method of

conjugate directions obtained when constructing the conjugate directions by Gram-Schmidt orthogonal-
ization, achieved at step k+1 on the set of the gradients {ri}k0 . A key point here is that this construction
can be carried out iteratively. The iterative equations of the Conjugate Gradient method are given in the
pseudocode instructions of Algorithm 1. Instructions 6–7 constitute the optimal descent process in the
direction dk; while instructions 9–10 achieve iteratively the orthogonalization of the subspaces span [ri]

k
0 .

Algorithm 1 Conjugate Gradient (CG) algorithm

1: choose x0 ∈ R
n

2: r0 := Ax0 − b
3: d0 := r0
4: k := 0
5: while dk 6= 0 do

6: αk := −rT

kdk(d
T

kAdk)
−1

7: xk+1 := xk + αkdk
8: rk+1 := Axk+1 − b
9: βk := −rT

k+1Adk(d
T

kAdk)
−1

10: dk+1 := rk+1 + βkdk
11: k ← k + 1
12: end while

We recall the main properties of this algorithm, in an adapted form, to allow for easier comparison
with the results to be stated later.

Theorem 1 (Properties of CG). As long as the vector dk is not zero

• the vectors {ri}k0 are mutually orthogonal, the vectors {di}k0 are mutually A-orthogonal, and the
subspaces span [ri]

k
0 , span [di]

k
0 and span [Air0]

k
0 are equal and have dimension (k + 1);

• the point xk+1 is the minimizer of f on the affine subspace x0 + span [di]
k
0 .

When the residue vector is zero, the optimum has been attained, showing that CG terminates in finite
time. Apart from the finite time convergence property, the following formula indicates net improvement
with respect to Steepest Descent:

‖xk − x∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖x0 − x∗‖A (14)

which represents substantial improvement with respect to (11).
For a proof of this theorem as well as further details on the contents of this section, see [8, 5].

3 Statement and Analysis of the Cooperative Conjugate Gra-

dient Method

3.1 The two-agent case

In this subsection, in order to aid comprehension and ease notation, the case of two agents (the case
p = 2) is considered: their estimates at step k are written as xk, x

′
k respectively, the residues as rk, r

′
k,
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and the two descent directions as dk, d
′
k. The gradients at each one of the current estimates are given as

(

rk r′k
)

= A
(

xk x′
k

)

− 1Tb , (15)

with 1 =

(

1
1

)

. As for CG method, we distinguish two steps.

• Descent step. Given the current residues rk, r
′
k and two descent directions dk, d

′
k, this step deter-

mines the upgraded value of the estimates xk+1, x
′
k+1 and therefore of the residues rk+1, r

′
k+1.

One allows the use of the two descent directions dk, d
′
k, thus looking for updates of the form

(

xk+1 x′
k+1

)

=
(

xk x′
k

)

+
(

dk d′k
)

αT

k . (16)

The matrix αk ∈ R
2×2 has to be chosen. In the same spirit as for CG, this choice is made in such a

way as to minimize f(xk+1) and f(x′
k+1). This yields in fact two independent minimization problems.

Denoting
αj

.
=
(

αj1 αj2

)

, j = 1, 2 , (17)

the two optimality conditions are given by

0 =
(

dk d′k
)

T

A
(

xk +
(

dk d′k
)

αT

1

)

−
(

dk d′k
)

T

b =
(

dk d′k
)

T

A
(

x′
k +

(

dk d′k
)

αT

2

)

−
(

dk d′k
)

T

b .
(18)

This shows that the minimum is uniquely defined, and attained when

αk =

(

α1

α2

)

= −
(

rk r′k
)

T
(

dk d′k
)

(
(

dk d′k
)

T

A
(

dk d′k
)

)−1 . (19)

Notice that the two descent directions dk, d
′
k have to be linearly independent for the matrix in (19) to

be invertible. Similarly to CG algorithm, we have the following four useful properties

rk+1, r
′
k+1 ⊥ dk, d

′
k . (20)

• Orthogonalization step. The second step consists, given the residues rk+1, r
′
k+1 and the current

descent directions dk, d
′
k, in determining the next descent directions dk+1, d

′
k+1. The latter should be

A-orthogonal to all the previous descent directions. In fact, it will be sufficient to ensure A-orthogonality
to dk, d

′
k, as for CG. One takes

(

dk+1 d′k+1

)

=
(

rk+1 r′k+1

)

+
(

dk d′k
)

βT

k . (21)

The matrix βk ∈ R
2×2 is chosen to ensure the four conditions

dk+1, d
′
k+1 ⊥A dk, d

′
k .

This also leads to two independent problems for the two vectors dk+1, d
′
k+1: writing now

βj
.
=
(

βj1 βj2

)

, j = 1, 2 , (22)

the previous orthogonality conditions can be written as:

0 =
(

rk +
(

dk d′k
)

βT

1

)

T

A
(

dk d′k
)

=
(

r′k +
(

dk d′k
)

βT

2

)

T

A
(

dk d′k
)

(23)

which yields the unique solution

βk =

(

β1

β2

)

= −
(

rk r′k
)

T

A
(

dk d′k
)

(
(

dk d′k
)

T

A
(

dk d′k
)

)−1 (24)
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• Summary of cCG in the case p = 2. Putting together the previous findings, we summarize the cCG
algorithm in the case p = 2 as

(

rk r′k
)

= A
(

xk x′
k

)

− 1Tb (25a)
(

xk+1 x′
k+1

)

=
(

xk x′
k

)

+
(

rk r′k
)

αT

k (25b)

αk = −
(

rk r′k
)

T
(

dk d′k
)

(
(

dk d′k
)

T

A
(

dk d′k
)

)−1 (25c)
(

dk+1 d′k+1

)

=
(

rk+1 r′k+1

)

+
(

dk d′k
)

βT

k (25d)

βk = −
(

rk+1 r′k+1

)

T

A
(

dk d′k
)

(
(

dk d′k
)

T

A
(

dk d′k
)

)−1 (25e)

3.2 Cooperative CG algorithm: the general case

We now provide generalization to the case of p ≥ 2 agents. The extension is indeed straightforward from
(25). The matrices whose j-th column represents respectively the solution estimate, the residue and the
descent direction of agent j, j = 1, . . . , p, for iteration k are denoted Xk ∈ R

n×p, Rk ∈ R
n×p, Dk ∈ R

n×p.
In other words, Xk, Rk, Dk stand for the matrices written down

(

xk x′
k

)

,
(

rk r′k
)

,
(

dk d′k
)

in Section
3.1.

The algorithm cCG in full generality is given as the list of instructions in Algorithm 2. Algorithm cCG

is a generalization of CG , which is the case p = 1. In all algorithms in this paper, comments appear to
the right of the symbol ⊲.

Algorithm 2 cooperative Conjugate Gradient (cCG) algorithm

1: choose X0 ∈ R
n×p

2: R0 := AX0 − 1T

pb
3: D0 := R0 ⊲ Generically, rank D0 = p
4: k := 0
5: while Dk is full rank do

6: αk := −RT

kDk(D
T

kADk)
−1 ⊲ αk ∈ R

p×p

7: Xk+1 := Xk +Dkα
T

k ⊲ Xk+1 ∈ R
p×p

8: Rk+1 := AXk+1 − 1T

pk
b ⊲ Rk+1 ∈ R

p×p

9: βk := −RT

k+1ADk(D
T

kADk)
−1 ⊲ βk ∈ R

p×p

10: Dk+1 := Rk+1 +Dkβ
T

k ⊲ Dk+1 ∈ R
p×p

11: k ← k + 1
12: end while

Theorem 2 (Properties of cCG). As long as the matrix Dk is full rank (that is rank Dk = p)

• the matrices {Ri}k0 are mutually orthogonal, the matrices {Di}k0 are mutually A-orthogonal, and
the subspaces span [Ri]

k
0 , span [Di]

k
0 and span [AiR0]

k
0 are equal and have dimension (k + 1)p;

• for any vector ej of the canonical basis of Rp, the vector Xk+1ej ∈ R
n (which constitutes the j-th

column of Xk+1) is the minimizer of f on the affine subspace X0ej + span [Di]
k
0 .

Theorem 2 indicates that, as long as the residue vector Rk is full rank, the algorithm cCG behaves
essentially as does CG, providing p different estimates at iteration k, each of them being optimal in an
affine subspace constructed from one of the p initial conditions and the common vector space obtained
from the columns of the direction matrices Di, i = 0, . . . , k − 1. This vector space, span [Di]

k
0 , has

dimension (k+1)p: each iteration involves the cancellation of p directions. Notice that different columns
of the matrices Dk are not necessarily A-orthogonal (in other words, DT

kADk is not necessarily diagonal),
but, when Rk is full rank, they constitute a set of p independent vectors. The statement as well as the
proof of this theorem are inspired by the corresponding ones for the conventional CG algorithm given in
[8, p. 270ff] and [5, p. 390-391].

Proof of Theorem 2.
• We first show that for any k,

span [Ri]
k
0 = span [Di]

k
0 . (26)
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•We show the first point by induction. Clearly, Dj ⊥A Dk for any j < k, and span [Ri]
k
0 = span [Di]

k
0 =

span [AiR0]
k
0 when k = 0, while nothing has to be verified for the orthogonality conditions. Assume

that, for some k, they are verified for any i ≤ k, let us show them for k + 1, assuming that Rk+1 is full
rank.

From lines 7–8 of Algorithm 2, Rk+1 = AXk+1 − 1T

pb = Rk + ADkα
T

k. By induction, the columns of

both the matrices Rk and ADk are located in span [AiR0]
k+1
0 . Thus,

Rk+1 ∈ span [AiR0]
k+1
0

and consequently
span [Ri]

k+1
0 ⊂ span [AiR0]

k+1
0 .

On the other hand, for any vector ej of the canonical basis of Rp,

Rk+1ej 6∈ span [Di]
k
0 (27)

because each residue is orthogonal to the previous descent directions, so that Rk+1ej ∈ span [Di]
k
0 for

some ej would imply Rk+1e = 0, which contradicts the assumption of full rankness of Rk+1. Indeed, for
the same reason, one can also show that, for any v ∈ R

p \ {0}, Rk+1v 6∈ span [Di]
k
0 . Using again the fact

that span [Rk+1] = p, one sees that

span [Ri]
k+1
0 ⊃ span [AiR0]

k+1
0

and indeed
span [Ri]

k+1
0 = span [AiR0]

k+1
0 .

One shows similarly from lines (9)–(10) of Algorithm 2 that

span [Di]
k+1
0 ⊂ span [AiR0]

k+1
0 ,

and the equality is obtained using the same rank argument.
The dimension of these sets is (k + 2)p, as they contain the p independent vectors in span [Dk+1]

orthogonal to span [Di]
k
0 .

From line 10 of Algorithm 2, one gets

DT

iADk+1 = DT

iA (Rk+1 +Dkβ
T

k) (28)

For i < k, the first term is zero because ADi ∈ span [Dj ]
i+1
0 and the gradients constituting the columns

of Rk+1 are orthogonal to any vector in span [Dj]
i+1
0 ; while the second term is also zero due to the

induction hypothesis. For i = k, the right-hand side of (28) is zero because βk is precisely chosen to
ensure this property. Thus the {Di}k+1

0 are mutually A-orthogonal.
Orthogonality of Rk+1 follows from lines 6 and 8 of Algorithm 2. The induction hypothesis has been

proved for k + 1 concluding the proof of the first part of Theorem 2.
• [Optimality]. Arguing as in [5, p.390-391], we can write

Xk+1ej = X0ej +

k
∑

i=0

Diγ
T

i (29)

for some γi ∈ R
1×p. Optimality implies that

DT

i (AXk+1ej − b) = 0, (30)

Substituting (29) in (30) and rewriting in terms of the matrices Ri and γi yields

γi = −eT

jR
T

0Di(D
T

iADi)
−1 (31)

On the other hand,

∇f(Xk+1ej) = A(X0ej +

k
∑

i=0

Diγ
T

i )− b = R0ej +

k
∑

i=0

ADiγ
T

i (32)
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Thus
DT

k+1∇f(Xk+1ej) = DT

k+1R0ej (33)

Substituting (33) in (31), we get:

γk+1 = −∇f(Xk+1ej)
T(DT

k+1ADk+1)
−1 = eT

jαk+1 (34)

A natural question is now to study the cases where at some point of the execution of the algorithm
cCG one gets rank Rk < p. In the best case, this occurs because one of the columns of Rk is null, say the
j-th one, meaning that ∇f(Xkej) = 0, and thus that the k-th estimate of the j-th agent is equal to the
optimum x∗ = A−1b. But, of course, rank Rk can be smaller than p without any column of Rk being
null.

First of all, the following result ensures that this rank degeneracy is, in general, avoided during
algorithm execution.

Theorem 3 (Genericity of the full rank condition of cCG residues matrix). For an open dense set of
initial conditions X0 in R

n×p, one has during any cCG run

∀ 0 ≤ k ≤ k∗
.
= ⌊n

p
⌋, rank Rk = p . (35)

Moreover
dim span [Di]

k∗

0 = p⌊n
p
⌋ . (36)

Otherwise said: generically, algorithm cCG can be run during k∗ steps, and

• any of the columns of Xk∗ minimizes f on an affine subspace of Rn of codimension p⌊np ⌋;

• application of CG departing from any of the columns of Xk∗ yields convergence in at most n−p⌊np ⌋ ≤
p− 1 steps.

The second part of Theorem 3 has to interpreted as follows. When the size n of the matrix A is a
multiple of the number p of agents, then cCG generically ends up in n

p steps. When this is not the case,
the estimates Xk∗ obtained for k = k∗ minimize the function f on affine subspace whose underlying
vector subspace is span [Di]

k∗

0 (see Theorem 2). The interest of (36) is to show that this subspace is
quite large: its codimension is p⌊np ⌋, which is at most equal to p− 1.

Proof of Theorem 3. The main point consists in showing that generically, k∗ iterations of the algorithm
cCG can be conducted without occurrence of the rank deficiency condition. As a matter of fact, the other
results of the statement are direct consequences of this fact.

To show the latter, use is made of Theorem 2. From the properties stated therein, one sees that, for
any 0 ≤ k ≤ k∗, the rank of Xk is deficient if and only if a linear combination of the p column vectors of
X0 pertains to the kp-dimensional subspace span [Di]

k−1
0 . In a vector space of dimension n > kp, this

occurs only in the complement of an open dense set.
Now, if the column vectors of Xk are linearly independent, the same is true for Rk, see line 8 of

Algorithm 2, and as well for Dk, see line 10. This completes the proof of Theorem 3.

We now study what can be done in case of rank degeneracy. When pk
.
= rank Dk is such that

0 < pk < p, this means that trajectories initially independent have come to a point where the estimates
in Xk will converge along directions which are now linearly dependent. The natural solution is then to
choose any full-rank subset of trajectories. We thus propose the modified algorithm 3.

Theorem 4 (Convergence of mcCG algorithm). For any nonzero initial condition X0, algorithm mcCG

ends up in k∗∗ iterations for some k∗∗ ≤ n. Moreover

• the sequence (pk)0≤k≤k∗∗ is nonincreasing;

• any of the columns of Xk∗∗ minimizes f on an affine subspace of Rn of codimension pk∗∗⌊ n
pk∗∗

⌋;
• application of CG departing from any of the columns of Xk∗∗ yields convergence in at most n −

pk∗∗⌊ n
pk∗∗

⌋ ≤ pk∗∗ − 1 steps.

The proof is straightforward and omitted for brevity.
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Algorithm 3 modified cooperative Conjugate Gradient (mcCG) algorithm

1: choose X0 ∈ R
n×p

2: R0 := AX0 − 1T

pb
3: D0 := R0

4: p0 := rank D0 ⊲ p0 is the initial value of the rank

5: k := 0
6: if p0 = p then

7: go to 14

8: else

9: choose J ∈ {1, . . . , p} such that rank R0|j∈J = p0
10: X0 ← X0|j∈J ⊲ X0 ∈ R

p0×p0

11: R0 ← R0|j∈J ⊲ R0 ∈ R
p0×p0 is full rank

12: D0 ← D0|j∈J ⊲ Dk ∈ R
p0×p0 is full rank

13: end if

14: while pk > 0 do

15: αk := −RT

kDk(D
T

kADk)
−1 ⊲ αk ∈ R

pk×pk

16: Xk+1 := Xk +Dkα
T

k ⊲ Xk+1 ∈ R
pk×pk

17: Rk+1 := AXk+1 − 1T

pk
b ⊲ Rk+1 ∈ R

pk×pk

18: βk := −RT

k+1ADk(D
T

kADk)
−1 ⊲ βk ∈ R

pk×pk

19: Dk+1 := Rk+1 +Dkβ
T

k ⊲ Dk+1 ∈ R
pk×pk

20: pk+1 := rank Dk+1

21: if pk+1 = pk then ⊲ If pk+1 = pk, cCG goes on normally

22: go to 29

23: else ⊲ If pk+1 < pk, pk − pk+1 agents are suppressed

24: choose J ∈ {1, . . . , pk} such that rank Rk+1|j∈J = pk+1

25: Xk+1 ← Xk+1|j∈J ⊲ Xk+1 ∈ R
pk+1×pk+1

26: Rk+1 ← Rk+1|j∈J ⊲ Rk+1 ∈ R
pk+1×pk+1 is full rank

27: Dk ← Dk|j∈J ⊲ Dk ∈ R
pk+1×pk+1 is full rank

28: end if

29: k ← k + 1
30: end while

9



4 Computational complexity

This section is concerned with the evaluation of the gain in computation time of the numerical solution
of equation (6), when using cCG algorithm with p agent, i.e., the gain which is expected is due to the
parallelism induced by a multithread implementation. We evaluate this issue here assuming computations
in exact arithmetic. Moreover, thanks to Theorem 3, we adopt the generic assumption that the rank
of the residue matrices remains constant (and full), and that the computations are then carried out for
⌊np ⌋ iterations. Disregarding as marginal the supplementary CG steps (see the statement of Theorem 3),
we thus consider it to be realistic to quantify the worst case complexity by evaluating the numbers of
multiplications involved by n

p iterations of cCG. Recall that the case p = 1 corresponds to the usual CG
algorithm.

We propose the multithread implementation detailed in Table 1.

Table 1: Number of scalar multiplications in k-th iteration

Operation carried out by Composite result Dimension Number of scalar
i-th processor of the result multiplications carried out by the

ith processor

ADk,i ADk n × p n2

DT

k,iADk DT

kADk p × p np

RT

k,iDk RT

kDk p × p np

αk,i s.t. αk,i(D
T

kADk) = RT

k,iDk αk = RT

kDk(D
T

kADk)
−1 p × p

p(p+1)(2p+1)
6

Rk+1,i = Rk,i − ADkα
T

k,i Rk+1 = Rk − ADkα
T

k n × p np

Xk+1,i = Xk,i − Dkα
T

k,i Xk+1 = Xk − Dkα
T

k n × p np

RT

k+1,iADk RT

k+1ADk p × p np

βk,i s.t. βk,i(D
T

kADk) = −RT

k+1,iADk βk = −RT

k+1ADk(D
T

kADk)
−1 p × p

p(p+1)(2p+1)
6

Dk+1,i = Rk+1,i + Dkβ
T

k,i Dk+1 = Rk+1 + Dkβ
T

k n × p np

Total number of scalar multiplications per processor and per iteration n2 + 6np + p(p+1)(2p+1)
3

In Table 1, the first column indicates the task carried out at each stage by every processor, and the
last column the corresponding number of multiplications carried out by a processor. The double lines,
separating the first row from the second and the second from the third, indicate the necessity of a phase
of information exchange: every processor at that stage needs to know results from other processors, also
called a synchronization barrier in computing terminology. The second column, labelled composite result,
contains the information that is available by pooling the partial results from each processor and the third
column gives the dimension of this composite result. The fourth and final column contains the number

of multiplications carried out by the ith processor. The number p(p+1)(2p+1)
6 of scalar multiplications is

needed to realize Gaussian elimination realized through LU factorization [13, p. 15].

As indicated by the last line of Table 1, a total of n2+6np+ p(p+1)(2p+1)
3 multiplications per processor

is needed to complete an iteration. Since, generically speaking, the algorithm ends in at most n
p iterations

(see Theorem 3), an estimate of the worst-case multithread execution time is given by the following result.

Theorem 5 (Worst-case multithread execution time in exact arithmetic). Generically, multithread ex-
ecution of cCG using p agents for a linear system (6) of size n requires

N(p) =
n3

p
+ 6n2 + n

(p+ 1)(2p+ 1)

3
(37)

multiplications performed synchronously in parallel by each processor.

This result has straightforward consequences.

Corollary 6 (Multithread gain). For problems of size n at least equal to 5, it is always beneficial to use
p ≤ n processors rather than a single one. In other words, when n ≥ 5,

∀ 1 ≤ p ≤ n, N(1) ≥ N(p) . (38)
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Proof. One has

N(1)−N(p) = n3 +
5

3
n−

(

2n2 +
2

3
n3

)

=
1

3
(n3 − 6n2 + 5n) =

1

3
n(n− 1)(n− 5) .

Moreover,
dN(1)

dp
= n

(

7

3
− n2

)

which is negative for n ≥ 2, while
dN(n)

dp
= n

(

4

3
n2

)

≥ 0 .

The convexity of N then yields the conclusion that N(p) ≤ N(1) for any 1 ≤ p ≤ n.

Corollary 7 (Optimal multithread gain). For any size n of the problem, there exists a unique optimal
number p∗ of processors minimizing N(p). Moreover, when n→ +∞,

p∗ ≈
(

3

4

)
1
3

n
2
3 (39a)

N(p∗) ≈
(

(

4

3

)
1
3

+
2

3

(

3

4

)
2
3

)

n2+ 1
3 ≈ 1.651n2+1

3 (39b)

Proof. One has
dN(p)

dp
= −n3

p2
+

4

3
np+ n .

There exists a unique p∗ canceling this expression. For this value, one has n2 = p2(43p+1), which yields
the asymptotic behavior given in (39a). The value in (39b) is directly deduced.

The conclusion of Corollary 7 is quite important. It shows that solution of Ax = b is possible by the
method proposed here with a cost of O(n2+ 1

3 ) multiplications. This is to be compared with the classical
results [14].

5 Numerical experiments with discussion of multithread imple-

mentation

This section reports on a suite of numerical experiments carried out on a set of random symmetric
matrices of dimensions varying from 1000 to 25000, the latter being the largest dimension that could
be accommodated in the fast access RAM memory of the multicore processor. The random symmetric
matrices were generated by choosing random diagonal matrices Λ, with positive diagonal entries uni-
formly distributed between 1 and a prespecified condition number, which were then pre-multiplied (resp.
post-multiplied) by a random orthogonal matrix U (resp. its transpose U T). The random orthogonal
matrices U were generated using a C translation of Shilon’s MATLAB code [12], which produces a matrix

distribution uniform over the manifold of orthogonal matrices with respect to the induced R
n2

Lebesgue
measure. The right hand sides and initial conditions were also randomly generated, with all entries
uniformly distributed on the interval [−10, 10]. In this preliminary work, the matrices used were dense
and the use of preconditioners was not investigated.

In order to evaluate the performance of the algorithm proposed in this paper, a program was written
in language C. The compiler used was the GNU Compiler Collection (GCC), running under Linux Ubuntu
10.0.4. For the Linear Algebra calculations, we used the Linear Algebra Package (LAPACK) and the
Basic Linear Algebra Subprograms (BLAS). Finally, to parallelize the program, we used the Open Multi
Processing (OMP) API. The processor used was an Intel Core2Quad CPU Q8200 running at 2.33 MHz
with four cores.

The pseudo-code in Algorithm 4 gives details of the implementation for three (p = 3) agents.
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Algorithm 4 Implementation of cooperative Conjugate Gradient (cCG) algorithm

1: choose X0, Y0, Z0 ∈ R
n ⊲ All initialized randomly with numbers between −10 and 10

2: r0,x := A · x0 − b
3: r0,y := A · y0 − b
4: r0,z := A · z0 − b
5: d0,x := r0,x
6: d0,y := r0,y
7: d0,z := r0,z
8: k := 0
9: minres := min(norm(r0,x), norm(r0,y), norm(r0,z))
10: while minres > tolerance do

11: ⊲ Compute matrix-vector products A · dk,i
12: agent 1: compute A · dk,x
13: agent 2: compute A · dk,y
14: agent 3: compute A · dk,z
15: Barrier ⊲ Synchronizes all 3 agents, before proceeding to the next computations

16: ⊲ Compute mij

17: agent 1: m11 := dTk,x ·A · dk,x; m12 := dTk,x ·A · dk,y
18: agent 2: m13 := dTk,x ·A · dk,z; m22 := dTk,y · A · dk,y
19: agent 3: m23 := dTk,y ·A · dk,z; m33 := dTk,z ·A · dk,z
20: Barrier ⊲ Synchronizes all 3 agents, before proceeding to the next computations

21: Initialize M := {mij} ⊲ Symmetric matrix needed to compute alpha, mij = mji

22: ⊲ Right-hand sides needed to compute alpha

23: agent 1: n1 := [rTk,x · dk,x; rTk,x · dk,y ; rTk,x · dk,z ]
24: agent 2: n2 := [rTk,y · dk,x; rTk,y · dk,y ; rTk,y · dk,z]
25: agent 3: n3 := [rTk,z · dk,x; rTk,z · dk,y ; rTk,z · dk,z]
26: ⊲ Computation of alpha

27: agent 1: Solve M · α1 = n1

28: agent 2: Solve M · α2 = n2

29: agent 3: Solve M · α3 = n3

30: ⊲ Update estimates of each agent

31: agent 1: xk ← xk + α1,1 · dk,x + α1,2 · dk,y + α1,3 · dk,z
32: agent 2: yk ← yk + α2,1 · dk,x + α2,2 · dk,y + α2,3 · dk,z
33: agent 3: zk ← zk + α3,1 · dk,x + α3,2 · dk,y + α3,3 · dk,z
34: ⊲ Update residues of each agent

35: agent 1: rk,x := A · xk − b
36: agent 2: rk,y := A · yk − b
37: agent 3: rk,z := A · zk − b
38: ⊲ Right-hand sides needed to compute beta

39: agent 1: n1 := [rTk,x ·A · dk,x; rTk,x ·A · dk,y; rTk,x · A · dk,z ]
40: agent 2: n2 := [rTk,y ·A · dk,x; rTk,y · A · dk,y; rTk,y · A · dk,z ]
41: agent 3: n3 := [rTk,z · A · dk,x; rTk,z ·A · dk,y ; rTk,z · A · dk,z ]
42: ⊲ Computation of beta

43: agent 1: Solve M · β1 = n1

44: agent 2: Solve M · β2 = n2

45: agent 3: Solve M · β3 = n3

46: ⊲ Update of directions

47: agent 1: dk,x ← rk,x + β1,1 · dk,x + β1,2 · dk,y + β1,3 · dk,z
48: agent 2: dk,y ← rk,y + β2,1 · dk,x + β2,2 · dk,y + β2,3 · dk,z
49: agent 3: dk,z ← rk,z + β3,1 · dk,x + β3,2 · dk,y + β3,3 · dk,z
50: ⊲ Calculate of residual norms

51: agent 1: normrx = norm(rk,x)
52: agent 2: normry = norm(rk,y)
53: agent 3: normrz = norm(rk,z)
54: minres := min(normrx , normry , normrz )
55: k ← k + 1
56: end while 12



5.1 Evaluating speedup

The results of the Cooperative 3 agent cCG, in comparison with classic CG, with a tolerance of 10−3,
and matrices with different sizes, but all with the same condition number of 106, are shown in Figure 1.
Multiple tests were performed, using different randomly generated initial conditions (20 different initial
conditions for the small matrices and 10 for the bigger ones). Figure 1 shows the mean values computed
for these tests.
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Figure 1: Mean time to convergence for random test matrices of dimensions varying from 1000 to 25000,
for 3 agent cCG and standard CG algorithms.

The iteration speedup of cCG in comparison with CG is defined as the number of iterations that CG took
to converge divided by the number of iterations cCG took to converge and the experimental results are
shown in Figure 2, which also shows the classical speed-up, which is the ratio of the time to convergence,
i.e., the time taken to run the main loop until convergence, for CG versus cCG.
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Figure 2: Average speedups of Cooperative 3 agent cCG over classic CG for random test matrices of
dimensions varying from 1000 to 25000.

The speedups seem to be roughly equal up to a certain size of matrix (n = 16000); however, above
this dimension, there is an increasing trend for both speedups.

The numerical results obtained show that cCG, using 3 agents, leads to an improvement in compar-
ison with the usual CG algorithm. The average iteration speedup and the classical speedup of cCG are
respectively, 1.62 and 1.94, indicating that cCG converges almost twice as fast as CG for dense matrices
with reasonably well-separated eigenvalues.

5.2 Verifying the complexity estimates

Figure 3 shows the mean time spent per iteration in seconds (points plotted as squares), versus matrix
dimension, as well as the parabola fitted to this data, using least squares. Using the result from the last
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row of table 1 and multiplying it by the mean time per scalar multiplication, we obtain the parabola
(dash-dotted line in Figure 3) expected in theory. In order to estimate the time per scalar multiplication,
we divided the experimentally obtained mean total time spent on each iteration and divided it by the
number of scalar multiplications performed in each iteration. This was done for each matrix dimension.
Since the same multicore processor is being used for all experiments, each of these divisions should
generate the same value of time taken to carry out each scalar multiplication, regardless of matrix
dimension. It was observed that these divisions produced a data set which has a mean value of 8.10
nanoseconds per scalar multiplication, with a standard deviation of 1.01 nanoseconds, showing that the
estimate is reasonable.
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Figure 3: Mean time per iteration versus problem dimension

Now, from equation (37), substituting p = 3, neglecting small order terms, and multiplying it by the
estimated mean time per scalar multiplication (8.10 nanoseconds), the number of matrix multiplications
per iteration, N(p), p = 3, is a cubic polynomial in n. Thus, the logarithm of the dimension (n) of the
problem versus the logarithm of time needed to convergence is expected to be a straight line of slope 3.
Figure 4 shows this straight line, fitted to the data (squares) by least squares.
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Figure 4: Log-log plot of mean time to convergence versus problem dimension

Its slope (2.542) is fairly close to 3, and data seems to follow a linear trend. The deviation of the
slope from the ideal value has several probable causes, the first one being that the exact exponent of 3
is a result of a worst case analysis of CG in exact arithmetic. It is known that CG usually converges, to a
reasonable tolerance, in much less than n iterations, where n is the matrix dimension [9].

Similarly, the logarithm of the number of iterations needed to convergence versus the logarithm of the
dimension of the problem should also follow a linear trend. Since the number of iterations is expected
to be n/3, the slope of this line should be 1. This log-log plot is shown in figure 5, in which the straight
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line was fitted by least squares to the original data (red squares). The slope (0.501) of the fitted line is
smaller than 1, but is seen to fit the data well (small residuals). The fact that both slopes are smaller than
their expected values indicates that the cCG algorithm is converging faster than the worst case estimate.
Another reason is that a fairly coarse tolerance of 10−3 is used, and experiments reported show that
decreasing the tolerance favors the cCG algorithm even more. Specifically, for a randomly generated
matrix of dimension 8000 and condition number 106, Table 2 shows the mean number of iterations and
time to convergence, calculated for 10 different initial conditions, for the CGand cCG algorithms, as the
tolerance is varied from 10−3 to 10−9
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Figure 5: Iterations needed to convergence versus problem dimension

Table 2: Mean number of iterations and mean time to convergence for the CG and the cCG algorithms,
as a function of tolerance used in the stopping criterion.

Tolerance CG cCG
Time (s) Iterations Time (s) Iterations

10−3 148.20 372.20 121.80 299.70
10−4 165.20 414.00 125.70 319.40
10−5 177.40 444.90 132.00 335.00
10−6 192.70 476.80 134.00 352.70
10−7 206.50 510.70 135.20 336.20
10−8 235.10 538.40 137.10 373.50
10−9 275.00 559.70 141.90 381.20

The data used to generate all the graphs in the figures above is shown in tables 3 and 4.

6 Concluding Remarks

This paper proposed a new cooperative conjugate gradient (cCG) method for linear systems with symmet-
ric positive definite coefficient matrices. This cCGmethod permits efficient implementation on a multicore
computer and experimental results bear out the main theoretical properties, namely, that speedups close
to the theoretical value of p, when a p-core computer is used, are possible, when the matrix dimension is
suitably large. The experimental results of the current study were limited to dense randomly generated
matrices and only 3 cores of a 4 core computer with a relatively small on-chip shared memory were
used. Future work will include the study of the method on matrices that come from real applications
and are typically sparse and sometimes ill-conditioned (which will necessitate the use of preconditioners)
on larger multi-core machines. The use of larger machines should also permit exploration of the notable
theoretical result (corollary 7) that, in the asymptotic limit, as n becomes large, implying that p also
increases according to (39a), solution of Ax = b is possible by the method proposed here with a cost of

O(n2+ 1
3 ) multiplications.
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Matrix Dimension Number of iterations Time (s)
CG CCG CG CCG

1000 245.50 137.05 1.80 1.05
1500 230.15 146.65 3.85 3.05
2000 303.35 182.60 8.05 5.45
2500 231.60 158.20 11.05 7.25
3000 347.00 221.35 20.65 15.30
3500 402.15 240.50 32.15 23.35
4000 399.85 257.45 40.30 31.85
4500 391.85 237.10 51.95 40.70
5000 481.60 270.05 77.00 57.05
6000 351.90 261.70 81.10 70.60
7000 390.90 293.30 121.70 95.00
8000 372.20 299.70 148.20 121.80
9000 659.90 386.50 343.50 191.50
10000 894.70 456.20 532.60 480.80
11000 667.00 413.20 614.40 413.20
12000 780.00 448.20 673.00 537.40
13000 582.80 386.50 753.90 548.60
14000 853.20 477.30 1022.70 769.00
15000 852.40 460.60 1543.00 841.70
16000 813.60 514.40 2070.00 922.70
17000 842.20 548.90 3921.60 1277.20
18000 802.50 485.70 4204.70 1325.20
19000 884.50 518.00 5171.50 1836.70
20000 882.10 501.90 5703.70 2072.60
21000 1064.30 638.00 7614.70 2526.40
22000 7671.80 2537.60 985.10 607.60
23000 7045.60 2516.40 826.30 597.70
24000 9969.20 3065.20 1040.90 617.40
25000 1114.70 617.20 11237.40 3067.50

Table 3: Average results for multiple test matrices of dimensions varying from 1000 to 25000, for Coop-
erative 3 agent cCGand for classic CG.
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