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Abstract— This paper develops a controller synthesis algo-
rithm for distributed LQG control problems under output
feedback. We consider a system consisting of three intercon-
nected linear subsystems with a delayed information sharing
structure. While the state-feedback case of this problem has
previously been solved, the extension to output-feedback is
nontrivial, as the classical separation principle fails. To find
the optimal solution, the controller is decomposed into two
independent components. One is delayed centralized LQR, and
the other is the sum of correction terms based on additional
local information. Explicit discrete-time equations are derived
whose solutions are the gains of the optimal controller.1

I. INTRODUCTION
The systems to be controlled are in many application

domains getting larger and more complex. When there is
interconnection between different dynamical systems, con-
ventional optimal control algorithms provide a solution
where centralized state information is required. However, it
is often preferable and sometimes necessary to have a dis-
tributed control structure, since in many practical problems,
the physical or communication constraints often impose a
specific interconnection structure. Hence, it is interesting to
design distributed feedback controls for systems of a certain
structure and examine their overall performance.

The control problem and methodology in this paper is
motivated by systems involving a chain of closely spaced
heavy duty vehicles (HDVs), generally referred to as ve-
hicle platooning. The objective is to maintain a predefined
headway to the vehicle ahead, while maintaining safety and
minimizing the fuel consumption. Information technology
is paving its path into the transport industry, enabling the
possibility of automated control strategies. Governing vehicle
platoons by an automated control strategy, the overall traffic
flow is expected to improve [2] and the road capacity will
increase significantly [3], without endangering safety [4].
By traveling at a close intermediate spacing the air drag
is reduced for each vehicle in the platoon. Thereby, the
control effort and inherently the fuel consumption can be
reduced significantly [5]. This creates a coupling of the dy-
namics between neighboring vehicles throughout the platoon.
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However, as the intermediate spacing is reduced the control
becomes tighter due to safety aspects; mandating an increase
in control action and inherently the fuel consumption through
additional acceleration and braking. The fuel consumption
constitutes approximately 30 % of the overall cost for a fleet
owner [6]. Hence, it is of vast interest for the industry to find
a fuel optimal control. Considering the physical constraints in
radio, it cannot be assumed that state information is available
at every instance in time. Thus, a distributed control strategy
is crucial for practical implementation.

In recent work [7]–[9], distributed control has been studied
under the assumption of spatial invariance. Control for chain
structures in the context of platoons has been studied through
various perspectives, e.g., [10]–[14]. It has been shown that
control strategies may vary depending on the available in-
formation within the platoon. Maintaining a suitable relative
distance, stability and robustness of the platoon have been
identified to be amongst the main criteria to be considered.
However, communication constraints have not in general
been considered in control design for platooning applications
and the controllers have mainly been ad hoc by tuning the
control parameters. In [15], [16], linear quadratic Gaussian
(LQG) control under appropriate assumptions on communi-
cation delays between the controllers was considered. While
a computationally efficient solution was presented for a
sequence of vehicles moving in formation, the controller
structure is not provided by the corresponding semi-definite
programming. A structured sequential design was introduced
in [17], where the preceding vehicle’s dynamics along with
its states were conveyed through wireless communication.
It resulted in a suboptimal control strategy, where physical
coupling to a follower vehicle and communication delays
were not considered. Mounted radar sensors allows each
vehicle to measure the relative distance and velocity of the
preceding vehicle. Additional information, providing local
information, has lately been introduced through wireless in-
formation. However, wireless systems introduce information
delays to the system in certain cases due to limitations
in radio. Furthermore, varying external environment factors
impose process disturbances on the system.

In this work, we are primarily concerned with forming a
distributed control, that accounts for the interconnection be-
tween neighboring vehicles, correlated process disturbances,
as well as communication delays. The control is solely based
on local model knowledge, over the class of LQG control
for chain structured interconnection graphs. The received
information is assumed to be common after two time step
delays.
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The main contribution of this paper is to derive an LQG
controller, which is easy to implement and optimal under
a delayed information sharing pattern for chain structures.
In addition to communication delays, the distributed optimal
control is based upon systems with interconnected dynamics
to both neighboring vehicles and local state information.
Derived from the characteristics of actual Scania HDV’s,
we present a discrete system model that includes physical
coupling with both neighboring vehicles. We also investigate
the performance of the proposed controllers, under normal
operating conditions for an HDV platoon, with respect to
physical constraints that are imposed in a practical set-up.

The outline of the paper is as follows. The general
system and problem description is given in Sec. II, which in
turn determines the structure of the optimal controller. The
theoretical premise for the optimal controller is presented in
Sec. IV, where it is shown that the problem can be decom-
posed into two separate optimization problems. Finally, we
evaluate the performance of the derived controller through
numerical results in Sec. V and give concluding remarks in
Sec. VI.

Notation

Throughout the paper, we use the following notation:
matrices are written in uppercase letters and vectors in
lowercase letters. The ith component of a vector x is denoted
by xi. Let [x]S be the sub-vector of x containing only those
components with indices in set S. For instance, if S = {1, 3},
then [x]S is given by [x]S =

[
x1 x3

]T
. The sequence x(0),

x(1), . . . , x(k) is denoted by x(0 : k).
diag(x) denotes a diagonal matrix whose diagonal ele-

ments are given by those of the enclosed vector x. Let
X be a matrix partitioned into blocks. We use [X]ij and
[X]i to represent the block in block position ij and ith
block row, respectively. [X]S1S2

denotes the sub-matrix of X
containing exactly those rows and columns corresponding to
the sets S1 and S2, respectively. For instance [X]{1}{2,3} =[
X12 X13

]
. The trace of square matrix is denoted by

Tr{X}. We use X+ and X− to represent X(k + 1) and
X(k − 1) respectively, when appropriate.

Given A ∈ Rm×n, we can write A in terms of its columns
as A =

[
a1 · · · an

]
. The operation vec(A) results in

a mn × 1 column vector vec(A) =
[
aT1 · · · aTn

]T
. We

denote by vec?(A), the sub-vector of vec(A) containing only
nonzero elements. Let A ∈ Rm×n and B ∈ Rr×s, then the
operation A ⊗ B ∈ Rmr×ns denotes the Kronecker product
of A and B.

We denote the expectation of a random variable x by
E{x}. The conditional expectation of x given y is denoted
by E{x|y}.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section we present the physical properties of the
system that we are considering. We state the nonlinear dy-
namics of a single vehicle and the model for the aerodynam-
ics, which induces the physical coupling. Then we present
the linear discrete system model for a heterogeneous HDV

Fig. 1. The figure shows a platoon of M heavy duty vehicles, where each
vehicle is able to communicate with its neighbors.

platoon and its associated cost function. The communication
constraints and physical coupling is then used to motivate the
structure of the controller. Finally, the problem formulation
is given.

A. System Model

We consider an HDV platoon as depicted in Fig. 1. The
state equation of a single HDV is modeled as,

ṡ = v,

mtv̇ = Fengine − Fbrake − Fairdrag(v)

− Froll(α)− Fgravity(α),

= kuu− kbFbrake − kdv2

− kfr cosα− kg sinα,

(1)

where v is the vehicle velocity, mt denotes the acceler-
ated mass and u ∈ R denotes the net engine torque.
ku, kb, kd, kfr, and kg denote the characteristic vehicle and
environment coefficients for the engine, brake, air drag, road
friction, and gravitation respectively.

The variation in aerodynamics between the vehicles is
essential in the analysis of fuel reduction potential for HDVs.
For a single HDV it can amount up to 50 % of the total
resistive forces at full speed. It is significantly reduced when
operating in a platoon formation and a coupling between the
vehicles is induced. To account for the aerodynamics, the air
drag characteristic coefficient in (1) can be modeled as [18]

k̃d = kd(1−
Φ(d)

100
− φ(d)

100
),

Φ(d) = α1d+ α2, 0 ≤ d ≤ 60

φ(d) = β1d+ β2, 0 ≤ d ≤ 15

where d is the longitudinal relative distance between two
vehicles, Φ(d) and φ(d) are linear piecewise affine functions
of the change in air drag due to a preceding and a follower
vehicle respectively, and α1, α2, β1, β2 are positive constants.
The relative distance reference could be constant or, as in
this case, time varying. It is determined by setting a desired
time gap τ s, which in turn determines the spacing policy
as dref (k) = τv(k). Thereby, the vehicles will maintain a
larger intermediate spacing at higher velocities.

When studying the behavior of an HDV platoon, the
velocity does not deviate significantly from the lead vehicle’s
velocity. Ideally, all vehicles should maintain a constant
speed and intermediate distance. Thus, a linearized model
should give a sufficient description of the system behavior
under these conditions. By linearizing and applying a one
step forward discretization to (1), the discrete model for an
HDV platoon with respect to a set reference velocity, an



engine torque which maintains the velocity, a fixed spacing
between the vehicles, and a constant slope is hence given by

x(k + 1) = Ax(k) +Bu(k) + w(k),

where

A =



Θ1 γ2 0 0 0 · · · 0 0 0
1 1 −1 0 0 · · · 0 0 0
0 δ2 Θ2 γ3 0 · · · 0 0 0
0 0 1 1 −1 · · · 0 0 0
0 0 0 δ3 Θ3 · · · γ4 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · ΘM−1 γM−1 0
0 0 0 0 0 · · · 1 1 −1
0 0 0 0 0 · · · 0 δM ΘM


,

B =



ku1 0 0 · · · 0
0 0 0 · · · 0
0 ku2 0 · · · 0
0 0 0 · · · 0
0 0 ku3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · kuM


, x =



v1

d12

v2

d23

v3

...
vM−1

d(M−1)M

vM


,

u =


u1

u2

u3

...
uM

 ,
Θ1 = 1− Ts2kd(d0)v0/mt,
Θi = 1− Ts2kdΦ(d0)v0/mt, i = 2, . . . ,M,
δi = −Tsα1kdv

2
0/mt,

γi = −Tsβ1kdv
2
0/mt,

(2)

and Ts is the sampling time. Thus, the system has a block
diagonal structure and can be grouped into subsystems as
indicated in (2). The general representation of the derived
system can be stated as


x1(k + 1)
x2(k + 1)
x3(k + 1)

...
xM (k + 1)

 =


A11 A12 0 · · · 0
A21 A22 A23 · · · 0
0 A32 A33 · · · 0
...

...
...

. . .
...

0 0 0 · · · AMM



x1(k)
x2(k)
x3(k)

...
xM (k)



+


B1 0 0 · · · 0
0 B2 0 · · · 0
0 0 B3 · · · 0
...

...
...

. . .
...

0 0 0 · · · BM



u1(k)
u2(k)
u3(k)

...
uM (k)

+ w(k)

(3)

where the corresponding vehicle states for each subsystem
are

x1(k) = v1(k), xi(k) =

[
di−1,i

vi

]
, i = 2, . . . ,M.

In practice, many random disturbances are imposed upon
a vehicle in motion. The varying road topology has a
strong impact due the extensive mass of the HDVs. Weather
conditions might vary and traffic conditions might change.
Furthermore, variation in wind affects all the vehicles in the
platoon and therefore the process noise is considered to be

correlated. Hence, the disturbance, w(k) in (3), is assumed
to be a Gaussian white noise with a full positive definite
covariance matrix W . We also assume that the initial state
x(0) is uncorrelated with w(k) for all k, with zero mean and
covariance matrix P0.

While a general problem was defined, for simplicity,
consider an M = 3 HDV platoon. In this case, the dynamics
of the system given in (4) is

x1(k + 1) = A11x1(k) +A12x2(k) +B1u1(k)

x2(k + 1) = A21x1(k) +A22x2(k) +A23x3(k) +B2u2(k)

x3(k + 1) = A32x2(k) +A33x3(k) +B3u3(k) (4)

It can be seen in (4) that the state of vehicle 1 is affected
by the states of vehicle 2 in the next time step. Whereas, the
state of vehicle 1 affects the states of 3 after two time steps,
through vehicle 2. Vehicle 2 on the other hand is affected by
both vehicle 1 and 3 in the next time step.

The local models can be conveyed at a single point in time
between each subsystem, through wireless communication.
However, the system is time critical due to safety aspects and
communication should be kept at minimum so the channel is
not congested and latency is introduced. Assume that passing
information from one vehicle to another vehicle takes one
time step, so the available information set of each vehicle at
time k can be described as

I1(k) = {x1(k), x1(k − 1), x2(k − 1), x(0 : k − 2)}
I2(k) = {x2(k), x(k − 1), x(0 : k − 2)}
I3(k) = {x3(k), x2(k − 1), x3(k − 1), x(0 : k − 2)} (5)

The three vehicles share all past information with two-step
communication delay, as described in (5). The assumptions
about the information structure and the sparsity of dynamics
guarantee that information propagates at least as fast as
the dynamics. This information pattern is a simple case of
partially nested information structure. It is shown in [19]
that if the information structure is partially nested, then the
optimal controller exists, it is unique, and linear. Therefore,
the optimal controller for three vehicles under the given
information set has the form

u1(k) = f11

(
x1(k)

)
+ f12

(
x1(k − 1), x2(k − 1)

)
+f13

(
x(0 : k − 2)

)
u2(k) = f21

(
x2(k)

)
+ f22

(
x(k − 1)

)
+f23

(
x(0 : k − 2)

)
u3(k) = f31

(
x3(k)

)
+ f32

(
x2(k − 1), x3(k − 1)

)
+f33

(
x(0 : k − 2)

)
(6)

where fij denotes a linear function in all its variables.
Consequently, the optimal control u(k) can be expressed as

u(k) = F (k)x(k) +G(k)x(k − 1) + f
(
x(0 : k − 2)

)
(7)

where f =
[
fT13 fT23 fT33

]T
and

F (k) =

F11 0 0
0 F22 0
0 0 F33

 , G(k) =

G11 G12 0
G21 G22 G23

0 G32 G33

 .
B. Cost Function

The objective of the lead vehicle is to minimize the
fuel consumption and control input, while maintaining a set
reference velocity. The objective of the follower vehicles in
addition is to follow the preceding vehicles velocity, while



maintaining a set intermediate spacing. Hence, similar to
what we presented for the continuous LQR in [17], the
weights for a M HDV platoon can be set up based upon
the performance objectives as

J(u∗) = min
u

N−1∑
k=0

( M∑
i=2

wτi (d(i−1)i(k)− τvi(k))2

+ w∆v
i (vi−1(k)− vi(k))2

+ wdi d
2
(i−1)i(k) +

M∑
i=1

wvi v
2
i (k) + wui

i u
2
i (k)

)

= min
u

N−1∑
k=0

M∑
i=2

 vi−1(k)
d(i−1)i(k)
vi(k)

T Qi
 vi−1(k)
d(i−1)i(k)
vi(k)

+Riu
2
i (k)

+ wv1v2
1(k) + wu1u2

1(k) (8)

where

Qi =

 w∆v
i 0 −w∆v

i

0 wdi + wτi −τwτi
−w∆v

i −τwτi τ2wτi + w∆v
i + wvi

 ,
Q1 =

[
wv1 0

0 wu1

]
, Ri = wui

i .

The weights in (8) give a direct interpretation of how to
enforce the objectives for a vehicle traveling in a platoon.
The value of wτi determines the importance of not deviating
from the desired time gap. Hence, a large wτi puts emphasis
on safety. w∆v

i creates a cost for deviating from the velocity
of the preceding vehicle, and wui

i punishes the control
effort which is proportional to the fuel consumption. The
following terms, wdi , w

v
i , put a cost on the deviation from the

linearized states. Note that the main objective is to maintain a
set intermediate distance, while maintaining a fuel efficient
behavior. Therefore, wτi , w

∆v
i and wui

i must be set larger
than the remaining weights.

C. Problem Formulation
We consider a HDV platooning scenario where each vehi-

cle only receives information regarding the relative position
and velocity of the immediate neighboring vehicles. The
objective is to design a controller that can handle a two time
step delay.

The aim is to utilize the given structure of the considered
system, where we want to minimize the cost function

J =E{x(N)TQ0x(N)}

+

N−1∑
k=0

E{xT (k)Qx(k) + uT (k)Ru(k)},
(9)

subject to the sparse system dynamics in (3) and the perfor-
mance objectives in (8). The primary difficulty arises from
the imposed information constraints given in (5).

Thus, the problem that we solve in this paper is finding
an analytical expression for an optimal control input ui(k),
which must be a function of the admissible information set
Ii(k), where each subsystem control input is unique and a
linear function denoted as

ui(k) = µi
(
Ii(k)

)
, i = 1, . . . ,M. (10)

Assumption 1: The matrices Q0 and Q in (9) are positive
semi-definite, and R is positive definite.

III. MAIN RESULT

In this section we present the optimal controller for three-
vehicle problem. The proof for this result is presented in the
remaining sections.

Theorem 1: Suppose that W is positive definite and that
Assumption 1 holds. Define the matrix D ,

[
F M

]
where

M has the same sparsity structure as G. Let S be the index
set of non-zero elements of vec(D),

S , {i : veci(D) 6= 0} .

Suppose there exists a stabilizing solution X to the algebraic
Riccati equation

X = ATXA+Q+ATXB(BTXB +R)−1BTXA

We then define

H = BTXB +R

L = (BTXB +R)−1BTXA

and let

Y =

[
W ⊗ (H +BTLTHLB) −W ⊗BTLTH

−W ⊗HLB W ⊗H

]
b =

[
W ⊗H

0

]
vec(L) +

[
−W ⊗BTLTH

W ⊗H

]
vec(LA)

Then, the optimal controller gains are given by:

vec?(F ) =
[
I 0

]
[Y ]−1

SS [b]S

vec?(M) =
[
0 I

]
[Y ]−1

SS [b]S

and the optimal controller has the realization

ζ(k + 1) =Ax(k) +Bu(k)

ξ(k + 1) =Aζ(k) +BM(x(k − 1)− ζ(k − 1)) +BLξ(k)

u(k) =F (x(k)− ζ(k))

+M(x(k − 1)− ζ(k − 1)) + Lξ(k)

Note that blocks of matrices F and M can be computed
from the vec?(F ) and vec?(G), respectively. For example,
vec?(F ) = vec

([
F11 F22 F33

])
. It will be shown that

ξ(k) is the minimum-mean square estimate of x(k) given
the common information x(0 : k − 2); that is, ξ(k) =
E{x(k)|x(0 : k− 2)}. Thus, the optimal controller of three-
vehicle problem is the centralized LQR controller under
the classical information structure with two-step delay plus
correction terms based on the local information at time k.

IV. OPTIMAL CONTROLLER DERIVATION

In this section, we present the preliminary lemmas that are
used to prove the results in Theorem 1. Before proceeding
further, we need to state the following proposition which
later permits us to decompose J into two separate parts.



Proposition 1 ( [20]): Define the matrices

X(k) =ATX+A+Q (11)

− (ATX+B)(BTX+B +R)−1(BTX+A)

H(k) =BTX+B +R

L(k) =(BTX+B +R)−1BTX+A

for k = 0, · · · , N − 1 and where X(N) = Q0. Then the
cost function (9) can be written as

J =

N−1∑
k=0

E
{(
u(k)− L(k)x(k)

)T
H(k)

(
u(k)− L(k)x(k)

)}
︸ ︷︷ ︸

Ju

+ xT (0)X(0)x(0) +

N−1∑
k=0

Tr{X(k + 1)W}︸ ︷︷ ︸
Jw

where both the zero-mean property of w(k) and indepen-
dence of w(k) and (x(k), u(k)) are exploited. Moreover, Jw
is independent of u.

From Proposition 1, it can be seen that minimizing J is
equivalent to minimizing Ju. Note that, under the Assump-
tion 1, H(k) is positive definite.

A. State Decomposition

The first step towards finding the optimal controller is
decomposing the state vector into independent terms.

Lemma 1: The state vector can be decomposed as

x(k) =w(k − 1) +
(
A+BF (k − 1)

)
w(k − 2)︸ ︷︷ ︸

x1(k)

+ E {x(k)|x(0 : k − 2)}︸ ︷︷ ︸
x2(k)

where x1(k) and x2(k) are independent random variables.
Proof: The term x2(k) is the conditional estimate of

state x(k) given the piece of information shared between all
vehicles, and x1(k) is the estimation error. The independence
between x(k) − x2(k) and x2(k) can be established by
Proposition 4b in the appendix. To calculate x1(k), we
proceed in three steps. First consider

x(k − 1) = Ax(k − 2) +Bu(k − 2) + w(k − 2)

Since x(k − 2) belongs to the sequence x(0 : k − 2) and
u(k− 2) is a deterministic function of x(0 : k− 2), we have

x(k − 1)− E{x(k − 1)|x(0 : k − 2)} = w(k − 2) (12)

where we used the zero-mean and independence of w(k−2)
and x(0 : k − 2). The structure of controller is given by
equation (7), so u(k − 1) can be written as

u(k−1) = F (k−1)x(k−1)+G(k−1)x(k − 2)+f
(
x(0 : k−3)

)
Since G(k− 1)x(k − 2) + f

(
x(0 : k− 3) is a deterministic

function of x(0 : k − 2), we have

u(k − 1)− E{u(k − 1)|x(0 : k − 2)}
= F (k − 1)

(
x(k − 1)− E{x(k − 1)|x(0 : k − 2)}

)
= F (k − 1)w(k − 2) (13)

where we substituted (12) into the second line. Finally, note
that w(k − 1) and x(0 : k − 2) are independent. Therefore,

x(k)− E{x(k)|x(0 : k − 2)}
=w(k − 1) +A (x(k − 1)− E{x(k − 1)|x(0 : k − 2)})

+B (u(k − 1)− E{u(k − 1)|x(0 : k − 2)})
=w(k − 1) +

(
A+BF (k − 1)

)
w(k − 2) (14)

where we substituted (12) into the second line and (13) into
the third line. Thus the result follows.

B. Controller Decomposition
Now that the state has been decomposed into two inde-

pendent terms, the control input u(k) can be decomposed in
a similar fashion.

Lemma 2: The control input u(k) can be decomposed as

u(k) = F (k)w(k − 1) +M(k)w(k − 2)︸ ︷︷ ︸
u1(k)

+u2(k)

where u1(k) and u2(k) are independent, u2(k) is a linear
function of x(0 : k − 2), and

M(k) = F (k) (A+BF (k − 1)) +G(k).
Proof: Let u2(k) = E{u(k)|x(0 : k−2)}, then u2(k) is

a linear function of x(0 : k − 2) and independent of u(k)−
u2(k). Note that f(x(0 : k − 2)) is a linear function of
x(0 : k − 2), so u1(k) is computed as

u1(k) =u(k)− E{u(k)|x(0 : k − 2)}
=F (k)

(
x(k)− E{x(k)|x(0 : k − 2)}

)
+G(k)

(
x(k − 1)− E{x(k − 1)|x(0 : k − 2)}

)
=F (k)(w(k − 1) + (A+BF (k − 1))w(k − 2))

+G(k)w(k − 2)

where we used equation (7) in the first line, (14) in the
second line and (12) in the third line. The proof is completed
by defining M(k) = F (k) (A+BF (k − 1)) +G(k).

Remark 1: Since B and F are diagonal matrices, G(k)
and F (k)A have the same sparsity structures. Therefore,
sparsity structure of M(k) and G(k) are also the same.

From Lemmas 1 and 2, x2(k) and u2(k) are linear
functions of x(0 : k− 2) which is independent of x1(k) and
u1(k). As a result the cost function Ju can be decomposed
as:

Ju =

N−1∑
k=0

E
{(
u1(k)− L(k)x1(k)

)T
H(k)

(
u1(k)− L(k)x1(k)

)}
︸ ︷︷ ︸

J1
u

+

N−1∑
k=0

E
{(
u2(k)− L(k)x2(k)

)T
H(k)

(
u2(k)− L(k)x2(k)

)}
︸ ︷︷ ︸

J2
u

The advantage of this decomposition of Ju is that we now
have two subproblems on the form

min
u1

J1
u(x1, u1)

subject to u1(k) = F (k)w(k − 1) +M(k)w(k − 2)
(15)



min
u2

J2
u(x2, u2)

subject to u2(k) = f
(
x(0 : k − 2)

)
(16)

C. Finite Horizon Controller Derivation

First consider minimization problem (16). Before proceed-
ing, let us state the following proposition which allows us to
find the optimal control u2(k).

Proposition 2 ( [20]): Consider the discrete time linear
system

x(k + 1) = Ax(k) +Bu(k) + w(k)

where w(k) is a zero mean Gaussian white noise. Assume
that u(k) = µ

(
x(0 : k)

)
. Then the optimal control which

minimizes the cost function Ju, is given by

u(k) = L(k)x(k)

The mapping from x2(k) to u2(k) is given in the following
lemma.

Lemma 3: The dynamics of x2 can be written as

x2(k + 1) = Ax2(k) +Bu2(k) + T (k)w(k − 2) (17)

where T (k) = A(A+BF (k − 1)) +BM(k).
Proof: See appendix.

The following theorem shows that u2(k) is exactly the
optimal controller for centralized information structure with
two step delay, where the information set of each vehicle is
Ii(k) = {x(0 : k − 2)}.

Theorem 2: Given that Assumption 1 holds, an optimal
solution to (16) is given by

u2(k) = L(k)x2(k) (18)
Proof: Consider the system (17) together with the cost

function J2
u. Both x(0 : k−2) and u2(k) are linear functions

of x(0 : k − 2) which is independent of w(k − 2). Hence,
finding the optimal control u2(k) is now a centralized LQR
problem. Applying proposition 2, we obtain (18).

We now turn to the optimization problem (15). Recalling
the expansions of x1(k) and u1(k) in terms of w(k−1) and
w(k − 2), the expected value of the kth term of J1

u can be
expanded as follows:

E{
(
u1(k)− L(k)x1(k)

)T
H(k)

(
u1(k)− L(k)x1(k)

)
}

= Tr{H(k)(F (k)− L(k))W (F (k)− L(k))T }
+ Tr{H(k)

(
M(k)− L(k)(A+BF (k − 1))

)
W

×
(
M(k)− L(k)(A+BF (k − 1))

)T }
where we used Proposition 4a in the appendix and the fact

that w(k − 1) and w(k − 2) are independent. To minimize
J1
u with respect to F (0), . . . , F (k) and M(1), . . . ,M(k), the

difficulty is that F and M must satisfy specified sparsity
constraints. We use vectorization of matrices to simplify our
optimization problem.

Let us define the matrix D(k) as follows

D(k) ,
[
F (k − 1) M(k)

]
∈ Rm×2p, k = 1, . . . , N − 1

and D(N) , F (N − 1). Then vec
(
D(k)

)
is given by[

vec
(
F (k − 1)

)
vec
(
M(k)

) ] ∈ R2mp, k = 1, . . . , N − 1

and vec(D(N)
)

= vec
(
F (N −1)

)
. Because of the specified

sparsity of F and M , some components of vec
(
D(k)

)
must

be zero. Let S be the index set of non-zero elements of
vec
(
D(k)

)
, i.e.

S ,
{
i : veci

(
D(k)

)
6= 0
}

Note that vec
(
D(k)

)
and vec?

(
D(k)

)
are related by non-

square matrix. We define this matrix to be E, where di-
mensions implied by the context, so that vec

(
D(k)

)
=

Evec?
(
D(k)

)
. The columns of E are ej for j ∈ S where

ej denotes a column vector having all zeros except a 1 at
the jth position. Since exactly one entry in each column of
E is equal to 1, ETXE is a sub-matrix of X containing
exactly those rows and columns corresponding to the set S.
We illustrate the above definition via an example. Let D =
diag(d11, d22, d33) ∈ R3×3. For this matrix, S = {1, 5, 9},
E =

[
e1 e5 e9

]
, and vec?(D) = [d11, d22, d33]T .

In the following lemma, we show that a vectorization of
matrices F and M makes the cost function J1

u a sum of
quadratic functions without constraints.

Lemma 4: Define

Y11(k) = W ⊗ (H(k − 1) +BTLT (k)H(k)L(k)B)

Y12(k) = −W ⊗BTLT (k)H(k)

Y22(k) = W ⊗H(k)

and let

Yk =

[
Y11(k) Y12(k)
Y T12(k) Y22(k)

]
bk =

[
Y22(k − 1)

0

]
vec (L(k − 1)) +

[
Y12(k)
Y22(k)

]
vec (L(k)A)

for k = 1, . . . , N − 1, and

YN = W ⊗H(N − 1)

bN =
(
W ⊗H(N − 1)

)
vec (L(N − 1))

Then optimization problem (15) is equivalent to

min
vec?(D(k))

N∑
k=1

1
2 vec?(D(k))T [Yk]SSvec?(D(k)) (19)

−vec?(D(k))T [bk]S

Moreover, Yk is positive definite.
Proof: See appendix.

The advantage of this equivalent reformulation of the
problem is that we have N quadratic functions without
constraints and thus the optimal controller gains can be
computed by simply minimizing these functions separately.

Theorem 3: Suppose W is positive definite and Assump-
tion 1 holds. Then the optimal gains of controllers are given
by:

vec?(F (k − 1)) =
[
I 0

]
vec?(D(k))

vec?(M(k)) =
[
0 I

]
vec?(D(k))

for k = 1, . . . , N − 1 and vec?(F (N − 1)) = vec?(D(N)),
where vec?(D(k)) = [Yk]−1

SS [bk]S .



D. Steady State Controller Derivation

Assume that the solution to algebraic Riccati equation
(11), X(k), converges to the stabilizing solution as k ap-
proaches ∞:

X = ATXA+Q+ATXB(BTXB +R)−1BTXA

Since H(k) and L(k) are specified by X(k), they respec-
tively converge to matrices H and L as follows:

H = BTXB +R, L = (BTXB +R)−1BTXA

Then Yk and bk will approach the values of Y and b given
by

Y =

[
W ⊗ (H +BTLTHLB) −W ⊗BTLTH

−W ⊗HLB W ⊗H

]
b =

[
W ⊗H

0

]
vec(L) +

[
−W ⊗BTLTH

W ⊗H

]
vec(LA)

Thus, the optimal gains are calculated to be

vec?(F ) =
[
I 0

]
[Y ]−1

SS [b]S

vec?(M) =
[
0 I

]
[Y ]−1

SS [b]S

E. Estimation Structure

Having determined the optimal controller, we turn now to
analyze this result. Define ζ(k) = x(k)− w(k − 1). Hence,
we obtain the following state-space system

ζ(k + 1) = Ax(k) +Bu(k)

with initial condition ζ(0) = 0. Note that the assumptions
about the information structure and sparsity structure of A
and B guarantee that each vehicle can update ζ(k) at time
k. For example, consider Vehicle 1. Since Vehicle 1 has
access to x2(k − 1) at time k, It can construct ζ1(k) =
A11x1(k − 1) + A12x2(k − 1) + B1u1(k − 1). Letting
ξ(k) = E{x(k)|x(0 : k − 2)} the optimal control policy
can be written as

u(k) = F (x(k)− ζ(k)) +M(x(k − 1)− ζ(k − 1)) + Lξ(k)

In order to fully specify u(k), the conditional estimates ξ(k),
as well as the matrices L, F and G must be computed. We
have

ξ(k + 1) = E{x(k + 1) | x(0 : k − 1)}
= AE{x(k) | x(0 : k − 1)}+BE{u(k) | x(0 : k − 1)}
= Aζ(k) +BM(x(k − 1)− ζ(k − 1)) +BLξ(k)

V. NUMERICAL RESULTS

We evaluate the performance of the system with the con-
troller by giving an example of a realistic scenario that HDV
platoons often face on the road. In practice, varying traffic
conditions often mandate a deviation in the lead vehicle’s
velocity. Therefore, integral action for the lead vehicle is
added as a state to the system presented in (2), to model
such disturbances.

We consider a heterogeneous platoon, where the masses
are set to [m1,m2,m3] = [30000, 40000, 30000] kg. All the
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Fig. 2. Three HDV platoon, where a disturbance in velocity of the lead
vehicle is imposed. The top plot shows the velocity trajectories for the
M = 3 HDV platoon, the bottom plot shows the intermediate spacings,
and the bottom plot shows the control inputs. The trajectories are obtained
through the optimal distributed control and subindexed i, where i = 1, 2, 3
denote the platoon position index.

vehicles are assumed to be traveling in the steady state veloc-
ity v0 = 19.44 m/s (70 km/h) at time gap τ = 0.25 s, which
gives an intermediate distance of d0 = 4.86. The maximum
engine and braking torque for a commercial HDV varies
based upon vehicle configuration but can be approximated
to be 2500 Nm and 60000 Nm/Axle respectively.

State disturbances as well as several lead vehicle devia-
tion disturbances are imposed on the system (Fig. 2). The
lead vehicle deviation disturbances can be explained by the
following scenario. The platoon travels along a road where
the road speed is 70 km/h. Suddenly a slower vehicle enters
the lane through a shoulder path at a lower speed. The lead
vehicle must therefore reduce its speed to 60 km/h, in turn
forcing the follower vehicles to reduce their speed and adapt
their relative distance accordingly. After a while, the slower
vehicle increases its speed to the road speed of 70 km/h and
no longer inhibits the platoon. Hence, the lead vehicle again
resumes the road speed and the follower vehicles adapt the
speed and distance automatically as well. Finally, the platoon
arrives at a point where the road speed is changed to 80 km/h.

Fig. 2 shows the velocity trajectories of three HDV platoon
in the top plot, the corresponding intermediate spacings in
the middle plot, and the required control input to handle the
disturbances in the bottom plot. The trajectories nearly lie on
top of each other, showing that the proposed controller per-
forms a tight control and the disturbances are handled well.
There is no overshoot in the velocity or intermediate spac-
ing tracking. Furthermore, the control input is well within
the feasible physical range. The weight normalized control
input energy required to handle the imposed disturbances is
reduced by 15 % for the second vehicle and 14 % for the third
vehicle, with respect to the first vehicle. Hence, the controller
displays a fuel efficient behavior, since the input energy is



directly proportional to the fuel consumption. The theoretical
value, in this case, for the cost function with the proposed
optimal distributed control is only 0.01 % higher than a fully
centralized control with full state information at all times.
On the other hand, the proposed controller produces a 67 %
lower theoretical cost compared to a centralized control with
two step time delays.

VI. SUMMARY AND CONCLUSIONS

We have presented an analytical controller, which is op-
timal under a delayed information sharing pattern for chain
structures. A discrete time HDV platoon model has been
derived that includes physical coupling with both neighbor-
ing vehicles. The results show that the cost function with
proposed controller is very close to the fully centralized cost
and better than the cost for the centralized case with two time
delays. Hence, the cost function can be significantly reduced
by considering additional available local information. The
controller maintains a tight control even though time delays
are imposed.

For future work, we plan to extend to the presented results
to M HDVs and arbitrary time step delays, which is relevant
for HDV platooning.
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APPENDIX

A. Preliminaries

Proposition 3 ( [21]): If A, B, C, D and X are suitably
dimensioned matrices, then

a) vec(AXB) = (BT ⊗A)vec(X),
b) (A⊗B)(C ⊗D) = (AC)⊗ (BD),
c) If A and B are positive definite, then so is A⊗B,
d) Tr{AXBXT } = vecT (X)(BT ⊗A)vec(X),
e) (A⊗B)−1 = A−1⊗B−1.(A and B are nonsingular)

Proposition 4 ( [20]): Let x and y be zero-mean random
vectors with a jointly Gaussian distribution. Assume S be a
symmetric matrix. Then the following facts hold:

a) E{xTSx} = Tr
{
SE{xxT }

}
.

b) E{x|y} and x− E{x|y} are independent.

Proposition 5 ( [21]): Suppose that a symmetric matrix

is partitioned as
[
A B
BT C

]
, where A and C are square. This

matrix is positive definite if and only if C and 4 = A −
BC−1BT are positive definite.

B. Proof Lemma 3

First note that x2(k) = x(k)− x1(k). Thus,

x2(k + 1) =Ax(k) +Bu(k)−
(
A+BF (k)

)
w(k − 1)

=Ax1(k) +Ax2(k) +Bu1(k) +Bu2(k)

−
(
A+BF (k)

)
w(k − 1)

The proof is completed by substituting x1(k) = w(k− 1) +(
A + BF (k − 1)

)
w(k − 2) and u1(k) = F (k)w(k − 1) +

M(k)w(k − 2) into the second line.

C. Proof Lemma 4

The equivalence of optimization problems (15) and (19)
follows simply by vectorization of matrices. First note that
vec
(
F (k − 1)

)
=
[
I 0

]
vec
(
D(k)

)
. Thus

vec(F− − L−) = [I 0]vec
(
D(k)

)
− vec(L−)



From Propositions 3b and 3d, we have

Tr
{
H−(F− − L−)W (F− − L−)T

}
=vecT

(
D(k)

) [W ⊗H− 0
0 0

]
vec
(
D(k)

)
− 2vecT (L−)

[
W ⊗H− 0

]
vec
(
D(k)

)
+ vecT (L−)(W ⊗H−)vec(L−)

Likewise, vec
(
M(k)

)
=
[
0 I

]
vec
(
D(k)

)
. Then

vec
(
M(k)− L(A+BF−)

)
=(

[0 I]− [LB 0]
)
vec
(
D(k))

)
− vec(LA)

Therefore,

Tr
{
H
(
M − L(A+BF−)

)
W
(
M − L(A+BF−)

)T}
=vecT (D)

[
W ⊗BTLTHLB −W ⊗BTLTH
−W ⊗HLB W ⊗H

]
vec(D)

− 2vecT (LA)
[
−W ⊗HLB W ⊗H

]
vec
(
D(k)

)
+ vecT (LA)(W ⊗H)vec(LA)

After Substituting these values back into J1
u, using

vec(D) = Evec?(D), and eliminating constant terms, we
arrive at (19).

The only part that remains to be proved is that Yk is
positive definite. Since W and H(k) are positive definite,
Y22(k) is positive definite according to Proposition 3c.
Proposition 3e then implies that Y −1

22 (k) = W−1⊗H−1(k).
From Proposition 3b, we have

Y12(k)Y −1
22 (k)Y T12(k) = W ⊗BTLT (k)H(k)L(k)B

Consequently,

4(k) = Y11(k)− Y12(k)Y −1
22 (k)Y T12(k)

= W ⊗H(k − 1)

Since 4(k) and Y22(k) are positive definite, from Proposi-
tion 5, Yk is positive definite. Finally note that ET has full
row rank, so [Y ]SS = ETYkE is positive definite.
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