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Abstract— We propose a new game theoretic approach to
estimate a binary random variable based on a vector of sensor
measurements that may be corrupted by an adversary. The
problem is formulated as a zero-sum partial information game
in which a detector attempts to minimize the probability of
error and an attacker attempts to maximize this probability.
Explicit mixed policies are computed using the matrix form of
the game and exploiting sensor symmetry to reduce complexity.

Index Terms— Adversarial detection, computer security,
zero-sum games, estimation, mixed policies.

I. INTRODUCTION

Embedded sensing [11], computation, and communication
have enabled the proliferation of sophisticated sensing de-
vices for a wide range of applications that include safety
monitoring, health-care related applications, surveillance,
traffic monitoring, military applications, and cyber-physical
systems [6]. While computer-based networked sensors pro-
vide a tremendous level of flexibility for these application,
they also introduce significant security vulnerabilities be-
cause a sensor can be compromised without physical access
to the device. Of particular concern are scenarios in which
an attacker infiltrates a sensing device and manipulates
its output in a manner that cannot be easily detected by
the system. These scenarios force system designers to re-
think basic estimation problems in light of network security
concerns.

In traditional estimation problems one attempts to deter-
mine the value of a variables that cannot be measured directly
based on a set of “noisy” measurements of that variable.
Typically, some form of probabilistic structure is assumed
to model how the measurements relate to the true value
of the variable to be estimated. This type of framework is
adequate, e.g., when the measurements fluctuate around the
variable’s true value due to microscopic thermal fluctuations.
However, things can be quite different in scenarios where
measurement can be controlled by an entity that actively
attempts to degrade the estimation process.

The most basic mechanism to overcome stochastic mea-
surements errors relies on the use of redundancy. When
multiple sensors provide redundant and independent mea-
surements about a variable that needs to be estimated, the
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confidence on the estimate increases with the number of
sensors. When some of these sensors are under control of
an adversary that wants to maximize the estimation error,
the independence assumption is generally not valid and the
probability of an estimation error scales differently with the
number of sensors. The goal of this paper is to provide
insights regarding what happens in such situations.

To focus our attention on the issues that arise when
one needs to do estimation using potentially compromised
sensors, we consider a prototypical problem in which one
wants to estimate the value of a binary random variable based
on measurements provided by a group of binary sensors.
We assume that such measurements incorporate two types
of errors: purely stochastic error that are responsible for bit-
flips with a pre-specified probability and adversarial errors
that are controlled by an adversary that has infiltrated a subset
of the sensors. Which sensors have been infiltrated is not
known a-priori to the system. We shall see that the (optimal)
adversarial errors may actually be stochastic, with probability
distributions carefully selected by the attacker to maximize
the probability of estimation error (corresponding to mixed
policies). In general, these distributions will be a function of
the value of the variable to be estimated.

The adversarial estimation problem described above is for-
mulated as a zero-sum game between a player that wants to
estimate the binary random variable with minimal probability
of error, henceforth called the detector, and a player that
wants to maximize the same probability of error, henceforth
called the attacker. This is a game of partial information
in that the detector only has access to a “noisy” sensor
measurement that has been corrupted both by stochastic
and by adversarial errors. Similarly, the attacker also only
has partial information since we assume that it knows the
true value of the variable to be estimated, but not the
measurements that are being reported by the sensors that
she has not infiltrated.

By expanding the game into its matrix form and exploiting
sensor symmetry to reduce complexity, we can obtain opti-
mal estimation policies for the detector and optimal sensor
manipulation policies for the attacker. Policy domination is
used to reduce the apparent exponential complexity of the
problem, eventually leading to simple detection and attack
policies.

To model the fact that the detector may not be certain that
an attacker may actually be infiltrating some of the sensors,
we introduce a “probability of attack” pattack, which reflects
how certain the detector is about the existence of a malicious



attacker. An interesting feature of the solution obtained is
that the optimal estimation policy is largely insensitive to
this parameter pattack that typically is hard to guess.

Related Work

Several game-theoretic approaches [5], [10] have been
proposed to wired networks, WLANs, sensor networks,
and ad hoc networks. In [3] the authors propose a game
theoretic approach to intrusion detection in distributed virtual
sensor networks, where each agent in the network has
imperfect detection capabilities. This interaction between the
defender and the attacker is modeled as a noncooperative
non-zero sum game. A two-player noncooperative, non-zero-
sum game has also been studied by [1] and [2] to address
attack-defense problems in sensor networks. Kodialam et al.
[7] have proposed a zero-sum game to model the intrusion
detection game between the service provider and the intruder.
The optimal solution for both players is to play the minimax
strategy of the game. Game theoretic solutions for ad hoc
networks based on cooperation and selfishness of the network
have been reported in [9], [12], where each node decides
whether to forward or not a packet based on payoff functions.
Researchers in [8] propose a denial-of-service attack game
where an attacker on the Internet is trying to deface the
homepage on a given server. A stochastic game approach is
proposed between the network administrator and the attacker
where at each time step, both players choose their policies
and the game moves to a new state according to some
probability that depends on the chosen policies. Through
simulations, the authors have shown that the game admits
multiple Nash equilibria. Since a Nash equilibrium gives
to the defender an idea about the attacker’s best strategies,
finding more Nash equilibria means having more information
about the attack.

The remainder of the paper is structured as follows.
In Section II, we provide a description of the problem.
Section III discusses how one can use symmetry to reduce
the complexity of the problem and Section IV contains the
main results of the paper, providing optimal detection and
attack policies. Finally, in Section V we conclude the paper
and discuss future work.

II. PROBLEM FORMULATION

The goal of this paper is to estimate the value of a binary
random variable X with Bernoulli distribution

PpX “ 1q “ 1´ PpX “ 1q “ p P p0, 1q,

based on a vector Y – pY1, Y2, . . . , Ynq of n binary
“noisy” sensor measurements, where the measurements Yi,
i P t1, 2, . . . , nu are assumed conditionally independent and
identically distributed (iid), given X . Specifically,

PpYi “ 1 |X,Yj‰iq “

#

perr X “ 0,

1´ perr X “ 1,

where perr P r0, 1s denotes a per-sensor error probability.
Setting us a part from standard estimation problems, we
consider a scenario where an estimate X̂ of X needs to

Fig. 1. Detection-Attack Model

be constructed based on version Z – pZ1, Z2, . . . , Znq of
the measurement vector Y that may have been “corrupted”
by an attacker. It is assumed that, with a given probability
pattack P r0, 1s, the attacker manipulated the readings of m ď

n sensors. Which sensors and in what way should the attacker
manipulate them will be discussed below. The probability
pattack P r0, 1s should be viewed as a design parameter that
reflects how certain the detector is that the measurements
may have been manipulated and, for pattack “ 0, we recover
a standard estimation problem.

The game under consideration is a partial information
game for both players. The detector must select its estimate
X̂ based solely on the vector Z of possibly corrupted sensor
readings, which corresponds to the selection of an estimation
policy µ : t0, 1un Ñ t0, 1u that is used to compute the
estimate

X̂ “ µpZq.

Since the domain of µ has 2n elements and its codomain
has 2 elements, the set U of all possible estimation policies
contains 2p2

n
q policies.

We assume that the attacker knows the true value of X and
bases its decision on which sensors to compromise and how
to corrupt their measurements as a function of X . However,
the attacker is not assumed to know the values reported
by the remaining sensors, thus also suffering from partial
information. We can thus view an attack policy as a pair
of functions δwhich : t0, 1u Ñ Smn and δhow : t0, 1u Ñ
t0, 1um, where Smn denotes the set of all ordered subsets of
t1, 2, . . . , nu with m elements, with the understanding that
δwhichpXq P Smn determines which sensors will be attacked
and δhow P t0.1u

m determines the corresponding readings set
by the attacker. Specifically, if the kth element of δwhichpXq
is equal to i, then the attacker sets Zi equal to the kth element
of δhowpXq. The total number of distinct functions δwhich

and δhow are equal to
`

n
m

˘2
and p2mq2, respectively, so the

set D of all possible attack policies contains
`

n
m

˘2
p2mq2

policies.

The model just described is illustrated in Figure 1 and
allow us to define adversarial estimation as a zero-sum game
in which the detector selects a policy µ P U and the attacker
a policy δ P D so to minimize and maximize, respectively,
the probability of error

Pµ,δpX̂ ‰ Xq, (1)

where the subscript µ,δ in the probability measure empha-
sizes the fact that the probability of error depends on the



players’ policies. Since the sets of policies are finite, we
have a (finite) matrix game defined by the matrix

A–
“

aij
‰

2p2nqˆpnmq
2
p2mq2

, (2)

where aij denotes the probability of error in (1) correspond-
ing to the ith estimation policy in U and the jth attack policy
in D. In general, this game does not have pure saddle-point
equilibria so the players will seek for mixed policies, which
correspond to selecting probability distributions over the sets
of actions U and D.

III. SYMMETRIC GAMES

Since all sensors are equal in their probability of error
and in their vulnerability to attacks, all entries of the vector
Y and Z should be treated similarly by the attacker and the
detector, respectively. This allows one to significantly reduce
the size of the matrix game:

1) The estimation policy µpZq should only depend on
the total number of 0’s and 1’s in the vector Z and
therefore can be written as

µpZq “ µ̄
´

n
ÿ

i“1

Zi

¯

, (3)

for some function µ̄ : t0, 1, . . . , nu Ñ t0, 1u. The total
number of such functions is given by 2n`1.

2) For the attack policies, all sensor selection functions
δwhichpXq are equally good and can therefore be
selected with equal probability. Moreover, the function
δhowpXq only needs to decide how many sensors will
be set equal to 0 and how many will be set equal to
1, with the understanding that these 0s and 1s will be
distributed with equal probability among the sensors
selected. The selection of how many sensors will be
set equal to 0 corresponds to the selection of a function
δ̄#0 : t0, 1u Ñ t0, 1, . . . ,mu. The total number of
such functions is given by pm` 1q2.

These observations lead to a zero-sum game defined by a
matrix Ā that is only 2n`1 ˆ pm ` 1q2, with one row for
each policy µ̄ and one column for each policy δ̄how. The
following result, proved in the Appendix, can be used to
compute such matrix.

Lemma 1: When the detector utilizes a policy µpZq of
the form (3) and the attacker a policy δpXq that tries to set
to 0 and to 1 a number of sensors equal to δ̄#0pXq and
m ´ δ̄#0pXq, respectively (all sensors selected with equal
probability), we obtain the following probability of error:

Pµ,δpX̂ ‰ Xq “ p1´ pq

ˆ

pattack

n´δ̄#0p0q
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` p1´ pattackq

n
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

˙

` p

ˆ

pattack

n´δ̄#0p1q
ÿ

k“m´δ̄#0p1q

`

1´ µ̄pkq
˘

ˆ

n´m

k ´m` δ̄#0p1q

˙

p1´ perrq
k´m`δ̄#0p1qp

n´k´δ̄#0p1q
err

` p1´ pattackq

n
ÿ

k“0

`

1´ µ̄pkq
˘

ˆ

n

k

˙

p1´ perrq
kpn´kerr

˙

.

(4)

l

IV. MAIN RESULT

It turns out that the exponential complexity in the number
of sensors n can be removed using policy domination. For
simplicity of presentation, we show this for the case where
it is equally likely that X is 0 or 1 (i.e., p “ 1{2) and the
number of sensors is odd (allowing for tie-breaking). In this
case, we can provide explicit formulas for mixed saddle-
point policies and for the value of the game. This result if
formulated in terms of the following (pure policies):

1) We define the detector’s majority rule to be its pure
policy µpZq of the form (3), defined by

µmajoritypZq “

#

0
řn
i“1 Zi ď

n´1
2

1
řn
i“1 Zi ě

n`1
2 ,

which corresponds to deciding on X̂ “ 0 if more than
half the sensors reported the value 0.

2) We define the detector’s no-consensus rule to be its
pure policy µpZq of the form (3), defined by

µno´consensuspZq “
#

0 0 ă
řn
i“1 Zi ď

n´1
2 or

řn
i“1 Zi “ n

1 n ą
řn
i“1 Zi ě

n`1
2 or

řn
i“1 Zi “ 0,

this somewhat unexpected policy is like the majority
rule, except that if all sensors agree on a particular
value, the estimate X̂ should take the opposite value.

3) We define the attacker’s deception rule to be its pure
policy δdeceptionpXq that, when X “ 0 sets all m
sensors equal to 1 and when X “ 1 sets all m sensors
equal to 0.

4) We define the attacker’s no-deception rule to be its
pure policy δno´deceptionpXq that, when X “ 0 sets
all m sensors equal to 10 and when X “ 1 sets all m
sensors equal to 1.

Theorem 1: Suppose that p “ 1{2, the number of sensors
n is odd, and

m ď
n` 1

2
, (5)

perr ď 1´
n´ 1

2pn´mq
, (6)

pattack ď
1

1` 1
n

`n´m
n´1
2

˘ p
n´m´n´1

2
err p1´perrq

n´1
2

perrp1´perrqn´1´pn´1
err p1´perrq

. (7)

In this case, the value of the game is given by

v˚ “ α` pattack



min
!

γ,
γp1´ perrq

n´m ` βγ ` ρppn´merr ´ βq

p1´ perrq
n´m ` pn´merr

)

and a mixed saddle-point policy corresponds to selecting
#

µmajority w.p. 1´ y2

µno´majority w.p. y2,
#

δdeception w.p. 1´ z2

δno´deception w.p. z2,

where

y2 “

#

Π
´

γ´ρ

p1´perrqn´m`pn´m
err

¯

β ď pn´merr

0 β ą pn´merr

z2 “ Π
´ pn´merr ´ β

p1´ perrq
n´m ` pn´merr

¯

α– p1´ pattackq

n´1
2
ÿ

k“0

ˆ

n

k

˙

pn´kerr p1´ perrq
k

ρ–

n´1
2
ÿ

k“m

ˆ

n´m

k ´m

˙

pn´kerr p1´ perrq
k´m

γ –

n´1
2
ÿ

k“0

ˆ

n´m

k

˙

pn´m´kerr p1´ perrq
k

β “
1´ pattack

pattack

`

p1´ perrq
n ´ pnerr

˘

.

and Π : RÑ R denotes the projection function

Πpxq “

$

’

&

’

%

0 x ă 0

x x P r0, 1s

1 x ą 1.

l

A. Discussion

Conveniently, the optimal policy for the estimator is
largely independent of the attack probability pattack, which
may be difficulty to know. In essence, as long as the
probability of attack does not exceed the bound (7), the
estimator’s policy only depends on pattack because of the
threshold condition

β –
1´ pattack

pattack

`

p1´ perrq
n ´ pnerr

˘

ą pn´merr ,

which when true leads to a pure majority rules, and otherwise
leads to the mixed policy given in Theorem 1. While the
estimator’s policy may depends little on pattack, that is obvi-
ously not the case for the probability of error corresponding
to the saddle-point solution. For example, for very small
probabilities of error, the saddle point is essentially given
by

v˚ « pattack

ˆ

n´m
n´1

2

˙

p
n`1
2 ´m

err ,

which shows a probability of error that scales linearly with
the attack probability. This formula also shows that the
scaling law for the probability of error scales with the number
of sensors is of the form

p
n`1´2m

2
err . (8)

In the absence of attacks (for which the majority rule would
be optimal), we can conclude from Lemma 1 that the
probability of error is given by

Pµ,δpX̂ ‰ Xq “
n
ÿ

k“n`1
2

ˆ

n

k

˙

pkerrp1´ perrq
n´k,

which, for a small probability of error, scales with the
number of sensors as

p
n`1
2

err . (9)

From the perspective of these scaling laws, it is as if each
one of the m sensors compromised effectively decreases the
total number of sensors by 2m.

B. Proof of Theorem 1

The following simple proposition is needed to prove
Theorem 1.

Proposition 1: Given an integer n and a scalar p P p0, 1q,
for every integer k such that 0 ď k ď ` ď np,

ˆ

n

k

˙

pkp1´ pqn´k ď

ˆ

n

`

˙

p`´1p1´ pqn´``1,

and, for every integer k such that 1 ď k ď n´ 1,
ˆ

n

k

˙

ppkp1´ pqn´k ´ pn´kp1´ pqkq

ď nppp1´ pqn´1 ´ pn´1p1´ pqq. l

Proof of Theorem 1. When p “ 1{2, we have perfect sym-
metry between the case X “ 0 and X “ 1, which means
that both players can treat 0 and 1 similarly. In particular,
if the detector uses the estimate X̂ “ 1 when the vector Z
has k 1’s, then it should use the estimate X̂ “ 0 when the
vector Z has k 0’s, which means that we must have

µ̄pkq “ 1´ µ̄pn´ kq.

Similarly, if the attacker decides to set to 0 a certain number
of sensors when X “ 0, then it should set to 1 the same
number of sensors when X “ 1, which means that we must
have

δ̄#0p0q “ m´ δ̄#0p1q.

In this case, (4) becomes

Pµ,δpX̂ ‰ Xq “
1

2

ˆ

pattack

n´δ̄#0p0q
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` p1´ pattackq

n
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

` pattack

n´m`δ̄#0p0q
ÿ

k“δ̄#0p0q

µ̄pn´ kq

ˆ

n´m

k ´ δ̄#0p0q

˙

p1´ perrq
k´δ̄#0p0qp

n´m´k`δ̄#0p0q
err



` p1´ pattackq

n
ÿ

k“0

µ̄pn´ kq

ˆ

n

k

˙

p1´ perrq
kpn´kerr

˙

.

Making the change of variable n ´ k Ñ ` in the third and
fourth summation, we further obtain

Pµ,δpX̂ ‰ Xq “
1

2

ˆ

pattack

n´δ̄#0p0q
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` p1´ pattackq

n
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

` pattack

n´δ̄#0p0q
ÿ

`“m´δ̄#0p0q

µ̄plq

ˆ

n´m

n´ `´ δ̄#0p0q

˙

p
`´m`δ̄#0p0q
err p1´ perrq

n´``δ̄#0p0q

` p1´ pattackq

n
ÿ

`“0

µ̄p`q

ˆ

n

n´ `

˙

p`errp1´ perrq
n´`

˙

“ pattack

n´δ̄#0p0q
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err

p1´ perrq
n´k´δ̄#0p0q

` p1´ pattackq

n
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k.

Using the fact that n is odd, we can break the summations
as follows

Pµ,δpX̂ ‰ Xq “ pattack

n´1
2
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` pattack

n´δ̄#0p0q
ÿ

k“n`1
2

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` p1´ pattackq

n´1
2
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

` p1´ pattackq

n
ÿ

k“n`1
2

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

“ pattack

n´1
2
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` pattack

n´δ̄#0p0q
ÿ

k“n`1
2

`

1´ µ̄pn´ kq
˘

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` p1´ pattackq

n´1
2
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

` p1´ pattackq

n
ÿ

k“n`1
2

`

1´ µ̄pn´ kq
˘

ˆ

n

k

˙

pkerrp1´ perrq
n´k

“ pattack

n´1
2
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` pattack

n´1
2
ÿ

`“δ̄#0p0q

`

1´ µ̄p`q
˘

ˆ

n´m

n´ `´m` δ̄#0p0q

˙

p
n´m´``δ̄#0p0q
err p1´ perrq

`´δ̄#0p0q

` p1´ pattackq

n´1
2
ÿ

k“0

µ̄pkq

ˆ

n

k

˙

pkerrp1´ perrq
n´k

` p1´ pattackq

n´1
2
ÿ

`“0

`

1´ µ̄p`q
˘

ˆ

n

n´ `

˙

pn´`err p1´ perrq
`

“ pattack

n´1
2
ÿ

k“m´δ̄#0p0q

µ̄pkq

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err

p1´ perrq
n´k´δ̄#0p0q

` pattack

n´1
2
ÿ

k“δ̄#0p0q

ˆ

n´m

n´m´ k ` δ̄#0p0q

˙

p
n´m´k`δ̄#0p0q
err p1´ perrq

k´δ̄#0p0q

´ pattack

n´1
2
ÿ

k“δ̄#0p0q

µ̄pkq

ˆ

n´m

n´m´ k ` δ̄#0p0q

˙

p
n´m´k`δ̄#0p0q
err p1´ perrq

k´δ̄#0p0q

` p1´ pattackq

n´1
2
ÿ

k“0

µ̄pkq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

` α. (10)

With this formula, we can proceed to exclude some of the
estimator policies µ̄ based on policy domination. To achieve
this, we compute the derivative of the probability of error
with respect to the values of µ̄pkq. When this derivative is
positive for every attacker policy δ, we know that we can
restrict our attention to estimator policies for which µ̄pkq “ 0
since the policies with µ̄pkq “ 1 would be dominated. We
recall that the estimator is the minimizer.

We consider separately three cases that differ by which
summations in (10) include specific values of k:

1) For k such that m ´ δ̄#0p0q ď k ă δ̄#0p0q and 1 ď



k ď n´1
2 , we have

dPµ,δpX̂ ‰ Xq

dµ̄pkq
“ pattack

ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

` p1´ pattackq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

ě 0,

where the last inequality is a consequence of Proposi-
tion 1.

2) For k such that δ̄#0p0q ď k ă m ´ δ̄#0p0q and 1 ď
k ď n´1

2 , we have

dPµ,δpX̂ ‰ Xq

dµ̄pkq
“ ´pattack

ˆ

n´m

k ´ δ̄#0p0q

˙

p
n´m´k`δ̄#0p0q
err p1´ perrq

k´δ̄#0p0q

` p1´ pattackq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

ě ´pattack

ˆ

n´m
n´1

2

˙

p
n´m´n´1

2
err p1´ perrq

n´1
2

` p1´ pattackqn

ˆ

perrp1´ perrq
n´1

´ pn´1
err p1´ perrq

˙

ě 0,

where the second to last inequality is a consequence of
Proposition 1 and the fact that, in this case, k ď m´1,
which because of (5)–(6) implies that k ´ δ̄#0p0q ď
m´1 ď n´1

2 ď pn´mqp1´perrq. The last inequality
is then a consequence of (7).

3) For k such that maxtm ´ δ̄#0p0q, δ̄#0p0qu ď k and
1 ď k ď n´1

2 , we have

dPµ,δpX̂ ‰ Xq

dµ̄pkq
“ pattack

ˆˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

´

ˆ

n´m

k ´ δ̄#0p0q

˙

p
n´m´k`δ̄#0p0q
err p1´ perrq

k´δ̄#0p0q

˙

` p1´ pattackq

ˆ

n

k

˙ˆ

pkerrp1´ perrq
n´k

´ pn´kerr p1´ perrq
k

˙

ě ´pattack

ˆ

n´m
n´1

2

˙

p
n´m´n´1

2
err p1´ perrq

n´1
2

` p1´ pattackqn

ˆ

perrp1´ perrq
n´1

´ pn´1
err p1´ perrq

˙

ě 0,

where the second to last inequality is a consequence
of Proposition 1 and the fact that k´ δ̄#0p0q ď

n´1
2 ď

pn´mqp1´ perrq, because of (6). The last inequality
is then a consequence of (7).

We then conclude that we only need to consider policies for
which µ̄pkq “ 0 for 1 ď k ď n´1

2 , so we are only left
with two policies for the detector: the majority rule and no-
consensus rule. For these pure policies, the probability of
error (10) simplifies as follows: When δ̄#0p0q “ 0 (which
corresponds to the deception rule),

Pµ,δpX̂ ‰ Xq “ µ̄p0qpattackpβ ´ p
n´m
err q ` pattackγ ` α;

when δ̄#0p0q “ m (which corresponds to the no-deception
rule),

Pµ,δpX̂ ‰ Xq

“ µ̄p0qpattack

`

β ` p1´ perrq
n´m

˘

` pattackρ` α; (11)

and when 0 ă δ̄#0p0q ă m,

Pµ,δpX̂ ‰ Xq “ µ̄p0qpattackβ ` α. (12)

Comparing (11) with (12), we conclude that the deception
rule leads to a higher probability of error than the policy
with 0 ă δ̄#0p0q ă m, and therefore the former dominates
the latter. We are thus left, we the following 2ˆ 2 zero-sum
game where the first row corresponds to the majority rule
(µ̄p0q “ 0), the second row to the no-consensus rule (µ̄p0q “
1), the first column to the deception rule (δ̄#0p0q “ 0), and
the second column to the no-deception rule (δ̄#0p0q “ m):

Ā– pattack

„

γ ρ
β ` γ ´ pn´merr β ` ρ` p1´ perrq

n´m



` α

„

1 1
1 1



.

It is straightforward to show that this matrix has a mixed
saddle-point

y˚ –

„

1´ y2

y2



, z˚ “

„

1´ z2

z2



,

with value v˚, from which the result follows.

V. CONCLUSIONS

We propose a new game approach to estimate a binary
random variable based on a vector of sensor measurements
that may have been corrupted by an attacker. The problem
is formulated as a zero-sum partial information game in
which a detector attempts to minimize the probability of error
and an attacker attempts to maximize this probability. We
are currently extending these results to dynamic estimation
problems.

APPENDIX

Proof of Lemma 1. By the law of total probability, we can
expand

Pµ,δpX̂ ‰ Xq “
n
ÿ

k“0

Pµδ

´

X̂ “ 1|X “ 0,
n
ÿ

i“1

Zi “ k
¯

Pµδ

´

n
ÿ

i“1

Zi “ k|X “ 0
¯

PµδpX “ 0q



`

n
ÿ

k“0

Pµδ

´

X̂ “ 0|X “ 1,
n
ÿ

i“1

Zi “ k
¯

Pµδ

´

n
ÿ

i“1

Zi “ k|X “ 1
¯

PµδpX “ 1q

Pµ,δpX̂ ‰ Xq “ p1´ pq
n
ÿ

k“0

µ̄pkqPδ

´

n
ÿ

i“1

Zi “ k|X “ 0
¯

` p
n
ÿ

k“0

`

1´ µ̄pkq
˘

Pδ

´

n
ÿ

i“1

Zi “ k|X “ 1
¯

, (13)

where we used the facts that

Pµδ

´

X̂ “ 1|X “ 0,
n
ÿ

i“1

Zi “ k
¯

“

#

1 µ̄pkq “ 1

0 µ̄pkq “ 0
“ µ̄pkq,

Pµδ

´

X̂ “ 0|X “ 0,
n
ÿ

i“1

Zi “ k
¯

“

#

1 µ̄pkq “ 0

0 µ̄pkq “ 1
“ 1´ µ̄pkq.

We now proceed to compute the conditional probabilities in
the formula above, that can also be expanded as follows:

Pδ
`

n
ÿ

i“1

Zi “ k|X
˘

“ Pδ
`

n
ÿ

i“1

Zi “ k|X, Eattack

˘

pattack

` Pδ
`

n
ÿ

i“1

Zi “ k|X, Eattack

˘

p1´ pattackq,

where Eattack denotes the events that the attacker manipu-
lated measurements and  Eattack the complementary event.
When no measurements have been manipulated, we simply
have that

Pδ
`

n
ÿ

i“1

Zi “ k|X, Eattack

˘

“

ˆ

n

k

˙

#

pkerrp1´ perrq
n´k X “ 0,

p1´ perrq
kpn´kerr X “ 1.

Otherwise, since δpXq sets to 0 and to 1 a number of sensors
equal to δ̄#0pXq and to m´ δ̄#0pXq, respectively, we have
that

Pδ
`

n
ÿ

i“1

Zi “ k|X, Eattack

˘

“

$

’

&

’

%

f1, m´ δ̄#0p0q ď k ď n´ δ̄#0p0q, X “ 0

f2, m´ δ̄#0p1q ď k ď n´ δ̄#0p1q, X “ 1

0, otherwise

where

f1 “
ˆ

n´m

k ´m` δ̄#0p0q

˙

p
k´m`δ̄#0p0q
err p1´ perrq

n´k´δ̄#0p0q

and

f2 “

ˆ

n´m

k ´m` δ̄#0p1q

˙

p1´ perrq
k´m`δ̄#0p1qp

n´k´δ̄#0p1q
err .

Therefore

Pδ
`

n
ÿ

i“1

Zi “ k|X
˘

“

pattack

$

’

&

’

%

f1, m´ δ̄#0p0q ď k ď n´ δ̄#0p0q, X “ 0

f2, m´ δ̄#0p1q ď k ď n´ δ̄#0p1q, X “ 1

0, otherwise.

` p1´ pattackq

ˆ

n

k

˙

#

pkerrp1´ perrq
n´k X “ 0,

p1´ perrq
kpn´kerr X “ 1.

The result follows from this and (13).
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