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Fractional order differentiation by integration with Jacobi

polynomials

Da-Yan Liu, Olivier Gibaru, Wilfrid Perruquetti and Taous-Meriem Laleg-Kirati

Abstract—The differentiation by integration method with Ja-
cobi polynomials was originally introduced by Mboup, Join and
Fliess [22], [23]. This paper generalizes this method from the
integer order to the fractional order for estimating the fra ctional
order derivatives of noisy signals. The proposed fractional order
differentiator is deduced from the Jacobi orthogonal polynomial
filter and the Riemann-Liouville fractional order derivati ve
definition. Exact and simple formula for this differentiato r is
given where an integral formula involving Jacobi polynomials and
the noisy signal is used without complex mathematical deduction.
Hence, it can be used both for continuous-time and discrete-
time models. The comparison between our differentiator and
the recently introduced digital fractional order Savitzky-Golay
differentiator is given in numerical simulations so as to show its
accuracy and robustness with respect to corrupting noises.

I. INTRODUCTION

Fractional models arise in many practical situations ([5],
[33] for example). Such fractional order systems may also be
used for control purposes: CRONE control is known to have
good robustness properties (see [26], [27], [28], [33]). Inorder
to implement such controller one needs to have a good digital
fractional order differentiator from noisy signals, whichis the
scope of this paper.

The fractional derivative has a long history and are now
very useful in science, engineering and finance (see, e.g., [25],
[11], [12]). The fractional order differentiator is concerned
with estimating the fractional order derivatives of an unknown
signal from its noisy observed data. Because of its importance,
various methods have been developed during the last years.
They are divided into two kinds: continuous-time model (see,
e.g., [32], [2], [29]) and discrete-time model (see, e.g., [38],
[35], [39]). Nevertheless, the real case of signals with noises
was somewhat overlooked. In order to resolve this problem,
an optimization formulation using genetic algorithms was
proposed in [20] to reduce the noise effect in the estimations
of the fractional order derivatives. But, the complex math-
ematical deduction restricts its application. A novelDigital
Fractional Order Savitzky-Golay Differentiator (DFOSGD)
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was introduced in [3], which was deduced from the Riemann-
Liouville fractional order derivative definition [31] (p. 63) and
the Savitzky-Golay filter [36], [37]. Using the Savitzky-Golay
filter guarantees its accuracy and simplicity for estimating
the fractional order derivatives of noisy signals. However, let
us recall that the Legendre polynomial filter [30] is more
recommended than the Savitzky-Golay filter for reasons of
simplicity and speed. In particular, it has advantages of being
suitable for irregularly spaced or missing data.

The method ofdifferentiation by integration uses an integral
of an unknown noisy signal to estimate the integer order
derivatives of this signal. For free of noise signals, this method
was firstly studied by Cioranescu [4] (1938) and became
well known for the Lanczos generalized derivative [13] (p.
324) (1956). The Lanczos generalized derivative proposed
an integral of a noisy signal and the Legendre orthogonal
polynomial to estimate the first order derivative of the signal.
Recently, in the noisy case, Mboup, Join and Fliess [22], [23]
applied an algebraic setting to estimate high order derivatives
by integration, where Jacobi orthogonal polynomials were
introduced in the integral. Hence, we call the obtained differ-
entiatorJacobi differentiator. Moreover, it was shown in [15]
that the Jacobi differentiator greatly improved the convergence
rate of the Lanczos generalized derivative. Very recently,it
was shown in [17] that the Jacobi differentiator could also
be obtained by taking the derivative of the Jacobi orthogonal
polynomial filter considered as the extension of the Legendre
polynomial filter [30], [24].

Let us recall that the algebraic differentiation method used
in [22], [23] was introduced in [9] and also analyzed in [14],
[15], [16], [17], [34], where the used algebraic manipulations
were inspired by the algebraic parametric estimation methods
[10], [21], [18], [19]. Additional theoretical foundations can
be found in [6], [8]. In particular, by using non standard
analysis techniques, Fliess [6], [7] showed that these methods
exhibit good robustness properties with respect to corrupting
noises without the need of knowing their statistical properties.
However, these methods have not been used to estimate
fractional order derivatives.

The aim of this paper is to generalize the differentiation
by integration method from the integer order to the fractional
order for estimating fractional order derivatives. In Section
II, we recall the method of integer order differentiation
by integration with Jacobi polynomials. Then, we deduce
a fractional order differentiator from the Riemann-Liouville
fractional order derivative definition and the Jacobi orthogonal
polynomial filter. This differentiator is exactly given by an
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integral of Jacobi polynomials. Hence, we call itfractional
Jacobi differentiator. In Section III, we compare the fractional
Jacobi differentiator to the DFOSGD in some numerical sim-
ulations. Finally, we give some conclusions and perspectives
for our future work in Section IV.

II. METHODOLOGY

Let yδ = y + ̟ be a noisy signal observed in an interval
I = [a, b] ⊂ R of lengthh = b − a, wherey ∈ C(I) and the
noise1 ̟ is bounded and integrable. We are going to estimate
theαth (α ∈ R+) order derivative ofy by using its observation
yδ.

A. Differentiation by integration with Jacobi polynomials

In this subsection, we recall the method of integer order
differentiation by integration with Jacobi polynomials. This
method was introduced in [22], [23] and studied in [14], [15],
[16], [17], [34].

The nth (n ∈ N) order Jacobi orthogonal polynomial
defined on[0, 1] is given as follows (see [1] p. 775)

P (µ,κ)
n (t) =

n
∑

j=0

(

n+ µ

j

)(

n+ κ

n− j

)

(t− 1)n−j
tj , (1)

where µ, κ ∈] − 1,+∞[. Let f and g be two functions
belonging to C([0, 1]), then we define the scalar product
〈·, ·〉µ,κ of these functions by (see [1] p. 774)

〈f(·), g(·)〉µ,κ =

∫ 1

0

wµ,κ(t) f(t) g(t) dt, (2)

where wµ,κ(t) = (1 − t)µtκ is the associated weighted
function. Thus, by denoting its associated norm by‖ · ‖µ,κ,
we obtain

‖P (µ,κ)
n ‖2µ,κ =

Γ(µ+ n+ 1)Γ(κ+ n+ 1)

Γ(µ+ κ+ n+ 1)Γ(n+ 1) (2n+ µ+ κ+ 1)
.

(3)

whereΓ(·) is the classical Gamma function (see [1] p. 255).
Let us ignore the noise for a moment. Then, we define an

N th (N ∈ N) order approximation polynomial ofy by taking
its truncated Jacobi orthogonal series expansion

∀ t ∈ [0, 1], D
(0)
h,µ,κ,Ny(a+ ht) :=

N
∑

i=0

〈

P
(µ,κ)
i (·), y(a+ h·)

〉

µ,κ

‖P
(µ,κ)
i ‖2µ,κ

P
(µ,κ)
i (t).

(4)

If we takeκ = µ = 0, then the Jacobi orthogonal polynomials
become the Legendre orthogonal polynomials. Hence, this Ja-
cobi polynomial filter [24] can be considered as the extension
of the Legendre polynomial filter [30].

1More generally, the noise is a stochastic process, which is bounded with
certain probability and integrable in the sense of convergence in mean square
(see [16]).

If y ∈ Cn(I) with n ∈ N, then we take thenth order
derivative of the polynomialD(0)

h,µ,κ,Ny(a+h·) as an estimate
of the nth order derivative ofy [17]: ∀ t ∈ [0, 1],

D
(n)
h,µ,κ,Ny(a+ ht)

:=
dn

d(ht)n

{

D
(0)
h,µ,κ,Ny(a+ ht)

}

=
1

hn

dn

dtn

{

D
(0)
h,µ,κ,Ny(a+ ht)

}

.

(5)

For any t ∈ [0, 1], this differentiator can be expressed as
follows [17]

D
(n)
h,µ,κ,Ny(a+ ht) =

1

hn

∫ 1

0

Qµ,κ,n,N(τ, t) y(a+ hτ) dτ,
(6)

with Cµ,κ,n,i = (µ+κ+2n+2i+1) Γ(µ+κ+2n+i+1) Γ(n+i+1)
Γ(κ+n+i+1) Γ(µ+n+i+1) ,

Qµ,κ,n,N(τ, t) = wµ,κ(τ)

N−n
∑

i=0

Cµ,κ,n,iP
(µ+n,κ+n)
i (t)P

(µ,κ)
n+i (τ).

Finally, we replacey in (6) by yδ. Consequently, thenth

order derivative ofy can be estimated by an integral of Jacobi
polynomials. The noise effect on obtained estimations was
analyzed in [14], [16], [17], [23], [21]. In the next subsection,
we are going to generalize this differentiation by integration
method from the integer order to the fractional order.

B. Fractional order differentiation by integration

Similarly to [3], we are going to take the Riemann-Liouville
fractional order derivative of our approximation polynomial
so as to get a fractional order differentiator. The Riemann-
Liouville fractional order derivative (see [31] p. 62) is defined
as follows:∀x ∈ R∗

+,

0D
α
x f(x) :=

1

Γ(l − α)

dl

dxl

∫ x

0

(x− τ)
l−α−1

f(τ) dτ, (7)

where0 ≤ l − 1 ≤ α < l with l ∈ N∗.
From now on, we denote theαth (α ∈ R+) order derivative

of f by

∀x ∈ R∗
+, 0D

α
xf(x) =

dα

dxα
{f(x)} = f (α)(x). (8)

Hence, if we takef(x) = xn with n ∈ N andx ∈ R∗
+, then

we obtain (see [31] p. 72)

dα

dxα
{xn} =

Γ(n+ 1)

Γ(n+ 1− α)
xn−α. (9)

By using (9), we obtain the following lemma.
Lemma 1: The αth (α ∈ R+) order derivative of thenth

order Jacobi orthogonal polynomialP (µ,κ)
n defined in (1) is

given as follows:∀ t ∈]0, 1],

dα

dtα

{

P (µ,κ)
n (t)

}

=

n
∑

j=0

n−j
∑

l=0

cµ,κ,n,j,l
Γ(n− l + 1)

Γ(n− l + 1− α)
tn−l−α,

(10)



wherecµ,κ,n,j,l = (−1)l
(

n+µ
j

)(

n+κ
n−j

)(

n−j
l

)

.

Proof. By applying the binomial theorem to (1), we get

P (µ,κ)
n (t) =

n
∑

j=0

n−j
∑

l=0

cµ,κ,n,j,l t
n−l,

wherecµ,κ,n,j,l = (−1)l
(

n+µ
j

)(

n+κ
n−j

)(

n−j
l

)

. Hence, this proof
can be completed by using (9) and the linearity of the
fractional order differentiation (see [31] p. 91). �

Then, we give the following proposition.
Proposition 1: Let yδ = y + ̟ be a noisy observation of

y in an intervalI = [a, b] ⊂ R of length h = b − a, where
y ∈ C(I) and the noise̟ is bounded and integrable. If the
αth (α ∈ R+) order derivative ofy exists, then a fractional
order differentiator, calledfractional Jacobi differentiator, is
defined as follows:∀ t ∈]0, 1]

D
(α)
h,µ,κ,Nyδ(a+ ht) :=

1

hα

∫ 1

0

Qµ,κ,α,N (τ, t) yδ(a+ hτ) dτ,
(11)

whereh ∈ R∗
+, N ∈ N, µ, κ ∈]− 1,+∞[,

Qµ,κ,α,N(τ, t) =
N
∑

i=0

wµ,κ(τ)
P

(µ,κ)
i (τ)

‖P
(µ,κ)
i ‖2µ,κ

qµ,κ,i(t), (12)

qµ,κ,i(t) =

i
∑

j=0

i−j
∑

l=0

cµ,κ,i,j,l
Γ(i− l + 1)

Γ(i− l + 1− α)
ti−l−α, (13)

with cµ,κ,i,j,l = (−1)l
(

i+µ
j

)(

i+κ
i−j

)(

i−j
l

)

and ‖P
(µ,κ)
i ‖2µ,κ is

given in (3).

Proof. Let us take theαth order derivative of the polynomial
D

(0)
h,µ,κ,Ny(a + h·) defined in (4). By using the scale change

property of the fractional order differentiation (see [25]p. 76)
we obtain:∀ t ∈]0, 1],

D
(α)
h,µ,κ,Ny(a+ ht)

:=
dα

d(ht)α

{

D
(0)
h,µ,κ,Ny(a+ ht)

}

=
1

hα

dα

dtα

{

D
(0)
h,µ,κ,Ny(a+ ht)

}

.

(14)

The linearity of the fractional order differentiation gives us
that

D
(α)
h,µ,κ,Ny(a+ ht) =

1

hα

N
∑

i=0

〈

P
(µ,κ)
i (·), y(a+ h·)

〉

µ,κ

‖P
(µ,κ)
i ‖2µ,κ

dα

dtα

{

P
(µ,κ)
i (t)

}

.

(15)

Finally, this proof can be completed by using Lemma 1 and
substitutingy by yδ in (15). �

Consequently, by calculating the integral of the noisy signal
yδ and a sum of the Jacobi polynomials we can estimate the
value of y(α) at each pointa + ht in the interval ]a, b] for

eacht ∈]0, 1]. This integral corresponds to a convolution in
the discrete case.

If we fix the value of t to 1, then the fractional Jacobi
differentiator D(α)

h,µ,κ,Nyδ(a + ht) only estimates the value
of y(α) at point b. Thus, if we increase the length of the
interval I = [a, b] ⊂ R, then we can estimate the other values
of y(α). Consequently, the fractional Jacobi differentiator can
also be considered as a pointwise causal differentiator which
is useful in many on-line applications. Moreover, we can fix
the parametersκ, µ andN such that the sum of the Jacobi
polynomials can be explicitly calculated by off-line work.
Indeed, the fractional Jacobi differentiator only needs a simple
convolution for on-line applications. The computation time is
significatively improved.

III. SIMULATIONS RESULTS

The comparisons between the DFOSGD and some existing
fractional order differentiators were shown in [3], where the
DFOSGD was better than the others. In this section, by taking
one numerical example considered in [3] we compare the
fractional Jacobi differentiator to the DFOSGD so as to show
its accuracy and robustness with respect to corrupting noises.

A. Numerical case

From now on, we assume thatyδ(xi) = y(xi) + c̟(xi) is
a sequence of uniformly sampled noisy data ofy with xi =
a+ Tsi andTs =

h
M

for i = 0, · · · ,M . The noisec̟(xi) is
assumed to a zero-mean white Gaussianiid sequence, andc ∈
R+. In this discrete case, we apply the trapezoidal numerical
integration method in the fractional Jacobi differentiator to
approximate the integral. Then, let us recall that the values of
y(α)(xi) for i = 0, · · · ,M are estimated by the DFOSGD as
follows

˜y(α)(xi) =
1

(Ts)α
bi,N

(

XT
θ,NXθ,N

)−1
XT

θ,NY δ
θ , (16)

whereN ∈ N, θ ∈ N,

bi,N =

















1
Γ(1−α) (i+ 1)−α

1
Γ(2−α) (i+ 1)1−α

Γ(3)
Γ(3−α) (i+ 1)2−α

...
Γ(N+1)

Γ(N+1−α) (i+ 1)N−α

















T

, Y δ
θ =















yδ(x0)
yδ(xθ)
yδ(x2θ)

...
yδ(xM )















,

(17)

and

Xθ,N =



















1 11 · · · 1N

1 (1 + θ)1 · · · (1 + θ)N

1 (1 + 2θ)1 · · · (1 + 2θ)N

...
...

...
...

1 (M + 1)1 · · · (M + 1)N



















. (18)

Hence, the idea is to obtain anN th order approximation
polynomial by using Savitzky-Golay algorithm [36], [37]
from a subsequenceY δ

θ , and then to calculate theαth order
derivative of this polynomial at each pointxi.
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B. Example

In this example, we assume thatyδ(xi) = sin(5xi)+c̟(xi)
wherexi ∈ I = [0, 4] for i = 0, · · · , 1000 = M , andc = 0.25
is adjusted in such a way that the signal-to-noise ratioSNR =

10 log10

( ∑
|yδ(xi)|

2

∑
|c̟(xi)|2

)

is equal toSNR = 10dB. The noisy
signal is shown in Figure 1.

Firstly, we estimate the half order derivative ofy. For
the DFOSGD, we takeN = 14 and θ = 5 which are
the same values as the ones used in [3]. For the fractional
Jacobi differentiator, we takeN = 14 and κ = µ = 0. The
associated absolute estimations errors in the noise-free case
and in the noisy case are given in Figure 2 and Figure 3
respectively, where the black dash-dotted lines representthe
errors obtained by the fractional Jacobi differentiator and the
red dotted lines represent the ones obtained by the DFOSGD.
Moreover, we can see in Figure 4 the associated absolute noise
error contributions. Secondly, we estimate the derivativey(α)

with α = 1.5 by using the DFOSGD and the fractional Jacobi
differentiator withN = 14, θ = 5 and κ = µ = 0. The
obtained estimation errors are shown in Figure 5, Figure 6
and Figure 7. Consequently, we can observe that the fractional
Jacobi differentiator is more accurate and more robust with
noises than the DFOSGD in the noise-free case and in the
noisy case.

IV. CONCLUSION

In this paper, we propose a fractional Jacobi differentiator
which is a fractional order differentiator exactly given by
an integral formula. This differentiator is deduced from the
Jacobi orthogonal polynomial filter and the Riemann-Liouville
fractional order derivative definition. It can accurately and
easily estimate the fractional order derivatives of noisy signals.
There are some parametersh, µ, κ and N on which the
fractional Jacobi differentiator depends. We do not give any
analysis on the influence of these parameters on the estimation
errors. However, similarly to the integer order differentiation
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by integration case (see [16], [17], [15], [14]), this studycan
be easily carried out in a further work. Moreover, we do not
use the causal propriety of the fractional Jacobi differentiator
in the numerical simulations. It will be used in some interest-
ing applications where the sampling data may be irregularly
spaced.
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