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Abstract
This note considers the energy optimal trajectory control design approach. Solving the exact
optimal solution is challenging because of the nonlinear and switching cost function, and vari-
ous constraints. The minimum principle is applied to establish piecewise necessary optimality
conditions. An approximate optimal control is proposed to circumvent the difficulty due to
the nonlinearity of the cost function. Simulation is performed to illustrate the generation of
the approximate optimal trajectory.
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On the optimal trajectory generation for servomotors: a Haman
approach

Yebin Wang, Koichiro Ueda, and Scott A. Bortoff

Abstract— This note considers the energy optimal trajec- note derives piecewise necessary optimality conditionmgus
tory generation of servo systems through open-loop optimal the minimum principle.
control design approach. Solving the exact optimal solutio This note is organized as follows. Section Il introduces the

is challenging because of the nonlinear and switching cost bl Mai It ted in Section I1l. Simul
function, and various constraints. The minimum principle is problem. Main resulis are presented in section 1ll. simuia-

applied to establish piecewise necessary optimality cortiins.  tion is performed in Section IV to illustrate the generation
An approximate optimal control is proposed to circumvent the  of the approximate optimal trajectory.
difficulty due to the nonlinearity of the cost function. Simulation
is performed to illustrate the generation of the approximae Il. PRELIMINARY
optimal trajectory.
Consider the following second order servomotor model

. INTRODUCTION .. .
. . . 10 = Kyu — ¢ —db,

Reference trajectory generation plays a key role in the
control of motion positioning systems using servomotorgheref is the rotation angle of the motaf,is the sum inertia
because the reference trajectory is identified as the madfthe load and servo motok), is the torque constant of the
factor determining the performance of the resultant closedervo motor,d is the viscous friction coefficient; is the
loop control system. A reference trajectory of a servomotaCoulomb friction, andu is the input current. The Coulomb
of a motion control system is in general generated bjfiction usually changes its sign according to the velacity
minimizing certain performance measures. Over decadeBhe friction model used in this paper does not incorporates
minimum time criteria has been widely used in referencehis because the considered optimal control problem iresud
trajectory generation to maximize productivity. A numbér oa non-negative velocity constraint. The model is rewriiten
work have been reported on the time optimal or approximate state space form
time optimal trajectory generation, for instance, [9], J[14
[11], 8], [16]. & =Ax+ Bu+C, (1)

Another important criteria to generate a reference tra- :
jectory is the energy consumption of the motion controYVherex = (@1,22)" = (6,6)",
system. This is practically meaningful due to the fact that 0 1 0 0
motor systems consume approximately 65% of the electricity - [0 _4} , B= {&] , U= { ]
in industry [19]. Existing work in this area includes the ! ! .
motor system steady state energy optimization [2], [4]To simplify the presentation, we use notatigh= ?,c =
energy-optimal control scheme for incremental motion ejriv% b= % in the sequel.
(IMD) [15], [13], a heuristic approach [3], [18] as a few Note that the real servomotor dynamics is nonlinear from
examples. Work [15], [13], [7], [3] did not address speedhe saturation and hysteresis of the magnetic field, swétche
and acceleration constraints thus leads to conservaiivity of amplifiers etc. Taking the Linear Time Invariant (LTI)
energy efficiency. model (1) is without loss of generality because the proposed

This note considers the energy optimal trajectory gemmethodology can be readily generalized to the nonlinear
eration of servomotor systems through open-loop optimalant case.
control design approach. Speed and acceleration cortstrain
are considered in the trajectory generation stage, and tAe Loss Models

optimal trajectory is to minimize the energy consumption A simple characterization of the energy consumption of a

of the motion control system including copper, amplifiergeryg s its copper loss, which is consistent with the foitayv
mechanical, and iron losses. The main difficulty in solvingyadratic cost function

the optimal trajectory is result from the nonlinearity and .
switching in the cost function, and various constraintsisTh E— / ! U_th @)
5 dt.
0
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the switching loss of amplifiers, and mechanical work, whicltonditions. We employ the approach which first converts a
is written as follows state constraint into a mixed state control constraintn the
defines a Hamiltonian based on the resultant mixed state
control constraint. For a state constraint, we introduce th
where R is the resistance of servo motdk,, and K, are following definition.

constant coefficients of eddy current and hysteresis lpsses Definition 3.1: [1] The one dimensional state constraint
is constant, and<, is a constant coefficient of the switch- S(z) < 0 has an order of if

ing Io;s. Du_ring the deceleration perioB(x,u) could be S®(z)=0, 0<k<g—1,

negative. This means that the motor performs as a generator
and converts mechanical work into electricity. The eledtyi S (z,u) =0,

however is not allpwed to flow back to th_e utility grid._ The, here sk () is computed by differentiating(z) k times
energy co_nsumptlon of a servo system is characterized Wth respect to time.

the following cost function

P(z,u) = Ru® + K.x3u® + K, |22 [u|” + K, |u| + Kuzs,

To define a Hamiltonian, we first convert the velocity

t constraint into a mixed state control constraint
E= [ Q) u)at,
0 T2 — Umazr < 0= —dxy —c+bu <0, (5)
P(z(t),u(t)), Pz(t),u(t)) >0, 22 <0=dry+c—bu<O.
Qx(t),u(t)) = . L . .
0, P(xz(t),u(t)) <0, . The acceleration constraint is a mixed state control caimgtr
whereT is the tracking time. —drz = c 4 b = amar <0 (6)

—Qmaz + dxo + ¢ — bu < 0.
B. Problem Statement . )
, A. Treatment of the Switching Cost Function

We shall compute the reference trajectory of a servo motor _ o )
to minimize (3). The trajectory generation is treated as an G_|ven_ the switching nature OT the cost funqtlonal and
open loop optimal control design problem as follows. to ;lmpl!fy the presentation, we introduce notation of sub-

Problem 2.1:Given the plant (1), the initial state(0) = trajectories
zo = (0,0)7, the final statex(ty) = z¢ = (r,0)7, and the Sy {t|P(t) > 0}, S =81 USha,
final timet ¢, find the controk:* which minimizes certain cost

. ] . . . {t|P(t t

function E(u) subject to control, acceleration, and velocity S {#P(8) > 0,u(t) > O},
constraints Siz: {t|P(t) > 0, u(t) <0},

S {t|P(t) <0},
0 <22 < Vmazs |j72|Samam, (4) 2 {| ()_ }

and rewrite the cost functional
wherevmax, Gmaz, T are known constants.

Problem 2.1 with the cost function (2) has been studied E = P(t)dt+/ 0dt
intensively. For instance, by including the tracking error S Sz
penalty in (2), the model predictive control has been agplie _ / P(t)dt +/ P(t)dt +/ 0dt
and leads to a quadratic programming problem. Since both S S12 Sa

the cost function and the constraints are convex, the e®ult Romark 3.2:According to the optimality principle, a sub-

numerical optimization problem has a global minimum. Thi?trajectory of a trajectory is also optimal. Therefore nseeg
property however does not hold for (3). _ conditions for each sub-trajectory within the sé&s S, to
~ Numerous techniques have been proposed to treat inequalisfy can be derived separately. The necessary consition
ity constraints, e.g. the integral penalty function appioa of the entire optimal trajectory can be established as a

considers the optimal control problem with a new cost which,mpination of necessary conditions of each sub-trajgctor
penalizes heavily along trajectory violating constrainis plus entry conditions between sub-trajectories. 0

more effective e}pproach to solve ;uch problem_is to _j0|n Next we define a Hamiltonian ove$,, S, piecewisely,
together constrained and unconstrained arcs, making 08inganq attempt to derive necessary optimality conditions over
necessary optimality conditions. This approach is folldwe yifrerent intervals setsS;, S, from corresponding Hamilto-

in the note to derive the necessary optimal conditions [1}ians. Notation:H, is the Hamiltonian ovesS;, H,, and

[12], [6]. H,, are the Hamiltonian ove$,;, S12 respectively, andis
I1l. OPTIMAL CONTROL TRAJECTORYDESIGN is the Hamiltonian oves,.

Necessary conditions of an optimal solution to a state com. Necessary Optimality Conditions over Intervals

strained optimal control problem have been investigatetesi  Giyen P(t) > 0 and the mixed state control constraints

1960s. Readers are referred to [12], [1], [6], [5] for detail (5)-(6), we take the following Hamiltonian
Sets of necessary optimality conditions can be obtained In

. . . . . . 2 2,2
various ways. For instance, [6] defines a Hamiltonian in- Hy =Ru” + Kexqu® + Kplza| - |u]” + K|y
cluding the state constraint directly and establishessszog + Kyzou+ Hy,

()



where the sufficiency of necessary optimality conditions. Also,

_ T 7 [—dzs — ¢+ bu Propositions 3.3 and 3.4 guarantee the solvability of the
Hy =\ (Az + Bu+C) 4+ p [ dzs + ¢ — bu ] unique controlu, andu_ through numerical optimization
it — e+ bu—a approach [10]. O
+ 7 [_a 2 T dmy o c _’”ZZ] ) Assuming that at any time instant, only one constraint is

active, then the control on constrained arcs is readilyinbth
The Lagrange multiplierg, v corresponding to the velocity as follows

and acceleration constraints, and satisfy sign conditions dz?ﬂ:’ velocity constraint is active
=0, velocity constraint inactive u = Gmasddiate g, g, .. <0 is active (11)
a >0, velocity constraint active w, —Gmaz — T2 < 0 is active
=0, acceleration constraint inactive 2) Costate DynamicsS_inceIQ > 0, the partial dgrivative
> 0. acceleration constraint active of H; w.rt. z is well-defined, the costate dynamics can be
— )

readily obtained.
1) Optimal Control: Hamiltonian H; is not differentiable .
atu = 0. We expresd{; piecewisely, A=— AT\ - [

I — H11=P1+E[1, u > 0,
e H12=P2+£’1, u <0,

0

2K . zou? + Kplul? + K
2 nlul ¢ (12)

® -8 o

When the system is along unconstrained arcs, we pave

where
v = 0. The costate is continuous at the entry point of the
Py = Ru® + Kea3u® + Kpwou” + Kou + Kywou, unconstrained trajectory. For the constrained arcs, wd teee
Py, = Ru®+ Kex§u2 + Kpoa(—u)? — Kou + Kyrou. determineu, v and the boundary conditions afat their entry
. points. We know the jumps of costate arise from interior
We denote the positive contral;. overS; points conditions. The acceleration constraint therefuite
uy =arg min  Hi, (9) notincur jumps of the costate during the entry of constréine
P>0,u>0 arcs. The corresponding costate dynamics is
and the negative contral_ overS; . 0 0 0
0 ][4
U_ = argpn(}in 0H12' (10) 2K55C2’u +Kh|u| —i—Ktu —d d
>0,u< _
/\(t:ntry) = )‘(tentry)7

Proposition 3.3:Given v > 1 andz2 > 0, (9) has a
unigue solutiornu, .
Proof: Sincew > 0 implies P(z,u) > 0, (9) is Hy,
equivalent to

wherev is solved from

=0, 9 — amas <0 is active
_ amaztdxratec
=—mar—=2"—>0

u

Uy = arg {)n<1rul Hi;. (13a)
Given v > 1, we further verify that the Legendre-Clebsch H,,, =0, —Gmaz — @2 <0 is active
condition holds overS;, u=—tmaz tdrate o
(13b)

62H11 _
Hituu = —55~ = 2R+ 2K.x5 +7(y—1)Knz2u”™* > 0. Equation (13a) has a solution

Smc_e the domain of _the admissible control is convex, and " :_—1{2Ru—|— 9K 22u + yKpwau) !
Hy: is a convex function, we conclude the existence of the b (14)
unique minimizeru, . [ + K + Kizz 4+ bAg}
We have a similar result about . To ensurer; > 0, Ao should be negative. Similarly, (13b)
Proposition 3.4:Giveny > 1 andz2 > 0, (10) has a has a solution
unique solutionu_. 1 ) .
Remark 3.5:Note thatu . cannot always be solved from V2 25{2RU + 2Keaou — yKpaa (—u)” (15)
the first order necessary condition — K, + Kz + bha}.
Hypy = % —-0. On the other hand, the velocity constraint may incur jumps
ou of the costate. Since the velocity constraint is one ordeest
Neither canu_ necessarily be solved from constraint, it will not become active as a touch point, iee,
OH 5 only need to consider the case when the velocity constrsint i
Hygy = ou 0. active over arcs. For the constraing — v, < 0, denoting

Propositions 3.3 and 3.4 however establish the uniquenetgse Interior point constraint

of solutions of (9) and (10), which is important to show N1 = 29 — Umaz,



we have the boundary condition at the entry point of @&ssuming the negative acceleration constraint is activex ov

velocity constrained arc S5, we have
OH3
_ ON\" 2 = by — by =0,

)‘(t:ntry) = )‘(tentry) — T (%) (tentry) du
and solvers = \o. The corresponding, dynamics is given
= AMtontry) — 71 m , (16) by Ay = —\;. Note that the sign condition af, requires

‘ ON A2 > 0 when the negative acceleration constraint is active
H t:n ry) — H te_n r + M- te_n ry) OVGI'SQ.

(teniry) (Gentry) + 1 ot (tenery) Over the unconstrained arcs; = 0, thus H, can be

wherem; € R is a Lagrange multiplier. Similarly, for the written as
constraint—zy < 0, _ _
Hy = Ho(x,\) + AT Bu = Hy(z, \) + bAyu.
N2 = —T2,
Itis clear that if A2 # 0, the optimal control is in the form of

the jump conditions are Bang-Bang. Otherwise, we have a singular control problem.

AEE, ) = Ao, ) — 7 0 Remark 3.7:We use contradiction to show the op'FimaI
entry entry 2l-1p trajectory does not include a singular arc. Assume a simgula
H(th ) = Htoy)- arc exists. Because the optimal control is uniquely defined
over constrained arcs, we only need to consider the uncon-
The costate dynamics is therefore rewritten as strained arcs. Hence the costate dynamics is
- 7 0 0 0 -
A=—ATA- [ZKerUQ + Kplul + Ktu] - [—d d} & A= AT

0 The fact that\, = 0 over a singular arc and (18) implies
™ A1 = 0. Since\; = 0, we know\; = 0 over [0,%¢], and

B 0 ) ) A2 = d)s. According to the continuity of optimal control,
AMtiry) = Mlpiry) + LTJ ,  —r3 < 0ls active a positive unconstrained control arc is always prior to the
zero control arc. This implies the costaXg(t;) < 0 with
; : .t denoting the entry time of the zero control arc. Given
u = (dx2 +c)/b. Different from the acceleration constraint, ; yegative initial condition, the costate is monotonically

u > 0 when the velocity constraint is active. We uig1 10 yecreasing and cannot reach zero. This contradicts the fact
computeH;,, and solve Ay =0 m

At

antry) = Mtontry) — { } , T2 — Unas < 0 IS active

The Lagrange multiplier. is determined front{;,, = 0 with

We consider the case when = 0 at finite points. Note
that P(z,u) < 0 allows a larger domain of admissible
+ Ko+ Kizo +bAo}, %2 = Unag (17)  control thanP(z,u) < —e < 0. Hence, the control over
-1 unconstrained arcs should be solved from
125 :T{2RU+K5+Z)A2}, i) :O,

-1
H1 :T{QRU + 2Ke:17§u + yKpzou) !

in Hy subject toP <0. 19
whereu = (dzz + c)/b. argmn fia J (z,u) < (19)

Remark 3.6:Notice when the velocity constraint is active, |t can be shown that givey > 1,25 > 0, the inequality
u = (dzy +¢)/b > 0 and P(z,u) > 0. Hence, the p(; ) < 0 gives a convex domai® c R~ U {0}. Since
velocity constrained arcs always belong3g Similarly, the  f7, is a linear function ofu, (19) has a unique minimizer
arcs where the positive acceleration constraint< a,,q. ug. Given the domainD and the sign of\,, we have the
is active belong toS; too. For the negative accelerationggnirol
constraint—is < dmaz, U = (—Gmae + dza + ¢)/b is {min{D}, A2 >0,
Uug =

. . 20
generally negative, which may rendBfz, u) < 0. O max({D} =0, s < 0. (20)

C. Necessary Optimality Conditions over Intervéls

Interval setS, is characterized by the constraiffz, u) <
0 which requiresu < 0. According to Remark 3.6, over
intervalsS,, the HamiltonianH, = H, excepty = 0,v; =
0, i.e., (Kh —Kt)iCQ-f—KS

= s.t. P ~ 0. 21
us R+K6I% (1’,1},3) ( )

Remark 3.8:To simplify the computation of domaim,
we assume = 1 and have a non-trivial approximate solution
of P(z,u) =0 as follows

Hy =\"(Az + Bu + C) + va(—amae + das + ¢ — bu),

o : : i K. _ .B
which is differentiable w.rtz and u. The corresponding SiNCe Kn < Ki, uz < 0 whenay > g2 = 257 We
costate dynamics is therefore have the domain ef satisfying P(z,u) < 0

A =0, 0}, < 2B,
. (18) p: 10 mso . (22)
Ay = — A1 +dha — dvs. uz <u <0, To > Ty .




Given the domainD in (22), we have the approximate Therefore, necessary conditions can be formulated a series
solution of (19) of Multi-Point Boundary Value Problems (MBVPSs). Solving
an MBVP generally requires the knowledge of the structure
of the optimal trajectory, which could be obtained through
ug = q min{D} = ug, a2 >3 andi; >0, (23)  analysis or iterative programming procedure. Assuming the
max{D} =0, zo>2F and); < 0. knowledge of the structure of the optimal trajectory, the
2 MBVP to be solved is well-defined.

B
01 $2§$2,

D. Entry Boundary Conditions B. Simulation

The piecewise Hamiltonian implies that the optimal trajec- Given the MBVP, and using Matlab functidvpS¢ we

tory might switch. We need to derive the boundary conditiong"ﬂgfa the S:ﬂgl?ﬁ'on r::jsultlst shovl/n |an|gures 1-4. fAS [S,EIOWH
rising from switches among sub-trajectori€s;, Siz2, Sa. In Figures 1-, the optimal trajectory Tor on€ case ot proble

These conditions are referred as the Weierstrass-Erdma‘fg"f'\tal has 5 args: positive accelelratl(()jn constrained arttieos .

corner conditions. We exemplify the necessary conditionlénconsn‘a!ne arc, zero contrp and z€ro power arc, pagatlv

for the switch froms; to Spo. Without loss of generality, unconstralqed arc, and nggatwe acceleratlop.constrarmd

we assume the switch happenstaand have the boundary The negative unconstrained and non-positive power arc,

condition at the switch point which corresponds tas, does not appears because< z%.

Figures 3-4 show that the optimal trajectory for another
Hyi(t7) = Hio(t)), case of problem data includes 6 arcs. The Hamiltonian is
Alty) = A(t]).

not constant over the trajectory whilgy is applied. This is
. ) o _ _ because.s is an approximate solution dP(z,u) = 0, and
Combining with the continuity of state, (24) is equivalent t 1,5 \merical solver hasn't converged to the exact solution
Pi(t7) + b2 (t7 )u(ty) = Po(t]) + bha(t))u(t]), yet. In fact, Hamiltonian should always be constant along
N the optimal trajectory of Problem 2.1. For both cases, the
A7) = A(t]). . . . o :
optimal trajectories try to maintain zero power consunptio
The first boundary condition actually determines the switchs longer as possible during the deceleration period.
time t,. Conditions of switches for other cases can be sim-
ilarly obtained. These conditions also means the piecewi: Control and Velocity
Hamiltonian is continuous along the optimal trajectory o
Problem 2.1.

(24)

u (amp)

IV. COMPUTATION OF SUB-OPTIMAL TRAJECTORIES

A number of direct computation methods have bee
proposed and applied to solved constrained optimal col
trol problems. The main idea of direct computation is tc
transcript the optimal control design into a nonlinear pro 10
gramming (NLP) problem over finite dimensional paramete
space. An NLP solver is used to solve the resultant NL
problem. Compared with the indirect approach, e.g. solvin
the optimal control trajectory from necessary conditions
direct computation has advantages on capabilities to banc

X, (rad/sec)

o N S k= o0
T T T T
I

i
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18

complicated constraints and performance metrics. It hewev Time (sec) x107
suffers from issues such as convergence speed. Readers can
refer to [17] and references therein for detailed review isn d Fig. 1. Case 1: the trajectories of control and velocity

rection computation. This note relies on the aforementione

necessary conditions to construct the optimal trajectory.
V. CONCLUSION

A. Indirect Approach This paper discussed the energy optimal trajectory genera-

As shown in Section Ill, necessary conditions are writtion of servo systems in the open-loop optimal control desig
ten as a set of ordinary differential equations (ODES) anflamework. Due to the switching cost function, piecewise
nonlinear algebraic equations (NAEs) which are piecewisehecessary optimality conditions were resulted and derived

defined over different time intervals. ODEs defines th&imulation illustrates the generation of the approximate
dynamics of state and costate. NAEs defines the boundagjtimal trajectory.

conditions, which includes the initial and final state coendi

tions, terminal conditions of each arc, terminal condisiarf REFERENCES
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