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Abstract
This note considers the energy optimal trajectory control design approach. Solving the exact
optimal solution is challenging because of the nonlinear and switching cost function, and vari-
ous constraints. The minimum principle is applied to establish piecewise necessary optimality
conditions. An approximate optimal control is proposed to circumvent the difficulty due to
the nonlinearity of the cost function. Simulation is performed to illustrate the generation of
the approximate optimal trajectory.
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On the optimal trajectory generation for servomotors: a Hamiltonian
approach

Yebin Wang, Koichiro Ueda, and Scott A. Bortoff

Abstract— This note considers the energy optimal trajec-
tory generation of servo systems through open-loop optimal
control design approach. Solving the exact optimal solution
is challenging because of the nonlinear and switching cost
function, and various constraints. The minimum principle is
applied to establish piecewise necessary optimality conditions.
An approximate optimal control is proposed to circumvent the
difficulty due to the nonlinearity of the cost function. Simulation
is performed to illustrate the generation of the approximate
optimal trajectory.

I. I NTRODUCTION

Reference trajectory generation plays a key role in the
control of motion positioning systems using servomotors
because the reference trajectory is identified as the main
factor determining the performance of the resultant closed-
loop control system. A reference trajectory of a servomotor
of a motion control system is in general generated by
minimizing certain performance measures. Over decades,
minimum time criteria has been widely used in reference
trajectory generation to maximize productivity. A number of
work have been reported on the time optimal or approximate
time optimal trajectory generation, for instance, [9], [14],
[11], [8], [16].

Another important criteria to generate a reference tra-
jectory is the energy consumption of the motion control
system. This is practically meaningful due to the fact that
motor systems consume approximately 65% of the electricity
in industry [19]. Existing work in this area includes the
motor system steady state energy optimization [2], [4],
energy-optimal control scheme for incremental motion drive
(IMD) [15], [13], a heuristic approach [3], [18] as a few
examples. Work [15], [13], [7], [3] did not address speed
and acceleration constraints thus leads to conservativityin
energy efficiency.

This note considers the energy optimal trajectory gen-
eration of servomotor systems through open-loop optimal
control design approach. Speed and acceleration constraints
are considered in the trajectory generation stage, and the
optimal trajectory is to minimize the energy consumption
of the motion control system including copper, amplifier,
mechanical, and iron losses. The main difficulty in solving
the optimal trajectory is result from the nonlinearity and
switching in the cost function, and various constraints. This
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note derives piecewise necessary optimality conditions using
the minimum principle.

This note is organized as follows. Section II introduces the
problem. Main results are presented in Section III. Simula-
tion is performed in Section IV to illustrate the generation
of the approximate optimal trajectory.

II. PRELIMINARY

Consider the following second order servomotor model

Iθ̈ = Ktu− c̄− d̄θ̇,

whereθ is the rotation angle of the motor,I is the sum inertia
of the load and servo motor,Kt is the torque constant of the
servo motor,d̄ is the viscous friction coefficient,̄c is the
Coulomb friction, andu is the input current. The Coulomb
friction usually changes its sign according to the velocity.
The friction model used in this paper does not incorporates
this because the considered optimal control problem includes
a non-negative velocity constraint. The model is rewrittenin
the state space form

ẋ = Ax +Bu+ C, (1)

wherex = (x1, x2)
T = (θ, θ̇)T ,

A =

[

0 1

0 − d̄
I

]

, B =

[

0
Kt

I

]

, C =

[

0
−c̄
I

]

.

To simplify the presentation, we use notation:d = d̄
I
, c =

c̄
I
, b = Kt

I
in the sequel.

Note that the real servomotor dynamics is nonlinear from
the saturation and hysteresis of the magnetic field, switches
of amplifiers etc. Taking the Linear Time Invariant (LTI)
model (1) is without loss of generality because the proposed
methodology can be readily generalized to the nonlinear
plant case.

A. Loss Models

A simple characterization of the energy consumption of a
servo is its copper loss, which is consistent with the following
quadratic cost function

E =

∫ tf

0

u2

2
dt. (2)

The copper loss model (2) may not be valid for certain types
of motors or certain positioning tasks, for instance, large
servos or high speed tasks. This note considers the energy
consumption model including the copper loss, the iron loss,



the switching loss of amplifiers, and mechanical work, which
is written as follows

P (x, u) = Ru2 +Kex
2
2u

2 +Kh |x2| |u|
γ
+Ks |u|+Ktux2,

whereR is the resistance of servo motor,Ke andKh are
constant coefficients of eddy current and hysteresis losses, γ
is constant, andKs is a constant coefficient of the switch-
ing loss. During the deceleration period,P (x, u) could be
negative. This means that the motor performs as a generator
and converts mechanical work into electricity. The electricity
however is not allowed to flow back to the utility grid. The
energy consumption of a servo system is characterized by
the following cost function

E =

∫ tf

0

Q(x(t), u(t))dt,

Q(x(t), u(t)) =

{

P (x(t), u(t)), P (x(t), u(t)) > 0,

0, P (x(t), u(t)) ≤ 0,
(3)

whereT is the tracking time.

B. Problem Statement

We shall compute the reference trajectory of a servo motor
to minimize (3). The trajectory generation is treated as an
open loop optimal control design problem as follows.

Problem 2.1:Given the plant (1), the initial statex(0) =
x0 = (0, 0)T , the final statex(tf ) = xf = (r, 0)T , and the
final timetf , find the controlu∗ which minimizes certain cost
functionE(u) subject to control, acceleration, and velocity
constraints

0 ≤ x2 ≤ vmax, |ẋ2| ≤ amax, (4)

wherevmax, amax, r are known constants.
Problem 2.1 with the cost function (2) has been studied

intensively. For instance, by including the tracking error
penalty in (2), the model predictive control has been applied
and leads to a quadratic programming problem. Since both
the cost function and the constraints are convex, the resultant
numerical optimization problem has a global minimum. This
property however does not hold for (3).

Numerous techniques have been proposed to treat inequal-
ity constraints, e.g. the integral penalty function approach
considers the optimal control problem with a new cost which
penalizes heavily along trajectory violating constraints. A
more effective approach to solve such problem is to join
together constrained and unconstrained arcs, making usingof
necessary optimality conditions. This approach is followed
in the note to derive the necessary optimal conditions [1],
[12], [6].

III. O PTIMAL CONTROL TRAJECTORYDESIGN

Necessary conditions of an optimal solution to a state con-
strained optimal control problem have been investigated since
1960s. Readers are referred to [12], [1], [6], [5] for details.
Sets of necessary optimality conditions can be obtained in
various ways. For instance, [6] defines a Hamiltonian in-
cluding the state constraint directly and establishes necessary

conditions. We employ the approach which first converts a
state constraint into a mixed state control constraint, then
defines a Hamiltonian based on the resultant mixed state
control constraint. For a state constraint, we introduce the
following definition.

Definition 3.1: [1] The one dimensional state constraint
S(x) ≤ 0 has an order ofq if

S(k)(x) = 0, 0 ≤ k ≤ q − 1,

S(q)(x, u) = 0,

whereS(k)(x) is computed by differentiatingS(x) k times
with respect to time.

To define a Hamiltonian, we first convert the velocity
constraint into a mixed state control constraint

x2 − vmax ≤ 0 ⇒ −dx2 − c+ bu ≤ 0,

−x2 ≤ 0 ⇒ dx2 + c− bu ≤ 0.
(5)

The acceleration constraint is a mixed state control constraint

−dx2 − c+ bu− amax ≤ 0

−amax + dx2 + c− bu ≤ 0.
(6)

A. Treatment of the Switching Cost Function

Given the switching nature of the cost functional and
to simplify the presentation, we introduce notation of sub-
trajectories

S1 : {t|P (t) > 0}, S1 = S11 ∪ S12,

S11 : {t|P (t) > 0, u(t) > 0},

S12 : {t|P (t) > 0, u(t) < 0},

S2 : {t|P (t) ≤ 0},

and rewrite the cost functional

E =

∫

S1

P (t)dt+

∫

S2

0dt

=

∫

S11

P (t)dt+

∫

S12

P (t)dt+

∫

S2

0dt

Remark 3.2:According to the optimality principle, a sub-
trajectory of a trajectory is also optimal. Therefore necessary
conditions for each sub-trajectory within the setsS1,S2 to
satisfy can be derived separately. The necessary conditions
of the entire optimal trajectory can be established as a
combination of necessary conditions of each sub-trajectory
plus entry conditions between sub-trajectories. �

Next we define a Hamiltonian overS1,S2 piecewisely,
and attempt to derive necessary optimality conditions over
different intervals setsS1,S2 from corresponding Hamilto-
nians. Notation:H1 is the Hamiltonian overS1, H11 and
H12 are the Hamiltonian overS11,S12 respectively, andH2

is the Hamiltonian overS2.

B. Necessary Optimality Conditions over IntervalsS1

Given P (t) > 0 and the mixed state control constraints
(5)-(6), we take the following Hamiltonian

H1 =Ru2 +Kex
2
2u

2 +Kh|x2| · |u|
γ +Ks|u|

+Ktx2u+ H̄1,
(7)



where

H̄1 =λT (Ax+Bu+ C) + µT

[

−dx2 − c+ bu
dx2 + c− bu

]

+ νT
[

−dx2 − c+ bu− amax

−amax + dx2 + c− bu

]

.

The Lagrange multipliersµ, ν corresponding to the velocity
and acceleration constraints, and satisfy sign conditions

µ

{

= 0, velocity constraint inactive,

≥ 0, velocity constraint active,

ν

{

= 0, acceleration constraint inactive,

≥ 0, acceleration constraint active.

1) Optimal Control: HamiltonianH1 is not differentiable
at u = 0. We expressH1 piecewisely,

H1 =

{

H11 = P1 + H̄1, u > 0,

H12 = P2 + H̄1, u < 0,
(8)

where

P1 = Ru2 +Kex
2
2u

2 +Khx2u
γ +Ksu+Ktx2u,

P2 = Ru2 +Kex
2
2u

2 +Khx2(−u)γ −Ksu+Ktx2u.

We denote the positive controlu+ overS1

u+ = arg min
P>0,u>0

H11, (9)

and the negative controlu− overS1

u− = arg min
P>0,u<0

H12. (10)

Proposition 3.3:Given γ > 1 and x2 ≥ 0, (9) has a
unique solutionu+.

Proof: Since u > 0 implies P (x, u) > 0, (9) is
equivalent to

u+ = argmin
0<u

H11.

Given γ > 1, we further verify that the Legendre-Clebsch
condition holds overS1,

H11uu =
∂2H11

∂u2
= 2R+2Kex

2
2+γ(γ− 1)Khx2u

γ−2 > 0.

Since the domain of the admissible control is convex, and
H11 is a convex function, we conclude the existence of the
unique minimizeru+.

We have a similar result aboutu−.
Proposition 3.4:Given γ > 1 and x2 ≥ 0, (10) has a

unique solutionu−.
Remark 3.5:Note thatu+ cannot always be solved from

the first order necessary condition

H11u =
∂H11

∂u
= 0.

Neither canu− necessarily be solved from

H12u =
∂H12

∂u
= 0.

Propositions 3.3 and 3.4 however establish the uniqueness
of solutions of (9) and (10), which is important to show

the sufficiency of necessary optimality conditions. Also,
Propositions 3.3 and 3.4 guarantee the solvability of the
unique controlu+ and u− through numerical optimization
approach [10]. �

Assuming that at any time instant, only one constraint is
active, then the control on constrained arcs is readily obtained
as follows

u =











dx2+c
b

, velocity constraint is active,
amax+dx2+c

b
, ẋ2 − amax ≤ 0 is active,

−amax+dx2+c
b

, −amax − ẋ2 ≤ 0 is active.

(11)

2) Costate Dynamics:Sincex2 ≥ 0, the partial derivative
of H1 w.r.t. x is well-defined, the costate dynamics can be
readily obtained.

λ̇ =−ATλ−

[

0
2Kex2u

2 +Kh|u|
γ +Ktu

]

−

[

0 0
−d d

]

(µ+ ν).

(12)

When the system is along unconstrained arcs, we haveµ =
ν = 0. The costate is continuous at the entry point of the
unconstrained trajectory. For the constrained arcs, we need to
determineµ, ν and the boundary conditions ofλ at their entry
points. We know the jumps of costate arise from interior
points conditions. The acceleration constraint thereforewill
not incur jumps of the costate during the entry of constrained
arcs. The corresponding costate dynamics is

λ̇ = −ATλ−

[

0
2Kex2u

2 +Kh|u|
γ +Ktu

]

−

[

0 0
−d d

]

ν,

λ(t+entry) = λ(t−entry),

whereν is solved from

H1u

∣

∣

∣

∣

u=
amax+dx2+c

b
>0

= 0, ẋ2 − amax ≤ 0 is active,

(13a)

H1u

∣

∣

∣

∣

u=
−amax+dx2+c

b
<0

= 0, −amax − ẋ2 ≤ 0 is active.

(13b)

Equation (13a) has a solution

ν1 =
−1

b
{2Ru+ 2Kex

2
2u+ γKhx2u

γ−1

+Ks +Ktx2 + bλ2}.
(14)

To ensureν1 ≥ 0, λ2 should be negative. Similarly, (13b)
has a solution

ν2 =
1

b
{2Ru+ 2Kex

2
2u− γKhx2(−u)γ−1

−Ks +Ktx2 + bλ2}.
(15)

On the other hand, the velocity constraint may incur jumps
of the costate. Since the velocity constraint is one order state
constraint, it will not become active as a touch point, i.e.,we
only need to consider the case when the velocity constraint is
active over arcs. For the constraintx2 − vmax ≤ 0, denoting
the interior point constraint

N1 = x2 − vmax,



we have the boundary condition at the entry point of a
velocity constrained arc

λ(t+entry) = λ(t−entry)− π1

(

∂N

∂x

)T

(t−entry)

= λ(t−entry)− π1

[

0
1

]

,

H(t+entry) = H(t−entry) + π1
∂N

∂t
(t−entry),

(16)

whereπ1 ∈ R is a Lagrange multiplier. Similarly, for the
constraint−x2 ≤ 0,

N2 = −x2,

the jump conditions are

λ(t+entry) = λ(t−entry)− π2

[

0
−1

]

,

H(t+entry) = H(t−entry).

The costate dynamics is therefore rewritten as

λ̇ = −ATλ−

[

0
2Kex2u

2 +Kh|u|
γ +Ktu

]

−

[

0 0
−d d

]

µ,

λ(t+entry) = λ(t−entry)−

[

0
π1

]

, x2 − vmax ≤ 0 is active,

λ(t+entry) = λ(t−entry) +

[

0
π2

]

, −x2 ≤ 0 is active

The Lagrange multiplierµ is determined fromH1u = 0 with
u = (dx2 + c)/b. Different from the acceleration constraint,
u > 0 when the velocity constraint is active. We useH11 to
computeH1u and solve

µ1 =
−1

b
{2Ru+ 2Kex

2
2u+ γKhx2u

γ−1

+Ks +Ktx2 + bλ2}, x2 = vmax

µ2 =
−1

b
{2Ru+Ks + bλ2}, x2 = 0,

(17)

whereu = (dx2 + c)/b.
Remark 3.6:Notice when the velocity constraint is active,

u = (dx2 + c)/b > 0 and P (x, u) > 0. Hence, the
velocity constrained arcs always belong toS1. Similarly, the
arcs where the positive acceleration constraintẋ2 ≤ amax

is active belong toS1 too. For the negative acceleration
constraint−ẋ2 ≤ amax, u = (−amax + dx2 + c)/b is
generally negative, which may renderP (x, u) < 0. �

C. Necessary Optimality Conditions over IntervalsS2

Interval setS2 is characterized by the constraintP (x, u) ≤
0 which requiresu ≤ 0. According to Remark 3.6, over
intervalsS2, the HamiltonianH2 = H̄1 exceptµ = 0, ν1 =
0, i.e.,

H2 =λT (Ax+Bu+ C) + ν2(−amax + dx2 + c− bu),

which is differentiable w.r.t.x and u. The corresponding
costate dynamics is

λ̇1 = 0,

λ̇2 = −λ1 + dλ2 − dν2.
(18)

Assuming the negative acceleration constraint is active over
S2, we have

∂H2

∂u
= bλ2 − bν2 = 0,

and solveν2 = λ2. The correspondingλ2 dynamics is given
by λ̇2 = −λ1. Note that the sign condition ofν2 requires
λ2 ≥ 0 when the negative acceleration constraint is active
overS2.

Over the unconstrained arcs,ν2 = 0, thus H2 can be
written as

H2 = H̄2(x, λ) + λTBu = H̄2(x, λ) + bλ2u.

It is clear that ifλ2 6= 0, the optimal control is in the form of
Bang-Bang. Otherwise, we have a singular control problem.

Remark 3.7:We use contradiction to show the optimal
trajectory does not include a singular arc. Assume a singular
arc exists. Because the optimal control is uniquely defined
over constrained arcs, we only need to consider the uncon-
strained arcs. Hence the costate dynamics is

λ̇ = −ATλ.

The fact thatλ2 ≡ 0 over a singular arc and (18) implies
λ1 ≡ 0. Since λ̇1 ≡ 0, we knowλ1 ≡ 0 over [0, tf ], and
λ̇2 = dλ2. According to the continuity of optimal control,
a positive unconstrained control arc is always prior to the
zero control arc. This implies the costateλ2(t1) < 0 with
t1 denoting the entry time of the zero control arc. Given
a negative initial condition, the costateλ2 is monotonically
decreasing and cannot reach zero. This contradicts the fact
λ2 ≡ 0. �

We consider the case whenλ2 = 0 at finite points. Note
that P (x, u) ≤ 0 allows a larger domain of admissible
control thanP (x, u) ≤ −ǫ < 0. Hence, the control over
unconstrained arcs should be solved from

argmin
u

H2 subject toP (x, u) ≤ 0. (19)

It can be shown that givenγ > 1, x2 ≥ 0, the inequality
P (x, u) ≤ 0 gives a convex domainD ⊂ R

− ∪ {0}. Since
H2 is a linear function ofu, (19) has a unique minimizer
u0. Given the domainD and the sign ofλ2, we have the
control

u0 =

{

min{D}, λ2 > 0,

max{D} = 0, λ2 < 0.
(20)

Remark 3.8:To simplify the computation of domainD,
we assumeγ = 1 and have a non-trivial approximate solution
of P (x, u) = 0 as follows

u3 =
(Kh −Kt)x2 +Ks

R+Kex2
2

s.t.P (x, u3) ≈ 0. (21)

SinceKh < Kt, u3 < 0 when x2 > Ks

Kt−Kh
= xB

2 . We
therefore have the domain ofu satisfyingP (x, u) ≤ 0

D :

{

{0}, x2 ≤ xB
2 ,

u3 ≤ u ≤ 0, x2 ≥ xB
2 .

(22)



Given the domainD in (22), we have the approximate
solution of (19)

u0 =











0, x2 ≤ xB
2 ,

min{D} = u3, x2 ≥ xB
2 andλ2 > 0,

max{D} = 0, x2 ≥ xB
2 andλ2 < 0.

(23)

�

D. Entry Boundary Conditions

The piecewise Hamiltonian implies that the optimal trajec-
tory might switch. We need to derive the boundary conditions
rising from switches among sub-trajectoriesS11,S12,S2.
These conditions are referred as the Weierstrass-Erdmann
corner conditions. We exemplify the necessary conditions
for the switch fromS11 to S12. Without loss of generality,
we assume the switch happens att1 and have the boundary
condition at the switch point

H11(t
−

1 ) = H12(t
+
1 ),

λ(t−1 ) = λ(t+1 ).
(24)

Combining with the continuity of state, (24) is equivalent to

P1(t
−

1 ) + bλ2(t
−

1 )u(t
−

1 ) = P2(t
+
1 ) + bλ2(t

+
1 )u(t

+
1 ),

λ(t−1 ) = λ(t+1 ).

The first boundary condition actually determines the switch
time t1. Conditions of switches for other cases can be sim-
ilarly obtained. These conditions also means the piecewise
Hamiltonian is continuous along the optimal trajectory of
Problem 2.1.

IV. COMPUTATION OF SUB-OPTIMAL TRAJECTORIES

A number of direct computation methods have been
proposed and applied to solved constrained optimal con-
trol problems. The main idea of direct computation is to
transcript the optimal control design into a nonlinear pro-
gramming (NLP) problem over finite dimensional parameter
space. An NLP solver is used to solve the resultant NLP
problem. Compared with the indirect approach, e.g. solving
the optimal control trajectory from necessary conditions,
direct computation has advantages on capabilities to handle
complicated constraints and performance metrics. It however
suffers from issues such as convergence speed. Readers can
refer to [17] and references therein for detailed review on di-
rection computation. This note relies on the aforementioned
necessary conditions to construct the optimal trajectory.

A. Indirect Approach

As shown in Section III, necessary conditions are writ-
ten as a set of ordinary differential equations (ODEs) and
nonlinear algebraic equations (NAEs) which are piecewisely
defined over different time intervals. ODEs defines the
dynamics of state and costate. NAEs defines the boundary
conditions, which includes the initial and final state condi-
tions, terminal conditions of each arc, terminal conditions of
each sub-trajectories, jump conditions on costate, conditions
on Lagrange multipliers, switch conditions over arcs etc.

Therefore, necessary conditions can be formulated a series
of Multi-Point Boundary Value Problems (MBVPs). Solving
an MBVP generally requires the knowledge of the structure
of the optimal trajectory, which could be obtained through
analysis or iterative programming procedure. Assuming the
knowledge of the structure of the optimal trajectory, the
MBVP to be solved is well-defined.

B. Simulation

Given the MBVP, and using Matlab functionbvp5c, we
have the simulation results shown in Figures 1–4. As shown
in Figures 1-2, the optimal trajectory for one case of problem
data has 5 arcs: positive acceleration constrained arc, positive
unconstrained arc, zero control and zero power arc, negative
unconstrained arc, and negative acceleration constrainedarc.
The negative unconstrained and non-positive power arc,
which corresponds tou3, does not appears becausex2 < xB

2 .
Figures 3-4 show that the optimal trajectory for another
case of problem data includes 6 arcs. The Hamiltonian is
not constant over the trajectory whileu3 is applied. This is
becauseu3 is an approximate solution ofP (x, u) = 0, and
the numerical solver hasn’t converged to the exact solution
yet. In fact, Hamiltonian should always be constant along
the optimal trajectory of Problem 2.1. For both cases, the
optimal trajectories try to maintain zero power consumption
as longer as possible during the deceleration period.
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Fig. 1. Case 1: the trajectories of control and velocity

V. CONCLUSION

This paper discussed the energy optimal trajectory genera-
tion of servo systems in the open-loop optimal control design
framework. Due to the switching cost function, piecewise
necessary optimality conditions were resulted and derived.
Simulation illustrates the generation of the approximate
optimal trajectory.
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