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Tracking control of mechanical systems with a unilateral pition
constraint inducing dissipative impacts

J.J.B. Biemond, N. van de Wouw, W.P.M.H. Heemels, R.G. Siaefeand H. Nijmeijer

Abstract—In this paper, the tracking control problem is
considered for mechanical systems with unilateral constriats
with dissipative impacts. In these systems, impacts are ggered

at the exact moment when the constraint becomes active.

Typically, a small time mismatch is introduced between the
impacts of the plant and the reference, even if this trajectoy is

arbitrarily close to the reference. Consequently, the Euétiean

tracking error cannot behave stable in the sense of Lyapunqv
such that standard tracking control approaches are unfeadgile.

However, desirable tracking behaviour does not imply that he

Euclidean error vanishes asymptotically over time. We degin

continuous-time controllers that can handle the impact time

mismatch and achieve accurate tracking of reference trajec
tories containing dissipative impacts for mechanical sysims
with a unilateral constraint. The behaviour of the resulting

closed-loop dynamical system is illustrated with an exempty

bouncing ball system.

I. INTRODUCTION

and, consequently, standard tracking control designs do no
apply.

For hybrid systems where jumps can be triggered by the
controller, the “peaking” of the tracking error can be awmd
by forcing the jumps of the plant to coincide with those of
the reference trajectory. Such controllers are designg4in
[71, [12], [13], and observers where jumps of the observer
coincide with those of the plant are designed in [8]. Howgver
for hybrid systems with state-triggered jumps, including
mechanical systems with impacts, jumps of the plant cannot
be forced to coincide with jumps of the reference trajectory
Therefore, different approaches are needed.

In the literature, several approaches are presented that
allow to compare two hybrid trajectories with non-matching
jump times. As suggested in [5], one could require stability
in the sense of Zhukovsky, cf. [14]. In this stability contep
a rescaling of the time is allowed for the plant trajectory in

Many mechanical systems contain unilateral position corrder to match the jumps of the plant with the jumps of the

straints and experience impacts when a unilateral constrareference trajectory. Alternatively, a Hausdorff-typetrive
becomes active. In this paper, we will design tracking coretween the graphs of the reference and plant trajectory
trollers for mechanical systems with dissipative impaets (iS suggested in [15]. Both approaches rely on complete
restitution coefficient smaller than one), and model these &nowledge of the trajectories, and, consequently, it is not
hybrid systems, which are characterised by the combinatié#ear how these concepts can be used to formulate and solve
of continuous-time dynamics and jumps, cf. [1]-[3]. the design problem of tracking controllers.

For mechanical systems with impacts, and more generally, 'n [16], [17], tracking controllers are designed for me-
for hybrid systems with state-triggered jumps, tracking-co chamcal_systems with impacts where referencgltrajestone
trollers will encounter a “peaking” of the Euclidean track-are required to be weakly stable. The weak stability propert
ing error, as observed in [4]-[11]: the plant and referenciormulated in [16] implies that tracking errors are smalbgw
trajectory will generically have jumps with a small timefrom the impact times. In [16], [17] reference trajectorge
mismatch, and during this time period, the Euclidean tragki cop&dered where impacts, if they occur, show .accu.mulauon
error will be large, even though the tracking behaviour is aBOINts (i.e. Zeno behaviour), followed by a time interval
desired. Even for arbitrarily close initial conditions,anjp Where the constraint is active. _ _
time mismatch is expected and during this time interval, the N the present paper, we focus on reference trajectoriés tha
Euclidean error will be approximately equal to the norm ofXPerience impacts without accumulation. In that caset nex
the jump in velocity at the impact. Hence, the EuclidealFP convergence of thg Eucl[dean tracking error away from the
tracking error behaves unstable in the sense of Lyapun#¥Pacts, the impact time mismatch between the reference and
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plant trajectories should converge to zero to obtain iivielly
correct behaviour. In [5], [18], [19], tracking controlieare
designed that achieve this behaviour for a class of hybrid
systems with linear flow and jump dynamics, which include
mechanical systems with impacts as special cases. In [5],
[18], [19], periodic reference trajectories are considere
and the Euclidean tracking error is required to converge
only away from the jump times. In addition, convergence
of the jump times is ensured by evaluating the closed-loop
dynamics using a return map.

In [10], a tracking problem is formulated by requiring
convergence of a non-Euclidean tracking error measure that



is tailored to the specific hybrid system and constructett sustate » with a factor % such that the Lyapunov function
that convergence of this tracking error measure corresponegmains constant. If, subsequently, the plant jumps, then
to an intuitive notion of tracking, that is, trajectorieswerge this rescaling is undone, such that the Lyapunov function is
to each other away from the impact times, and the impadecreasing. Effectively, in the case where the referenopsu
time mismatch vanishes asymptotically over time. Additionfirst, the dissipative effect of the impacts of both the reffiere
ally, the tracking error measure remains constant over jumpand plant trajectory is taken into account only after the
and, hence, does not exhibit peaks in its time evolutiojump of the plant. Using this rescaling function, a swit@hin
Since this tracking error measure incorporates informatiocontrol law is designed that enables converging closeg-loo
on the velocity during the time interval near jumps, théehaviour of eitherr — » (away from the impacts)y; + %r
tracking problem can be formulated based on this errdwhen only » experienced an impact) oigx -+ r (when
only. In particular, we will only require asymptoticallyadtle only x experienced an impact), such that the plant trajectory
behaviour of the newly defined error. This property directlconverges to the reference away from the jump times, and
implies, in addition to the convergence of the Euclideaman intuitively correct notion of tracking is achieved.
tracking error to zero when away from impact times, also the This paper is organised as follows. In Section I, we
convergence of the jump time mismatch to zero over timentroduce the class of systems under study and define the
as shown in [10]. This is an advantage of our approach whawrresponding solution concept. In Section Ill, we redad t
compared to the approach in [5], [18], where a return maacking problem definition from [10] and define a tracking
argument is required to prove convergence of jump times.error measure for mechanical systems with dissipative im-
In [11], the approach presented in [10] is used to depacts. Controllers solving the tracking problem are design
sign tracking controllers for mechanical systems with nonin Section IV, and are illustrated in Section V with an
dissipative impacts. For these systems, the state vegtor example. Section VI presents a discussion of the main result
containing the position and velocity with respect to the )
impacting surface, is mapped onter during an impact, Notation
where, prior to the impact, the position is zero and the R"™ denotes thei-dimensional Euclidean spacg;the set
velocity points in the direction of the constraint. Hencepf real numbersN the set of natural numbers includiry
in [11], a plant trajectoryz is not required to track the Letco(S) denote the smallest closed convex hull containing
reference trajectory such that|z — r| — 0, but instead, a setS c R", and letS? = S x S. Given vectorsr € R"
convergence ofd(r,z) = min(|z — r|,|z + r|) to zero andy € R™, |z| denotes the Euclidean vector norm,(@gly)
is required. Independently, in [9], [20], [21], trackingdan denotegz" y'| and, ifm = n, then(z,y) denotes the inner
observer problems are considered for billiard systems, ampfloduct. A function : [0,00) — [0, 00) is said to belong to
controllers are designed that ensure asymptotic stalofity classk ., (denotedy € K..) if it is continuous, zero at zero,
set containing the reference trajectory and its mirror iesag strictly increasing and unbounded. For symmetric matrices
The local tracking controller developed for this setis &mi 4 B € R"*", we write A < 0 (A = 0) when A is negative
to the tracking controller designed in [11]. definite (positive definite) andl < B (A >~ B) when A —
Both the tracking controller design of [11] and the desigrB < 0 (A — B = 0). Let Amin(A) and Apax(A) denote the
of [9], [20], [21] exploit the property that the post-impactminimum and maximum eigenvalue of a symmetric matrix

velocity equals minus the pre-impact velocity, and study thA, respectively. Finally, ift € R", A € R"*" and A > 0
behaviour ofr—r andx+r along closed-loop solutions (after then |z|4 = 2T Az

an impact ofz or r, z +r equals the difference between the
plant state: and the reference trajectorybefore the impact). Il. MECHANICAL SYSTEMS WITH IMPACTS
Due to this setup, the approach of [9], [11], [20], [21] isA. Modelling
restricted to non-dissipative impacts where the restituti . . : .
T . . In this paper, we consider mechanical systems with one
coefficient is equal to one. Tracking control for mechanical : ; -
R - . g degree of freedom (1DOF) and a single unilateral position
systems with dissipative impacts (with restitution coéffits . g . g .
X . constraint with impact, as depicted in Figure 1. As shown in
strictly smaller than one) for general, non-periodic refae : . )
. . . : : [11], trajectories of such systems can be modelled with
trajectories, has not been considered so far in the literatu

This is highly relevant, since in physical systems, digsipa . )

will always appear to some extent. v [f(t, x) +u—+ Az, Q:Q)] (1a)
In the current paper, we will address the tracking prob- z€C:=[0,00) xR

lem for impacts with restitution coefficient € (0,1] for

mechanical systems with one degree of freedom, inspirede® = g(z) = { "282] , x€D:={0}x(—00,0), (1b)

by the usage of the non-Euclidean tracking error measure
as proposed in [10], [11]. For these systems, we show thathere the constraint is positioned at = 0. Here, (1a)
a Lyapunov function can be defined with the followingdescribes the flow of trajectories with control signal
behaviour. When the reference experiences an impact priwhich is the controller force when the system has unit
to the plant, the velocity decrease of the reference at thmeass,)\ is the contact force when the constraint is active,
impact is initially ignored by a rescaling of the referenceand f(t,z) represents other possible forces. Equation (1b)



models impacts in which the velocity changes sign. Energfe use of this framework in the present paper. Still, we
is dissipated according to the restitution coefficiert (0,1]. foresee that the same rationale for the tracking control of

The contact force\(z1, z2) satisfies jumping desired trajectories as proposed here for hybrid
systems can be extended to complementarity systems and
Mo, as) € 0, (z1 z2) # (0 0), (2) Mmeasure differential inclusions.
[0,00), (z1 ‘T?) = (0 O)v

Il1. TRACKING CONTROL PROBLEM
A. Tracking problem formulation

Tracking controllers for hybrid systems with state-
triggered jumps, such as mechanical systems with impacts,
lf(t’x) +ut A, 22) Wiﬁggenerjicalﬁ/ show the following “pegking” in the Epu-
‘ clidean tracking error, cf. [4]-[10], which we illustrate i
Figure 3a) for an example. If jumps are state-triggered, i.e
they occur when the state reaches a certain surface in the
T state space, then, generically, a reference and planttivaye
T that are initially close will not reach this surface exadily
the same time, but shortly after each other. Hence, in the
intermediate time period, the Euclidean distance between t
Fig. 1. Example of a mechanical system described by (1), (2).  plant and reference trajectory will be approximately equal
to the Euclidean norm of the jump. Consequently, if the

In this paper, we present controllers that solve a locdtuclidean distance between plant and reference trajectory
tracking problem near a reference trajectorythat is a IS considered as a tracking error, then, for a small time
solution of (1) for a given feedforward signal = ug(t), interval near the impacts, the error will be large, even
Where, at anytimeinstam’is bounded away from the Origin. when the initial error was arbitrar“y small. Hence, this
For all trajectories near this reference trajectory, thetact €rror behaves unstable in the sense of Lyapunov. Due to

force \ vanishes, such that nearby trajectories are describfte “Peaks” in the Euclidean error induced by the jump
by the simpler hybrid system time mismatch, a tracking problem formulation that regsire

asymptotic stability of the Euclidean tracking error is not
feasible for hybrid systems with state-triggered jumpshsu
z=F(tz,u) = [f(t )+u], r € C:=[0,00)xR (3a) as mechanical systems with impacts.
’ To resolve this problem, in [11], the present authors

and ensures that the unilateral contact constraint 0 is
not violated whenr = [z1 z2]7 = [00]%.

1 designed a local tracking controller for the case of ideal,

ot =g(x) = [_EIJ , € D:={0} x (—00,0). (3b) non-dissipative impacts, i.es = 1 in (1b), by requir-
ing asymptotic convergence of the functi@ea(r,z) =

Throughout this paper, we assume thais bounded and®  in(|z — 7|, |z + r|) along closed-loop trajectories, where

is continuous inz and locally essentially bounded in digeas is considered as the tracking error measure. In the
In order to define solutions of the hybrid system (3), weyresent paper, we formulate a tracking problem by requiring

assume that the inpui satisfiesu(t) € ¢/ for a compact set convergence of a tracking error definitiai tailored to the

U C R. Using the framework of [1], solutions of the hybrid  djssipative impact law (1b), which depends explicitly oe th

system (3) are defined on a hybrid time domdim ¢ C  restitution coefficient < (0, 1].

[0, 00) x N. A hybrid time instant is given a§, j) € dom ¢, We will construct the functioni, such that this tracking
wheret denotes the continuous time lapsed, gnttnotes the error does not change at jumps, i.é.(r, g(z)) = d.(r, z)
number of experienced jumps. The gralenotes a solution for eachz € D andd.(g(r), ) = dc(r,z) for eachr € D.

of (3) when, for all(t, j) € dom  such that(t,j + 1) €  Additionally, we designd, to be a continuous function on
dom ¢, ¢(t,j) € D and %0(157.] +1) = g(e(t. 7)), and, for (C'UD)2. Consequently, when evaluated along closed-loop
almost allt € I; := {t| (¢,j) € dom ¢} and allj such trajectories, the function,(r, z) is a continuous function of
that I, has non-empty interiokp(¢, j) € C' and %gp(t,j) = ¢, and independent of.

E(t,0(t, ), u(t, o(t,7))). In other wordsy is a solution of  To construct a tracking error functiof. with the prop-

(3a) during flow, and jumps satisfy (3b). In this paper, weyrties given above, we will adaptea Using the following
only consider maximal solutions, i.e., solutions that @#nn cqordinate transformation:

be continued towards a larger time domain. A solutjois L
said to be non-Zeno ifom ¢ is unbounded in the-direction. M) = { z1 } . with a(z) =4 © z2 >0 4)
The dynamics of (1)-(2) can also be represented effectively a(r)ms 1 22 <0.

using complementarity systems or measure differentidiinc Wi el in thi dinat t hich vield

sions, cf. [22] and [6], [23], respectively. However, theger a Eig;nngz fij;itlir;rd |£5Tn$e)w g(i:\?é)r: ;Za © system, which ylelds
builds upon results on tracking control results developed i o
[10] formulated in the framework of [1], which motivates d.(r,z) := min(|M{z) — M(r)|, |M{x) + M{r)|). (5)



This tracking error measuré fulfills the requirements just exists ads(to, jo) > 0 such that

mentloqed as it is continuous aﬂg(r,:c) remains constant d.((to, jo), Z(to, jo)) < d3(to, jo) =

when eitherx or r experiences a jump. ) IS
According to Theorem 1 of [10], convergence of this track- Hl;%oo de(r(t, 7), 2(t, 7)) = 0.

ing error to zero ensures that for alt> 0, after a sufficiently

long time, |z(t) — r(t)| < 6 whenever the reference position Using this definition, the tracking problem is formalised

r, satisfiesr, (¢) > 6. For the considered class of references follows.

trajectories, if we taked > 0 sufficiently small, then the

length of the individual time intervals wherg(t) < 6 holds  Definition 2 (Tracking problem) Given a hybrid system

(where ‘peaking’ can occur sincg:(t) — (t)] < é may (3) with reference trajectory-, corresponding to a feedfor-

be violated) can be made arbitrarily small. Consequertly, ward signalug, design a control law.,(t, r, z) such that the

d.(r, z) converges to zero along closed-loop trajectories, thelfjectory r is locally asymptotically stable with respect to

the duration of possible ‘peaks’ in the Euclidean trackinge given in(5).

error converges to zero over time: the jump times of th%' Sufficient conditions for stability

plant trajectory converge to the jump times of the reference , , )
trajectory. In order to guarantee that trajectories of (6) have hybrid

As already mentioned, analogous to the common appranWe domains that are unboundedtindirection, we require

in tracking control for ODES, we consider reference trajecat” iS non-Zeno, unique and bounded, as formalised in the

tories r that are solutions to (3) for a given feedforward©!lowing assumption.
signalu = ug(¢t). Now, the objective is to design a state- and . . - .
time-dependent control law = g (t, r, ) such thatd, (r, z) Assumption 1 The reference trajectory = col(ry,r2) is

. aon-Zeno, bounded, satisfia® ; jycqom » [7(t,7)| > 0 and
converges asymptotically stable to zero along the closed- . . \b0J
) ’ . . . IS the unique solution of3) with a bounded feedforward
loop trajectories. To investigate the evolution @f(r, ) . S o
. ; . signal ug and initial conditionr(0, 0). A
along trajectories of the closed-loop system, we combiee th
dynamics of the reference trajectory with the dynamics a$ufficient conditions for the uniqueness of solutions torityb
the plant. For this purpose, we create an extended hybrgstems are given in [1, Proposition 2.11]. In our case,
system with statg = col(r, z). The dynamics of this hybrid the required uniqueness of the reference trajectory implie
system is then given by that colq:(¢,7), g2(t, j)) represents a reparameterisation of
Q= F(tq), geC?  (6a) the reference trajectory(t,]) when the initial condition
. col(q1,¢2)(0,0) = r(0,0) is chosen.
q" =col(q1, —€g2,q3,94), q€Dx(CUD) (6b) The following theorem of [11] provides sufficient con-
qt =col(q1,q2,q3, —€qs), q€(CUD)xD, (6c) ditions for the (local) asymptotic stability of a reference
trajectoryr using a Lyapunov functiof.

9)

where
q2 Theorem 1 [11]Consider a hybrid systeif8), distanced,
Flt, q)= f(t,col(qr, g2)) + ux(t) given in (5), reference trajectory- and feedforward signal
b 4= Ga " ug satisfying Assumption 1. Let the control law(¢,r, z)
f(t,col(gs, q4)) + wa(t,col(q, q2),col(gs, 1)) be given, and let, (¢, col(r, z)) be defined in(7). If there
_ ) exist functionswy, as € Koo, @ continuously differentiable
We define 7(t,j) := col(q1,¢2)(t,j) and z(t,j) = functionV(r,z) and scalarsc,d; > 0 such that
col(gs, q4)(t,7), such thatr,z : dom ¢ — C U D are . _ .
reparameterisations of: dom r — CUD andz : dom z — ai(de(r(t,j),x)) < V(r(t,5),2) < aa(de(r(t, 5), 7))

C U D on the combined hybrid time domaitom gq.

From [10], [11], we adopt the following stability definition (102)
and tracking problem formulation. holds for allz € CU D, (t,j) € dom r, and
Definition 1 (Stability with respect to distanced,) Let Vig(r(t,j)),x) <V(rt,j),z), forr(t,j)eD
d. be given in(5). A reference trajectory-(t, j) of system (10b)
(3) is called Vir(tj),g(x)) <V(r(t,j),z), forxzeD
« stable with respect td, if for all ¢g, 50 > 0 andé; > 0 (10c)
there exists as(to, jo,01) > 0 such thatvt > to,Vj > <VCO|(T,m)V’ F.(t,col(r(t, ), z))) < —cV(r(t, j), z),
Jo for z,r(t,j) € C
de(T(to, jo), Z(to, jo)) < d2(to, jo, 01) = ®) (10d)
de(r(t,5), Z(t,j)) < 613 hold for all (¢,j) € dom r and all z € C U D such

« locally asymptotically stable with respect b if it is ~ that dc(r(t,j),z) < 61, then the reference trajectory is
stable with respect tal, and for anyto, jo > 0 there asymptotically stable with respect th for the systen(6).



IV. CONTROLLER DESIGN 10 /" ——_-.

In this section, we design a state feedback wug4(¢,r, x) g .\ \\
for mechanical systems (1) with restitution coefficient ’
(0,1]. The rationale behind the controller design is, loosely ) 2 £
speaking, that the controller makés(x) — M(r) converge 5 \\ . ——-2
to zero away from the jump instants, and ensures conver- g o [ ™
gence ofM(z) + M(r) to zero near the jump instants. - l \

We design a tracking controller that switches based on p) HEmA— L
three functions/,, V4, V. : (C U D)? — R>, given as

Va(r,z) =[x — T|2P7 Vi(r,x) = |z + %T|2P7 (11) Fig. 2. Exemplary reference trajectorygiven in (15) and plant trajectory

Ve(r,x) = |+ r[3,
where P - 0 will be suitably chosen. We construgy; as:
—f(t, @) + (unt () + f(t, 7)) — [kp ka] (x —7)

of system (1) withe = % and control input (12) witik, kq) = (0.2 0.4).

if Vo(r,z) < Vu(r,z) Are >0or V. ILLUSTRATIVE EXAMPLE
Va(r,x) < Ve(rz) Ar2 <0 To illustrate our results in the exemplary bouncing ball
ug(t,r,x) =4 —f(t,x)— (ug(t)+ f(t, 7)) — [kp ka] (x + %r) system, we consider the system (1) wjtft, ) = —G, with

if Vi(r,z) < Va(r,z) Aro >0, gravitational acceleratiody = 10 ande = 3. To induce a
reference trajectory which does not converge to zero and is
—f(t, @) —e(ug (t)+ f(t, 7)) — [kp ka] (z + er) i ; o .
if V.(r,2) < Vi(r,z) Ars < 0, non-Zeno, we design the periodic feedforward signal
(1

2) 2 v

) 1—¢€7)G, t) < ,

where the controller parameteks, k, satisfy k,, kq > 0. ug (t) = (L=e)G, 7(t) e (14)
01 T(t) 2 G€2’

Remark 1 This controller structure has the controller given

in [11] as a special case, sincé, =V, whene=1. with parametern = 5 and 7(t) := ¢t mod 25 (1+ 1). The

following reference trajectory satisfies Assumption 1:
The following theorem provides conditions on the param-

2
etersk,, kq and P, that guarantee that this controller solves o (t) — G; 7(t)? () < 2
the local tracking problem as in Definition 2. ) v — Ge?r(t) ’ Ge (15)
r = v? G v_\2
Theorem 2 Consider systengl) with ¢ € (0,1] and refer- scer — 3 (1) . cer) ] , T(t) > 2=
ence trajectory- corresponding to the feedforward signaj —-G(7(t) - =)

satisfying Assumption 1. If the controller parametérsaand In Figure 2, the reference trajectoryis shown
kp, kq > 0 of (11), (12) satisfy P = P" =0 and ’ .1 25 1.25
Choosing(k, kq) = (0.2 0.4) and P = |~ '

0 1 0 1 T 1.25 3.75|’
P [ b —k } + [ b —k } P =<0, (13) Theorem 2 ensures that the controller (12) asymptotically
—hp —hd —hp —hd

. stabilises the reference trajectoryin the sense of Defi-
then the controller(12) solves the tracking problem formu- ision 1, as illustrated in Figure 2 for a plant trajectory
lated in Definition 2. 2 with initial condition z(0,0) = (2 10)". The Euclidean

Proof: The proof of this theorem is omitted due totracking error|z — r| and the distancel.(r,z) are shown
length constraints, and can be found in [24]. In this proof, & Figure 3. As shown in this figure, the Euclidean tracking
Lyapunov functionV’ is constructed that, for smadl (r,z), ~ €rror |z — r| shows unstable behaviour, with peaks whose
coincides withmin(V, (r,z), Vy(r,z)) whenr, > 0 and amplitude converges to the difference between the refetenc
coincides withmin(V, (r, z), V.(r, z)) whenr; < 0. m pre- and post-impact velocity and whose width (i.e. the

timing mismatch between impacts of the reference and plant
Remark 2 It can be shown that whedy (r, ) is small, then trajectory) converges to zero. In contrast, the trackirrgrer
Va(r,xz) # Vi(r,z) if 7o > 0 and V,(r,z) # Ve(r,z) if measured. converges asymptotically to zero. As shown in
re < 0. In addition, if d.(r,z) is small andr, = 0, then Figure 2, this corresponds to an intuitive notion of tragkin
one can observe that (r, z) = V,(r, ). Hence, switches of the impact times of the plant converge to those of the
the controller (12) can only be triggered by jumps afor reference trajectory, and away from the impact times, after
r. For this reason, the first case ¢f2) corresponds to the a transient period, the distance between the reference and
case where the reference and plant states are close to easlant trajectory becomes arbitrarily small.
other, the second case @12) is active when the reference
trajectory experienced an impact and the plant trajectory VI. DIsCUSSION

did not, and the last case qf12) corresponds to the case |n this paper, tracking controllers are designed for me-
where the plant trajectory did experience an impact and thghanical systems with a unilateral position constraint and
reference trajectory did not. A dissipative impact law. Although this case is of significant




s 4

|z — ]

2) [5]

d(r,x)

(6]

[71
Fig. 3. a) Euclidean tracking err¢z — r| and b) tracking errotic(r, =)
given in (5) between the reference trajecterand plant trajectoryr given
in Figure 2.

(8]

practical relevance, tracking control problems with non- g,
periodic reference trajectories for this class of systeragew
up to now, not studied in the literature. The controller
design ensures that, despite the “peaking” in the Euclidedt!
tracking error, the tracking error measure introduced is th
paper behaves in an asymptotically stable fashion, thereby!
guaranteeing an intuitively correct notion of tracking.r Fo
the design of a suitable controller, we employ a Lyapunoaz2]
function that is based on distinguishing three differersesa
which correspond to the situations where either the referen
and plant states are close to each other, the reference-trajg3s]
tory jumped and the plant trajectory did not yet experience
a jump, or the plant trajectory jumped and the reference
trajectory did not. In the latter two cases, the Lyapunoyi4]
function is based on a re-scaled version of the reference or
plant trajectory, respectively. Using this Lyapunov fuant
a control law is designed that ensures accurate tracking. Thue)
was illustrated using the exemplary bouncing ball system.
Although the focus in this paper is on mechanical syss7
tems with dissipative impacts, we believe that the corgroll
design, based on a Lyapunov function using the distinctio
between the three mentioned cases, will enable tracking c
troller design procedures for a larger class of hybrid syste
with state-triggered jumps, which is the subject of futurél®l
research. In particular, we envision that the definition of
stability for time-varying trajectories with jumps coultsa [20]
be applied for mechanical systems with multiple degrees of
freedom or impact accumulations (Zeno time) by designing
an appropriate distance function. [21]
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