
A Controlled-Precision Algorithm for Mode-Switching Optimization

Y. Wardi, M. Egerstedt, and P. Twu+

Abstract— This paper describes an adaptive-precision algo-
rithm for solving a general optimal mode-scheduling problem in
switched-mode dynamical systems. The problem is complicated
by the fact that the controlled variable has discrete and
continuous components, namely the sequence of modes and
the switching times between them. Recently we developed a
gradient-descent algorithm whose salient feature is that its
descent at a given iteration is independent of the length (number
of modes) of the schedule, hence it is suitable to situations
where the schedule-lengths at successive iterations grow un-
boundedly. The computation of the descent direction requires
grid-based approximations to solve differential equations as well
as minimize certain functions on uncountable sets. However, the
algorithm’s convergence analysis assumes exact computations,
and it breaks down when approximations are used, because the
descent directions are discontinuous in the problem parameters.
The purpose of the present paper is to overcome this theoret-
ical gap and its computational implications by developing an
implementable, adaptive-precision algorithm that controls the
approximation levels by balancing precision with computational
workloads. Its asymptotic convergence is proved, and simulation
results are provided to support the theoretical developments.

I. INTRODUCTION

Switched-mode autonomous dynamical systems can be
defined by the following equation,

ẋ = f(x, v), (1)

where x ∈ Rn is the state variable, v ∈ V is the input (or
control), and the input-set V is finite. Each point v ∈ V can
be considered as a system’s mode, whose associated dynamic
response function is f(·, v). Suppose that the system evolves
in a predetermined time-interval [0, tf] from a given initial
state x0 := x(0) ∈ Rn. Let L : Rn → R be a cost function
defined on the state space, and define the cost-performance
function J as

J =

∫ tf

0

L(x)dt. (2)

We define a feasible control as a function v(t) : [0, tf] → V
that is left-continuous and changes its values a finite number
of times, and we denote by V the space of feasible controls.1

Note that V is a linear space but it is not complete in any
one of the Lp norms, p ≥ 1. It will be convenient to view
a control v ∈ V as a schedule of modes. We denote such
a schedule by σ =

({vi}N+1
i=1 ; {τi}Ni=1

)
, where v1, . . . vN+1

are the successive values v assumes throughout the interval
[0, tf], and τ1, . . . , τN are the switching times between them.

+School of Electrical and Computer Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, USA, ywardi@ece.gatech.edu, mag-
nus@ece.gatech.edu, ptwu@gatech.edu.

1The term ‘v’ is used to designate both a point in V and an input-control
function; no confusion will arise from the context.

Thus, with the additional notation τ0 := 0 and τN+1 := tf ,
we have that v(t) = vi ∀t ∈ [τi−1, τi], i = 1, . . . , N+1. The
schedule’s length, N + 1, may assume any finite value. For
such a schedule σ we define vσ to be the associated control
function, and we denote by Σ the space of schedules σ such
that vσ ∈ V . Obviously there is a one-to-one correspondence
between σ ∈ Σ and vσ ∈ V , but it will be convenient to
consider both representations.

We make the following assumption.
Assumption 1: For every v ∈ V the function f(x, v) is

twice-continuously differentiable (C2) in x, and the function
L(x) is C2.

We also assume, implicitly, that the state trajectory {x(t)}
associated with v ∈ V is continuous throughout [0, tf], and
by Assumption 1, it is differentiable at all but the switching
points τi. We consider the optimal-scheduling (or optimal-
control) problem of minimizing J over all σ ∈ Σ (or, v ∈ V).

Such systems and optimization problems arise in various
application areas such as mobile robotics, switching-circuit
control, telecommunications, etc.; see, e.g., [15] for a sur-
vey. The optimal control problem has been formulated in
the context of hybrid systems in [3], and variants of the
maximum principle have been derived in [8], [11], [13], [14].
Subsequently, computational techniques have been developed
in [1], [2], [4], [5], [7], [11], [12], [13], [16], [17].

The optimal mode-scheduling problem has been classified
in the literature as either a timing optimization problem or
a sequencing optimization problem, as follows. In timing
optimization problems the mode-sequence v1, . . . , vN+1 is
given and the objective is to minimize J as a function of
the switching times τ1, . . . , τN , whereas in sequencing opti-
mization problems the control variable consists of the entire
schedule, namely the mode-sequence as well as the switching
times. Naturally the timing optimization problem is easier
since it is inherently a nonlinear programming problem
in the switching times, while the sequencing optimization
problem has a discrete, sequencing variable in addition
to the timing variable. Consequently, the early algorithmic
developments considered the timing optimization problem
[5], [11], [16], [17], but lately the focus has shifted to the
sequencing optimization problem. A number of approaches
have emerged, including geometric techniques for computing
optimal mode-sequences [12], [13], algorithms based on
relaxation techniques [2], [4], and gradient-descent methods
[1], [7]. The algorithm considered in this paper falls into the
latter category.

The algorithms published in [1], [7] alternate between
the following two stages: 1). Given a sequence of modes,
solve the timing optimization problem associated with them.

2). Insert into the schedule a single additional mode for a
brief amount of time.2 Reference [15] proposes an alternative
approach which eliminates the need for solving the timing
optimization problem. Instead, at each iteration it computes a
subset of [0, tf] having a positive Lebesgue measure, where
it modifies the mode-schedule. Furthermore, to achieve con-
vergence of the algorithm, we use the Armijo step size
on the Lebesgue measure of that set, thereby preserving
the sufficient-descent property of gradient-descent algorithms
that is associated with their convergence rate [10]. For these
reasons, we argued in [15] that this algorithm may perform
better than the one in [1], [7].

The convergence analysis and proofs of the former al-
gorithm, developed in [15], are greatly complicated by the
fact that the Gâteaux differential of J , associated with the
needle variations via mode insertions, is discontinuous in
the schedule σ, in a suitable sense defined below. Likewise,
the sets where modes are changed have no continuity either.
Consequently, the convergence proofs in [15] were obtained
under the assumption that the various functions, gradients,
and aforementioned sets are computed exactly. However, in
an implementable algorithm they would have to be estimated
via suitable approximations. What comes to mind is the
framework of consistent approximations, developed by E.
Polak [10], and based on adaptive balancing of precision
with computational workloads. Accordingly, an algorithm
starts with a crude precision, and increases it whenever it
senses that an optimal point is approached. Our problem
setting does not quite fit within the framework of consistent
approximations due to the lack of continuity mentioned
above, and hence its convergence-proof requires a new line
of analysis.

An adaptive-precision algorithm was proposed in [15]
without a proof of convergence, and the objective of this
paper is to supply such a proof and present some simulation
results. Section II formalizes the problem and provides
background material, Section III carries out the analysis,
Section IV presents the results of simulation experiments,
and Section V concludes the paper.

II. PROBLEM FORMULATION AND ESTABLISHED
RESULTS

This section summarizes the results in [15] upon which
the contributions of this paper are based.

Fix a schedule σ ∈ Σ, s ∈ [0, tf], and w ∈ V . For λ ≥ 0,
consider the change to the schedule σ obtained by swapping
the mode at every time t ∈ [s, s + λ), from that scheduled
according to σ to the one associated with w. In other words,
we replace vσ(t) by w for every t ∈ [s, s+λ). Let us view the
resulting value of J as a function of λ and s, hence denoted
by J̃s(λ), and focus on its variable λ. We are concerned with
the right-derivative dJ̃s

dλ+ (0) which we denote by Dσ,s,w. This
derivative term is the Gâteaux derivative of J at σ along

2The setting in [7] is more general than [1] since it includes constraints,
multiple objectives, and a continuous-parameter control u in addition to the
mode-schedule v.

the direction defined by inserting the mode w at an interval
starting at s, and we call it the insertion gradient.

Note that if σ is a minimum point for J then it is impossi-
ble to have Dσ,s,w < 0 for any pair (s, w) ∈ [0, tf]×V , since
this would indicate a direction of descent for J by inserting
to the schedule σ the mode w in a small interval starting
at s.3 We can formulate the last statement as a necessary
local-optimality condition on σ ∈ Σ in the following way.

Dσ := inf
{
min

{
Dσ,s,w : w ∈ V

}
: s ∈ [0, tf]

}
≥ 0.

(3)
For every s ∈ [0, tf], define Dσ,s := min{Dσ,s,w : w ∈ V },
and observe that Dσ = inf{Dσ,s : s ∈ [0, tf]}. We note that
Dσ,s cannot be positive since Dσ,s,vσ(s) = 0 (inserting a
mode onto itself would not change J), and therefore Dσ,s ≤
0 and hence Dσ ≤ 0 as well; consequently, the necessary
optimality condition is Dσ = 0.

The insertion gradient Dσ,s,w can be derived by varia-
tional principles as follows; see, e.g., [5]. Define the costate
variable p(t) ∈ Rn by the differential equation

ṗ = −
(∂f
∂x

(x, vσ)
)T

p−
(dL
dx

(x)
)T

(4)

with the boundary condition p(tf) = 0. Then, for every s ∈
[0, tf] and w ∈ V ,

Dσ,s,w = p(s)T
(
f(x(s), w)− f(x(s), vσ(s))

)
(5)

as shown in [5]. This equation indicates the lack of continuity
of Dσ,s,w with respect to “small” variations in the schedule
σ. The last multiplicative term in (5), namely f(x(s), w)−
f(x(s), vσ(s)), implies that a change in a schedule σ at a
single point s, by swapping vσ(s) by another mode, w, gen-
erally results in large changes in Dσ,s,w, and consequently
in large changes in Dσ. This has some implications. It is
tempting to regard the control functions v ∈ V , namely vσ
for σ ∈ Σ, as elements in a suitable Banach space, and what
comes to mind is Lp for some p ∈ {1, 2,∞}. However,
the function σ → Dσ is not well-defined on any one of
these spaces, since changing vσ at a single point s ∈ [0, tf]
results in the same element in Lp but in different values
of Dσ . This problem is circumvented if the input control
function v(·) is left continuous, and therefore we consider
only feasible controls, namely v ∈ V having (by definition)
constant values on left-closed, right-open intervals of positive
lengths. Observe that the Lp norms are well-defined on V but
this space is incomplete with respect to those norms. Also,
the function Dσ is well-defined on V but is not continuous.
All of this greatly complicates the convergence analysis of
our optimization algorithms. However, it is natural to define
the optimization algorithm on the space of feasible controls
with the L1 norm, and that is what we do.

We say that a schedule σ ∈ Σ is stationary if Dσ = 0.
Generally, the term Dσ serves as an optimality function,
namely a gauge of the extent to which σ fails to be stationary.
Reference [10] uses this notion to construct convergent

3Please note the slight misnomer: we use the term “the mode w” rather
than “the mode associated with w” when no confusion arises.

descent algorithms and to characterize their convergence
rates. To explain the main idea, consider the abstract setting
in which it is desirable to minimize a continuous function
J(σ) over a space Σ. Let θ(σ) ≤ 0 be an optimality function
such that the set {σ ∈ Σ : θ(σ) = 0} is an optimality
condition of interest, henceforth called stationarity.

The algorithmic framework in [10] is based on the fol-
lowing principle: Given σ ∈ Σ, compute the next point,
σnext such that J(σnext) − J(σ) ≤ 0, and furthermore,
the amount of descent, |J(σnext)− J(σ)|, is bounded from
below by K|θ(σ)| for a given constant K > 0. We call this
property sufficient descent as long as K is local to an open
neighborhood of θ, and we call it uniform sufficient descent if
K is global on Σ. The property of sufficient descent ensures
the stationarity of every limit point of an iteration-sequence
{σk}∞k=1. However, if Σ is infinite-dimensional then bounded
sequences may not have limit points, and consequently we
seek an algorithm satisfying the limit limk→∞ θ(σk) = 0
for every iteration-sequence it computes. This condition is
ensured by the global-sufficient descent of an algorithm, but
merely sufficient descent is not enough.

Generally, an algorithm is specified by procedures for
computing its direction and step size. In the above frame-
work, the direction typically is determined by gradients and
directional derivatives so as to guarantee descent, while for
the step size the Armijo procedure is often used [10]. For
our optimal mode-scheduling problem, we define the descent
direction by swapping the modes at sets of points s where
Dσ,s < 0, and we use the Armijo step size on the Lebesgue
measure of such sets. Furthermore, we search for such sets
where Dσ,s is “more negative” than at other points. To make
all of this formal, fix η ∈ (0, 1), and consider σ ∈ Σ such
that Dσ < 0. Define the set Sσ,η by

Sσ,η =
{
s ∈ [0, tf] : Dσ,s ≤ ηDσ

}
, (6)

as illustrated in Figure 1. Let μ(·) denote the Lebesgue
measure on R. For every positive λ ≤ μ(Sσ,η), let S(λ)
be a subset of Sσ,η such that μ(S(λ)) = λ. We consider
swapping the modes at every point s ∈ S(λ); in order to
ensure that the resulting schedule corresponds to a feasible
control, we henceforth assume, implicitly, that such subsets
consist of finite unions of left-closed and right-open intervals.
For every s ∈ S(λ), Dσ,s ≤ ηDσ (see Figure 1), and we
replace the mode at s with the mode w ∈ V such that
Dσ,s,w = Dσ,s. Let us denote this w in a functional form
as w = w(σ, s); often it is uniquely defined, but if the
set argmin(Dσ,s,w : w ∈ V) is not a singleton, we pick
w(σ, s) in an arbitrary fashion subject to the condition that
the mapping s → w(σ, s) is piecewise constant and left
continuous. We now define σ(λ) as the schedule obtained
from σ by changing vσ(s) to w(σ, s) for every s ∈ S(λ).
The remaining question is how an algorithm should choose
λ in order to guarantee its convergence.

We choose the value of λ according to the Armijo step size
defined as follows (see [10] for a general treatment of the
Armijo step size). Given constants α ∈ (0, 1) and β ∈ (0, 1),
in addition to η ∈ (0, 1). Consider a given σ ∈ Σ such that

Dσ,s

ηDσ

Dσ

s

Sσ,η

Fig. 1. Illustration of the set Sσ,η .

Dσ < 0. For every j = 0, 1, . . ., define λj := βjμ(Sσ,η),
and define j(σ) by

j(σ) := min
{
j = 0, 1, . . . , : J(σ(λj))−J(σ) ≤ αλjDσ

}
.

(7)
Finally, define λ(σ) := λj(σ). λ(σ) is the Armijo step
size, and starting from σ, the algorithm in [15] defines
and computes the next iteration-point, σnext, via σnext :=
σ(λ(σ)).

The main result in [15] concerning sufficient descent of
this algorithm is the following.

Fact 1 (Proposition 1 in [15]): Fix η ∈ (0, 1) and α ∈
(0, η). There exists a constant c > 0 such that, for every
σ ∈ Σ satisfying Dσ < 0, and for every λ ∈ [0, μ(Sσ,η)]
such that λ ≤ c|Dσ|,

J(σ(λ))− J(σ) ≤ αλDσ. (8)

�
Equation (8) would provide the global sufficient-descent

property if λ were bounded only by c|Dσ|, however, it is
also bounded by μ(Sσ,η). In fact, it is possible to have
|Dσ| “large” while μ(Sσ,η) arbitrarily small, and this inhibits
sufficient descent, as can be seen in the RHS of (8). These
situations are not pathological and may arise when σ has
a large number of modes, as happens when the iteration-
sequence {σk} approaches a solution consisting of a sliding
mode. The absence of sufficient descent is due to the lack
of continuity of the function Dσ in the L1 norm on V .
Nonetheless the following result has been proved in [15].

Fact 2 (Proposition 2 in [15]): Consider an algorithm
computing a sequence of schedules, {σk}∞k=1, such that
σk+1 = (σk)next as defined above. Then the following limit
holds,

lim sup
k→∞

θ(σk) = 0. (9)

Furthermore, if σ ∈ Σ is a limit point of the sequence {σk},
then θ(σ) = 0. �

Equation (9) is the main result in Fact 2; since V is
infinite-dimensional there are no guarantees that bounded
sequences have limit points. Generally in optimization we
seek a convergence result of the form limk→∞ θ(σk) = 0,
but this cannot be obtained due to the aforementioned lack
of continuity of the optimality function. However, the fact

that the algorithm is a descent method renders Equation (9)
practically equivalent, as argued for in [15].

All of these results were derived under the assumption of
exact computations of Dσ , Sσ,η , and S(λ), and therefore
the algorithm is said to be conceptual. Any implemen-
tation would require approximations, and hence is called
implementable (this taxonomy was established in [10]). The
approximations are due mainly to the need to solve the
differential equations (1) and (4), compute the optimality
function Dσ, and compute the sets Sσ,η and S(λ). Naturally,
we would use a finite grid to do that; however, the lack of
continuity, especially of the sets Sσ,s, impedes the sufficient-
descent property of the conceptual algorithm and breaks
down the proofs in [15]. The next section describes an
implementable algorithm and proves its convergence in a way
similar to Equations (8) and (9).

Before closing this section we mention the following
extension of Fact 1. Recall that w(σ, s) is any point w ∈ V
such that Dσ,s,w = Dσ,s. Fix ρ ∈ (12 , 1) (the restriction
ρ > 1

2 is needed for technical reasons, as will be seen later),
and let wρ(σ, s) be a point w ∈ V such that Dσ,s,w < ρDσ,s.
Such a choice of w may not be unique, but we assume a
well-defined functional form of wρ(σ, s) in terms of s, and
that this function is piecewise constant and left continuous.
Now for a given λ ≥ 0, let Sρ(λ) be a set contained in Sσ,η

having a Lebesgue-measure λ that is comprised of a finite
union of left-closed, right-open intervals, and define σρ(λ)
to be the schedule obtained from σ by swapping vσ(s) with
wρ(σ, s) for every s in Sρ(λ).

Fact 3 (Proposition 3 in [15]): Fix η ∈ (0, 1) and α ∈
(0, η). There exists a constant c > 0 such that, for every
σ ∈ Σ satisfying Dσ < 0, for every λ ∈ [0, μ(Sσ,η)] such
that λ ≤ c|Dσ|, and for every ρ ∈ (12 , 1),

J(σρ(λ))− J(σ) ≤ αλρDσ. (10)

�
III. IMPLEMENTABLE ALGORITHM

This section presents the new results, derived in this paper,
concerning an adaptive-precision algorithm.

Given σ ∈ Σ, denote by xσ(·) and pσ(·) the corresponding
state and costate trajectories defined by Equations (1) and (4),
respectively. Let G := {t1, . . . , tM} ⊂ [0, tf] denote a finite
grid, and define the gap of G as gap(G) = max{tν − tν−1 :
ν = 2, . . . ,M}. The numerical precision associated with a
grid can be controlled, to some extent, by its gap, but more
may be needed. Regarding Dσ , Equation (5) suggests that it
is possible to have an arbitrarily-small gap(G) and a large
estimation error for Dσ,s,w and hence for Dσ as well. This
can happen when an interval [τi−1, τi), i = 1, . . . , N+1 does
not contain any point of G.4 We say that a grid G is complete

with respect to σ ∈ Σ if every mode in σ is represented in
G, namely, for every i = 1, . . . , N + 1, [τi−1, τi) ∩ G
= ∅.

Finite grids are required to approximate not only Dσ

but also xσ, pσ, and J(σ). Suppose that all numerical

4Recall that the switching times of σ are τi, i = 1, . . . , N , and the mode
in every interval [τi−1, τi) is vi.

integrations are carried out via the Euler method; forward
integration for xσ and J(θ) in (1) and (2), and backward
integration for pσ in (4) (since the differential equation in (4)
is backward, its numerical integration is performed forward
in time). While cognizant of the fact that there are alternative,
superior numerical integration techniques, we accept Polak’s
argument that in the context of an optimization algorithm
Euler’s method often is preferred, due to its relative simplic-
ity, unless there are standing stability issues; see [10], pp.
534-535.

Now a small gap and completeness of a grid G with respect
to σ may not suffice to guarantee a small error resulting from
the numerical integration. What is needed, in addition, is that
every switching time of σ be in the grid as well, thereby
ensuring that the integration error is in the order of gap(G)
(see [6], the proof of Theorem 1.3). Without this assumption
the integration error could be in the order of (N+1)gap(G),
and N + 1, the number of modes, is not assumed to be
bounded. We say that a grid G is left complete with respect
to σ if every switching time of σ lies on the grid.

We assume a single grid for both numerical integration
and estimation of Dσ, but generally two separate grids can
be used. A left-complete grid controls the estimation errors
of J(σ) and Dσ , but not of the set Sσ,η and other quantities
that depend on it. Such uniform error bounds would be
required to place the analysis in the framework of consistent
approximations [10], and its absence compels us to develop
a new set of arguments.

The following list of notational definitions of the vari-
ous approximations we use is self-explanatory. Consider a
sequence of progressively-finer grids on the interval [0, tf],
denoted by Gn, n = 1, 2, . . ., such that limn→∞ gap(Gn) →
0 monotonically.

• xn
σ(t) and pnσ(t) - piecewise-constant, left-continuous

functions resulting from integrations of the differential
equations (1) and (4), respectively.

• Jn(σ) - an approximation of J(σ) resulting from a
numerical integration of (2), based on xn

σ(t).
• Dn

σ,s,w - an approximation of Dσ,s,w based on (5), with
xn
σ(t) and pnσ(t); D

n
σ,s := minw∈V Dn

σ,s,w; and Dn
σ :=

mins∈Gn Dn
σ,s.

• Given s ∈ Gn. wn(σ, s) := a point w ∈ V such that
Dn

σ,s,w = Dn
σ,s. If such w is not unique, suppose that

there exists a well-defined function yielding a particular
choice of w.

• Given η ∈ (0, 1). Sn,0
σ,η := {s ∈ Gn : Dn

σ,s ≤ ηDn
σ}.

Define Sn
σ,η to be the union, over all s ∈ Sn,0

σ,η , of the
left-closed and right-open intervals whose left point is
s and whose right point is the next point on the grid
Gn following s.

• Given a mapping Sn : [0, μ(Sn
σ,η)] → 2S

n
σ,η such that,

∀λ ∈ [0, μ(Sn
σ,η)], (i) Sn(λ) is the finite union of left-

closed and right-open intervals whose left points are on
Gn, and (ii) μ(Sn(λ)) = λ. σn(λ) is the mode-schedule
defined by the following two steps: (i) For every s ∈
Sn,0
σ,η ∩ Sn(λ), change vσ(s) to wn(σ, s). (ii) For every

t ∈ Sn(λ) \ Gn, with s := max{τ ≤ t : τ ∈ Gn},

change vσ(t) to wn(σ, s).
• Given constants α ∈ (0, η) and β ∈ (0, 1). For the

notation below, define λj := βjμ(Sn
σ,η), j = 0, 1,

Define jn(σ) := min{j = 0, 1, . . . , : Jn(σn(λj)) −
Jn(σ) ≤ αλjD

n
σ}, and define λn(σ) := λjn(σ).

The algorithm defined below will compute a sequence of
mode-schedules, {σn}, and the grid Gn will depend on σn

so as to be left complete with respect to it. The rules for
controlling the grid’s precision via gap(Gn) will be specified
later, after we establish some preliminary results concerning
the approximations and sufficient descent.

Lemma 1: For every ε > 0, there exists δ > 0 such that,
for every σ ∈ Σ, and for every finite grid Gn ⊂ [0, tf] that is
left-complete with respect to σ and such that gap(Gn) < δ,
the following inequalities hold: (i) ||xn

σ − xσ||L∞ < ε, and
||pnσ−pσ||L∞ < ε. (ii). |Jn(σ)−J(σ)| < ε. (iii) ∀ s ∈ [0, tf)
and ∀ w ∈ V , |Dn

σ,s,w−Dσ,s,w| < ε, |Dn
σ,s−Dσ,s| < ε, and

|Dn
σ −Dσ| < ε.

Proof: Fix δ > 0, and consider a grid Gn that is left-
complete with respect to σ and such that gap(Gn) < δ.
Consider s ∈ Iσ,i : [τi−1, τi) for some i = 1, . . . , N + 1,
and define tj := max{t ∈ Gn : t ≤ s} and tj+1 := min{t ∈
Gn : t > s}. By left completeness, tj ∈ Iσ,i; and since the
integration method is forward Euler, it follows that

xn
σ(tj+1) = xn

σ(tj) + f(xn
σ(tj), v

i)(tj+1 − tj). (11)

Consequently, standard arguments for deriving error bounds
for the forward Euler method (see, e.g., [6], the proof of
Theorem 1.3) imply part (i) of the lemma concerning xn

σ . The
statement concerning pnσ follows via a similar argument, and
part (ii) follows immediately. Regarding part (iii), Equation
(5) in conjunction with the assumption that Gn is left-
complete with respect to σ imply the first stated bound, and
the two other bounds follow from it immediately.

This lemma establishes continuity of various functions in
terms of gap(Gn). What is lacking is a similar continuity
of the set Sn

σ,η with respect to Sσ,η . Instead, we have the
following result.

Lemma 2: For every η1 > 0, η > η1, η2 > η, and ζ > 0,
there exist δ > 0 such that for all σ ∈ Σ satisfying Dσ < −ζ,
and for every finite grid Gn ⊂ [0, tf] which is left-complete
with respect to σ and satisfying gap(Gn) < δ,

Sσ,η2
⊂ Sn

σ,η ⊂ Sσ,η1
. (12)

Proof: Fix ζ > 0, and η1, η, and η2 as specified in
the statement of the lemma, and consider σ ∈ Σ such that
Dσ < −ζ, and a grid Gn that is left-complete with respect
to σ. We first prove the left inequality of (12).

Consider s ∈ Sσ,η2 . Let s̄ := max{t ∈ Gn : t ≤ s},
namely the point on the grid immediately to the left of
s, possibly including s itself in the event that s ∈ Gn.
By definition Dσ,s < η2Dσ . By lemma 1, aided by the
assumption that Dσ < −ζ, there exists δ > 0, independent
of the specific σ and Gn, such that, if gap(Gn) < δ then
Dn

σ,s̄ < ηDn
σ . By definition, this implies that s ∈ Sn

σ,η ,
thereby establishing the left inequality of (12).

We next establish the right inequality of (12). Consider a
point s ∈ Sn

σ,η . Let s̄ := max{t ∈ Gn : t ≤ s}. By definition
of the set Sn

σ,η , s̄ ∈ Sn,0
σ,η , implying that Dn

σ,s̄ ≤ ηDn
σ . Since

Gn is left-complete with respect to σ, s and s̄ are contained
in the same interval Iσ,i := [τi−1, τi), i = 1, 2, . . .; i.e.,
the same mode is active according to σ at both s and s̄.
Therefore, and by Lemma 1, there exists δ > 0, independent
of the particular choice of σ or Gn, such that, if gap(Gn) < δ,
then Dσ,s ≤ η1Dσ. This implies that s ∈ Sσ,η′ , hence (12).

The following result provides the key argument for the
proof of Proposition 1, below, by guaranteeing that certain
mode-sequences qualify as σρ(λ) for the purpose of Propo-
sition 3 in [15] (Fact 3, above).

Lemma 3: For every η ∈ (0, 1), ρ ∈ (0, 1), and ζ > 0,
there exists δ > 0 such that, for every σ ∈ Σ such that Dσ <
−ζ; for every grid Gn that is left-complete with respect to
σ and satisfying gap(Gn) < δ; for every s ∈ Sn,0

σ,η ; for every
w ∈ V such that Dn

σ,s,w = Dn
σ,s; and for every t ∈ Sn

σ,η

such that s = max{τ ≤ t : τ ∈ Gn}, we have that

Dσ,t,w < ρDσ,t. (13)
Proof: Fix η ∈ (0, 1), ρ ∈ (0, 1), and ζ > 0. Fix

ρ1 ∈ (ρ, 1). By Lemma 1(iii), there exists δ > 0 such that,
for every σ ∈ Σ such that Dσ < −ζ, for every grid Gn that is
left-complete with respect to σ and such that gap(Gn) < δ,
for every s ∈ Sn,0

σ,η , and for every w ∈ V such that Dn
σ,s,w =

Dn
σ,s, we have that

Dσ,s,w < ρ1Dσ,s. (14)

Next, consider t ∈ [s, tf) such that s = max{τ ≤ t : τ ∈
Gn}; then vσ(t) = vσ(s), and hence, and by Equation (5)
and the fact that ρ < ρ1, and by Equation (14), we can
reduce δ if necessary, by an amount that is independent of
t, to ensure that Equation (13) is satisfied.

The following result provides us the property of uniform
sufficient descent. It is an extension of Proposition 1 in [15]
(Fact 1, above), but is considerably more complicated due to
the fact that approximations are being used.

Proposition 1: For every η > 0 and α ∈ (0, η) there
exists c > 0 with the following properties. For every ζ > 0
there exists δ > 0 such that, for all σ ∈ Σ such that
Dσ < −ζ; for every finite grid Gn which is left-complete
with respect to σ and satisfying gap(Gn) < δ, and for every
λ ∈ [

0,min{μ(Sn
σ,η), c|Dn

σ |}
]
,

J(σn(λ))− J(σ) < αλDσ. (15)
Proof: Given η ∈ (0, 1) and α ∈ (0, η). Fix α1 ∈ (α, η)

and η1 ∈ (α1, η), so that 0 < α < α1 < η1 < η < 1.
Let c1 be the constant guaranteed by Fact 3 for α1 and η1.
Fix c ∈ (0, c1). We next show that the statement of the
proposition holds true with these η, α, and c.

Given ζ > 0. Fix ρ ∈ (α
α1

, 1) such that ρ > 1
2 . By

lemma 2 there exists δ > 0 such that, if Dσ < −ζ, and
if Gn is a left-complete (with respect to σ) grid satisfying
gap(Gn) < δ, then Sn

σ,η ⊂ Sσ,η1 . For such σ and Gn,
consider λ ∈ [0,min{μ(Sn

σ,η), c|Dn
σ |}). Since Sn

σ,η ⊂ Sσ,η1 ,
we have that μ(Sn

σ,η) ≤ μ(Sσ,η1
); moreover, by Lemma 1(iii)

we can reduce δ if necessary to ensure that c|Dn
σ | < c1|Dσ|;

and as a result of all of this, λ ≤ min{μ(Sσ,η1), c1|Dσ|}.
Next, by Lemma 3, δ can be further reduced if necessary to
ensure that σn(λ) qualifies as σρ(λ) for the purpose of Fact
3, and this implies that

J(σn(λ))− J(σ) ≤ α1λρDσ. (16)

Since by assumption ρ > α
α1

, Equation (15) follows from
(16).

We next present our implementable algorithm, based on
adaptive precision via grid selection. Given a sequence
{δn} convergent to 0 monotonically, the grid’s precision is
controlled by δn via the requirement that gap(Gn) ≤ δn.
There are three reasons to increase n: (i) Dn

σ is too small;
(ii) jn(σ) is too large, and (iii) μ(Sn

σ,η) is too small. The
first reason is clear because it indicates an approach to a
stationary point. The second one stems from the fact that,
for a given grid Gn, it is possible for a given σ ∈ Σ to have
Dσ < 0 while jn(σ) = ∞, and hence the grid has to be
refined. The third condition requires a finer approximation
in order to ensure that the grid captures every mode in σ.

Given monotone-decreasing sequences {δn}∞n=1,
{ε1,n}∞n=1, and {ε2,n}∞n=1, all convergent to 0; and given a
monotone-increasing sequence {Mn}∞n=1, convergent to ∞.

Algorithm 1: Step 0: Start with an arbitrary schedule σ0 ∈
Σ. Set k = 0 and set n = 1.
Step 1: Compute any finite grid Gn that is left-complete with
respect to σk, such that gap(Gn) < δn.
Step 2: Compute Dn

σk
. If Dn

σk
> −ε1,n, set n = n + 1 and

go to Step 1.
Step 3: Compute Sn

σk,η
. If μ(Sn

σk,η
) < ε2,n, set n = n + 1

and go to Step 1.
Step 4: Determine whether jn(σk) > Mn. If this is the case,
set n = n+1 and go to Step 1. Otherwise, define λn(σk) :=
βjn(σk)μ(Sn

σk,η
).

Step 5: Define σk+1 := σn(λn(σk)). Set k = k + 1, and go
to Step 2.

The following proposition contains the main result con-
cerning convergence of this algorithm. Note that it extends
Proposition 2 in [15] (Fact 2, above), but while the proof of
the latter is straightforward, that of the present result is much
more complicated by virtue of the fact that approximations
are being used.

Proposition 2: (i). If Algorithm 1 jams (namely, gets
“stuck”) at a point σk ∈ Σ, then Dσk

= 0. (ii). If the
algorithm computes an infinite sequence {σk}∞k=1, then

lim sup
k→∞

Dσk
= 0. (17)

Proof: (i). Suppose that the algorithm jams at a point
σk, and suppose, for the sake of contradiction, that Dσk

< 0.
At its final point σk, the algorithm returns to Step 1 infinitely
often from either Steps 2, 3, or 4. Such a return from Step
2 implies that limn→∞ Dn

σk
= 0, which is impossible by

Lemma 1(iii). Next, fix η2 ∈ (η, 1). By Lemma 2, Sσk,η2 ⊂
Sn
σk,η

for n large enough, and hence an infinite return of the
algorithm from Step 3 to Step 1 implies that μ(Sσk,η2) = 0.
This, however, is impossible by the assumption that Dσk

< 0

and the definition of Σ. Finally, an infinite return to Step 1
from Step 4 is impossible by Proposition 1 in conjunction
with Lemma 1. This proves part (i) of the proposition.

(ii). Suppose that the algorithm computes a sequence
{σk}∞k=1, and suppose, for the sake of contradiction, that
Equation (17) fails to hold. Then without loss of generality
we can assume that there exists ζ > 0 such that, for every
k = 1, 2, . . ., Dσk

< −ζ.
Let us denote by n(k) the value of n with which

the algorithm enters Step 5 with σk. We next show that
limk→∞ n(k) = ∞. Suppose, for the sake of contradiction,
that this is not true, so we can assume that n(k) = n
for a fixed n ≥ 1 and all k = 1, 2, By Step 5
and the definition of σn(λ), it follows that Jn(σk+1) −
Jn(σk) ≤ αλn(σk)D

n
σk

. Since Jn(σ) is bounded from
below over σ ∈ Σ, it implies that either lim supk→∞ Dn

σk
=

0, or lim infk→∞ λn(σk) = 0 and hence (by the def-
inition of λn(σ)) either lim supk→∞ jn(σk) = ∞ or
lim infk→∞ μ(Sn

σk,η
) = 0. In either case (see Steps 2-4),

limk→∞ n(k) = ∞, a contradiction.
We thus have that Dσk

< −ζ for all k = 1, . . .,
and limk→∞ n(k) = ∞. By Proposition 1 and Step
5 of the algorithm, for k large enough, J(σk+1) −
J(σk) < αλn(k)(σk)Dσk

≤ −αλn(k)(σk)ζ, and since
J(σ) is bounded from below over σ ∈ Σ, it follows that
limk→∞ λn(k)(σk) = 0. By Lemma 1(iii) and the assump-
tion that Dσk

< −ζ, and by the definition of λn(σ) and
Proposition 1, this implies that limk→∞ μ(S

n(k)
σk,η) = 0. Fix

η2 ∈ (η, 1). By Lemma 2 (and especially the left inequality
of (12)), we have that

lim
k→∞

μ(Sσk,η2) = 0. (18)

Now by Proposition 1 and Lemma 1, there exists k1 ≥ 1 such
that, for every k ≥ k1, jn(k)(σk) = 0, namely the search for
the Armijo step size ends at j = 0. With the aid of Lemma 3,
lim infk→∞(Dσk+1

−ηDσk
) ≥ 0. This, however, contradicts

the assumption that Dσk
< −ζ for all k = 1, 2, . . ., thereby

completing the proof.
As in [15] for the case of exact evaluations, we suspect

that the limit limk→∞ Dσk
= 0 cannot be guaranteed in

general. This is due to the lack of continuity of the sets Sσ,η

with respect to the schedules.

IV. SIMULATION EXAMPLES

We tested the algorithm on two examples: one concerns
output tracking in a nonlinear system, and the other considers
control of an unstable system. In both cases we decouple
the grid used for numerical integration from the one used
for computing Dn

σ , in order to focus on the effects of the
latter. We set tf = 20, and the integration grid consists of
2,000 equally-spaced points plus the switching times of the
schedule in question.

Example 1. Consider the two-dimensional, single-input
system whose state equation is(

ẋ1

ẋ2

)
=

(
v −√

x1√
x1 −√

x2

)
. (19)

It describes a vertical arrangement of two tanks with drainage
holes at the bottom, where fluid flows from an external spigot
into the upper tank at the rate v, drains into the lower tank,
from which it drains out of the system. x1 and x2 represent
the fluid levels at the upper and lower tanks, and Equation
(19) is based on Toricelli’s law. We set the input v to have
either value of 1 or 2, and the initial condition to be x(0) =
(2, 2)T . The objective of the problem is to have the fluid
level at the lower tank track a given value, x2,ref = 3, and
hence we choose the cost functional to be

J = 2

∫ 20

0

(
x2 − 3

)2
dt. (20)

Initially the grid for computing Dn
σ (henceforth referred to

as the grid) consists of 4 equally-spaced points, and it is
later refined according to Steps 2-5 of Algorithm 2, with the
following parameters: ε1,n = 10/2n−1, ε2,n = 10/2n−1, and
Mn = 9 + n. Each time the grid is refined, we double the
number of its equally-spaced points (initially 4) and add the
switching times of the schedule in question.

The algorithm was run for 71 iterations with the parame-
ters α = 0.2, η = 0.5, and β = 0.5, and the initial schedule
v1(t) =

{
1, ∀t ≤ 10; 2, ∀t > 10

}
. The results are shown

in Figures 2-4: Figure 2 depicts the graph of J versus the
iteration count, k, and the vertical lines indicate the iterations
at which the grid was refined; all of the refinements were due
to |Dn

σ | getting too small (Step 2). Initially J(σ1) = 71.03,
while at the end of the run J(σ71) = 4.783, and most of
the decline in the cost is obtained in about 10 iterations.
Correspondingly, the approximate-optimality function, Dn

σk

increases from Dσ1 = −12.54 to Dσ71 = −0.031 (not
shown in the figure). Extensive independent simulations at
randomly-chosen 2,000 points near σ71 indicate that it is
indeed a local minimum, or very close to one.

The final mode-schedule, vσ71(t), is depicted in Figure 3,
and it shows that initially v = 2 in order to bring x2 close to
the target level of 3, and thereafter the switching frequency
increases in order to maintain the tracking. Finally, the state
trajectory is shown in Figure 4, where x2 tracks the desirable
value of 3.0.

Example 2. Consider the two-dimensional linear system
defined by the equation ẋ = Ax; the matrix A is switched
between A1 and A2, defined as

A1 =

(
1 0
0 −1

)
, A2 =

(−1 1
0 1

)

according to whether v = 1 or v = 2. We set the initial
condition to x(0) = (3, 3)T . Both modes are unstable, and
the objective is to switch among them so as to minimize the
extent to which the state runs off to ∞; hence we define the
cost functional as

J =
1

2

∫ 20

0

||x(t)||2dt.

The grid, initially consisting of 4 equally-spaced points, is
handled in the same way as in Example 1, with the following
parameters: ε1,n = 10, 000/2n−1, ε2,n = 2/2n−1, and Mn =
9 + n.

The algorithm was run for 287 iterations with α = 0.2,
η = 0.5, and β = 0.5, and the initial schedule v1(t) =
2 ∀t ∈ [0, 20]. The results are shown in Figures 5-7: Figure
5 depicts the graph of J versus the iteration count, k, and
the vertical lines indicate the iterations at which the grid
was refined (mostly at Step 2). The graph shows the cost
functional declining, mostly during the first 80 iterations,
from its initial value of J(σ1) = 5.4×1017 to its final value
of J(σ287) = 1, 043. Correspondingly, Dn

σk
increases from

Dσ1 = −2.182×1018 to Dσ287 = −99.36 (not shown in the
figure). These numbers are not as small (in absolute value) as
in Example 1, and this is due to the instability of the system.
Extensive independent simulations at randomly-chosen 2,000
points near σ287 indicate that it is indeed a local minimum,
or very close to one.

The final mode-schedule, vσ287(t), is depicted in Figure
6, and it indicates a sliding-mode control that drives the
state trajectory to follow a direction of least growth. Plots
of the state trajectory at σ287 are shown in Figure 7,
where fluctuations from well-defined directions, likely due
to the system’s instability, are apparent. However, an average
direction is discernable.

V. CONCLUSIONS

This paper proposes an adaptive-precision algorithm for
optimal mode-scheduling in switched-mode systems. It is
based on simultaneous swapping of modes at uncountable
time-sets whose Lebesgue measures are determined by the
Armijo step size, and the precision is controlled by the
values of optimality functions. Future research will test
the algorithm on large-scale problems, where an adequate
balance between precision and computational complexity
may be crucial for its efficacy.

0 20 40 60
0

10

20

30

40

50

60

70

Iteration

J

Cost Trajectory

Fig. 2. Example 1: Graph of J(σk).

REFERENCES

[1] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest. A Gradient
Descent Approach to Optimal Mode Scheduling in Hybrid Dynamical
Systems. Journal of Optimization Theory and Applications, Vol. 136,
pp. 167-186, 2008.

[2] S.C. Bengea and R. A. DeCarlo. Optimal control of switching systems.
Automatica, Vol. 41, pp. 11-27, 2005.

0 5 10 15 20

1

1.2

1.4

1.6

1.8

2

t

M
od

e

Optimized Mode Schedule

Fig. 3. Example 1: Graph of vσ71 .

0 5 10 15 20
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

t

x

Optimized State Trajectory

x
1

x
2

Fig. 4. Example 1: State trajectory at the last iteration.

0 50 100 150 200 250 300

105

1010

1015

Iteration

J

Cost Trajectory

Fig. 5. Example 2: Graph of J(σk).

[3] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A Unified Framework
for Hybrid Control: Model and Optimal Control Theory. IEEE Trans-
actions on Automatic Control, Vol. 43, pp. 31-45, 1998.

[4] T. Caldwell and T. Murphy. An Adjoint Method for Second-Order
Switching Time Optimization. Proc. 49th CDC, Atlanta, Georgia,
December 15-17, 2010.

[5] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-Time Optimiza-
tion for Switched Systems. IEEE Transactions on Automatic Control,
Vol. AC-51, No. 1, pp. 110-115, 2006.

[6] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice Hall Series in Automatic Computation, Englewood
Cliffs, New Jersey, 1971.

[7] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S.S. Sastry, R. Bajcsy,

0 5 10 15 20

1

1.2

1.4

1.6

1.8

2

t

M
od

e

Optimized Mode Schedule

Fig. 6. Example 2: Graph of vσ287

0 5 10 15 20
0

5

10

15

t
x

Optimized State Trajectory

x
1

x
2

Fig. 7. Example 2: State trajectory at the last iteration.

and C. Tomlin. A Numerical Method for the Optimal Control of
Switched Systems. Proc. 49th CDC, Atlanta, Georgia, pp. 7519-7526,
December 15-17, 2010.

[8] B. Piccoli. Hybrid Systems and Optimal Control. Proc. IEEE Confer-
ence on Decision and Control, Tampa, Florida, pp. 13-18, 1998.

[9] E. Polak and Y. Wardi. A Study of Minimizing Sequences. SIAM
Journal on Control and Optimization, Vol. 22, No. 4, pp. 599-609,
1984.

[10] E. Polak. Optimization Algorithms and Consistent Approximations.
Springer-Verlag, New York, New York, 1997.

[11] M.S. Shaikh and P. Caines. On Trajectory Optimization for Hybrid
Systems: Theory and Algorithms for Fixed Schedules. IEEE Confer-
ence on Decision and Control, Las Vegas, NV, Dec. 2002.

[12] M.S. Shaikh and P.E. Caines. Optimality Zone Algorithms for Hybrid
Systems Computation and Control: From Exponential to Linear Com-
plexity. Proc. IEEE Conference on Decision and Control/European
Control Conference, pp. 1403-1408, Seville, Spain, December 2005.

[13] M.S. Shaikh and P.E. Caines. On the Hybrid Optimal Control Problem:
Theory and Algorithms. IEEE Trans. Automatic Control, Vol. 52, pp.
1587-1603, 2007.

[14] H.J. Sussmann. A Maximum Principle for Hybrid Optimal Control
Problems. Proceedings of the 38th IEEE Conference on Decision and
Control, pp. 425-430, Phoenix, AZ, Dec. 1999.

[15] Y. Wardi and M. Egerstedt. Scheduling Optimization in Autonomous
Switched-Mode Dynamical Systems. Submitted to the IEEE Transac-
tions on AC, 2011.

[16] X. Xu and P. Antsaklis. Optimal Control of Switched Autonomous
Systems. IEEE Conference on Decision and Control, Las Vegas, NV,
Dec. 2002.

[17] X. Xu and P.J. Antsaklis. Optimal Control of Switched Systems via
Nonlinear Optimization Based on Direct Differentiations of Value
Functions. International Journal of Control, Vol. 75, pp. 1406-1426,
2002.

