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Emulation-based tracking solutions for nonlinear networked control
systems

R. Postoyan, N. van de Wouw, D. Nešić and W.P.M.H. Heemels

Abstract— We investigate emulation-based tracking control
for nonlinear networked control systems (NCS) affected by dis-
turbances. We consider a general scenario in which the network
is used to ensure the communication between the controller,the
plant and the reference system generating the desired trajectory
to be tracked. The communication constraints induce non-
vanishing errors (in general) on the feedforward term and the
output of the reference system. These network-induced errors
affect the convergence of the tracking error. As a consequence,
available results on the stabilization of equilibrium points for
NCS are not applicable. Therefore, we develop an appropriate
hybrid model and we give sufficient conditions on the closed-
loop system, the communication protocol and an explicit bound
on the maximum allowable transmission interval (MATI) guar-
anteeing that the tracking error converges to the origin up
to some errors due to both the external disturbances and
the aforementioned non-vanishing network-induced errors. Our
results cover a large class of the so-called uniformly globally
asymptotically stable protocols which include the well-known
round-robin and try-once-discard protocols. We also introduce
a new dynamic protocol suitable for tracking control.

I. I NTRODUCTION

Networked control systems(NCS) have received consider-
able research interest these last decades. This is justifiedby
the fact that, nowadays, controllers often communicate with
the plant via a network which may be used for other tasks as
well. This implementation offers great advantages over clas-
sical point-to-point connections in terms of cost, flexibility
and ease of maintenance. On the other hand, it requires the
development of appropriate control strategies to guarantee
the desired stability properties under the communication
constraints caused by the use of the network. Most available
works on NCS concentrate on the stabilization ofequilibrium
points, while very few studies address thetracking controlof
NCS, see [2], [9], [11]. The latter references have shown that
tracking control exhibits characteristic difficulties notpresent
in the stabilization of equilibria of NCS. Indeed, tracking
controllers are often composed of a feedback term (to ensure
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the convergence to the desired solution) and a feedforward
term (which induces the desired solution in the closed-loop
system). The authors of [2], [9], [11] have shown that the
errors induced by the network on the feedforward term lead
to approximatetracking. Similarly, the fact that the reference
signals are transmitted via the communication channel may
also be a source of errors that affect the convergence of the
tracking error.

The main purpose of the paper is to propose a method
to design controllers which ensure a state tracking objective
for NCS affected by exogenous perturbations. Compared to
[2], [9], [11], we consider nonlinear systems affected by
disturbances (as opposed to linear systems) and we study the
effect of scheduling. We follow an emulation-like approach
as in [10], [5] which consists in first designing a controller
that solves the problem in the absence of communication
constraints. Afterwards, we implement the controller overa
network and study the conditions that allow us to maintain
the tracking property up to some errors caused by the
network. We propose a general scenario where the channel is
used to ensure the communication between the controller, the
plant and the reference system. This allows us to encompass
the architectures studied in [2], [9], [11] as particular cases
and to investigate new ones. At each transmission instant,
the network is such that only a singlenode(i.e. a group of
sensors and / or actuators) is granted access to the network
according to a rule calledprotocol. The class of protocols
we consider include the round-robin (RR) protocol, the try-
once-discard (TOD) protocol [10] and more generally the
protocols which are Lyapunov uniformly globally asymp-
totically stable (UGAS) as defined in [6]. We also propose
a new TOD-like protocol for tracking control which may
ensure better performances compared to the RR and TOD
protocols.

The paper is organized as follows. The tracking control
problem is formalized in Section II. Next, we propose a
suitable NCS model in Section III and the assumptions we
adopt are given in Section IV. The main stability result is
stated in Section V. In Section VI, we give examples of
protocols suitable in the scope of tracking. An illustrative
example is presented in Section VII. The proofs are omitted
for space reasons.
Notation. Let R = (−∞,∞), R≥0 = [0,∞), R>0 =
(0,∞), Z≥0 = {0, 1, 2, . . .}, Z>0 = {1, 2, . . .}. A function
γ : R≥0 → R≥0 is of classK if it is continuous, zero at zero
and strictly increasing, and it is of classK∞ if, in addition, it
is unbounded. A continuous functionγ : R2

≥0 −→ R≥0 is of
classKL if for each t ∈ R≥0, γ(·, t) is of classK, and, for



eachs ∈ R>0, γ(s, ·) is decreasing to zero. Additionally, a
functionβ : R3

≥0 → R≥0 is of classKLL, if β(·, ·, t) ∈ KL
and β(·, t, ·) ∈ KL for any t ∈ R≥0. For (x, y) ∈ R

n+m,
the notation(x, y) stands for[xT, yT]T.

II. PROBLEM STATEMENT

A. The tracking problem

Consider the nonlinear plant

ẋp = fp(xp, u, wp), yp = gp(xp), (1)

wherexp ∈ R
nxp is the state,u ∈ R

nu the control input,
yp ∈ R

ny the measured output andwp ∈ R
nwp is an external

perturbation. The referencexd that the system (1) has to track
is given by the solution to the system

ẋd = fp(xd, uff , wd), yd = gp(xd), (2)

where uff ∈ R
nu is the (feedforward) input,yd ∈ R

ny

denotes the measured output andwd ∈ R
nwd is a vector

of external disturbances. Whenxd is a reference trajectory,
we assume that we know how to computeuff so that (2)
holds with wd = 0. System (2) may also model amaster
system that the plant (1) has to synchronize with. In this
scenario, the master system (2) may be affected by external
disturbances which justifies the presence ofwd in (2). We
assume that the reference system (2) has a unique solution
for any initial conditionxd(0) and any inputsuff andwd

of interest. Bothuff andyd are available for the purpose of
control.

We consider the following controller decomposition

u = ufb + uff , (3)

where the feedforward termuff comes from (2) and the
feedback termufb is an output of a dynamic controller given
by

ẋc = fc(xc, yp, yd, wc), ufb = gc(xc, yp, yd), (4)

where xc ∈ R
nxc is the controller state andwc ∈ R

nwc

is a vector of perturbations which may affect the controller
dynamics.

B. Controller implementation over the network

We investigate the scenario where a network is used to
ensure the communication between the plant’s sensors and
the controller and between the controller and the plant’s
actuators. We also allow for the case where the communi-
cation channel is used to transmit the output and the input
of the reference system (2), i.e.yd anduff . We consider a
general setting because we can then capture, in a unified
manner, specific scenarios in which the network is only
used to realize some relevant subsets of the aforementioned
communications, such as e.g. the cases in:

• [2], [11] where the reference and plant outputs,yd and
yp respectively, are sent together to the controller and
uff is not transmitted.

• [9] where the outputyd is directly available to the
controller anduff is generated by the controller (note
that yd = xd in [9]), see Figure 1.

Our approach also allows us to study the scenario depicted
in Figure 2, for instance, where the reference outputyd and
the feedforward termuff are transmitted via the network.
In that case, it is reasonable to set up the network in such a
way that the feedforward termuff is directly transmitted to
the plant’s actuators.

Plant

Controller

Network

yp

ŷpufb+uff

ûfb + ûff

yd

Fig. 1. Block diagram of the tracking control of NCS studied in [9].
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ûfb + ûff yd

ŷd

ûff

uff

Fig. 2. Block diagram of the tracking control of NCS whenuff andyd
are sent over the network.

The sensors and the actuators of the plant (1) and of the
reference system (2) are grouped intol nodes (depending on
their spatial location) which are connected to the network.
At each transmission instantti, i ∈ Z≥0, only one node is
granted access to the network by the scheduling protocol.
The transmission sequence{ti}i∈Z≥0

is such thatυ ≤ ti −
ti−1 ≤ τ∗ for i ∈ Z>0, whereτ∗ ∈ R>0 is the maximum
allowable transmission interval (MATI) andυ is the lower
bound on the achievable transmission interval given by the
hardware constraints (see [5]). Notice that the transmission
intervalsti − ti−1 may be time-varying and uncertain.

The plant (1) no longer receivesu = ufb + uff but
û = ûfb + ûff which is generated from the most recently
transmitted feedback and feedforward terms. We distinguish
the feedback termufb from the feedforward termuff be-
cause these may be transmitted via distinct nodes (see Figure
2 for instance). The dynamics of the plant now becomes

ẋp = fp(xp, ûfb + ûff , wp) ∀t ∈ [ti−1, ti]
yp = gp(xp).

(5)

Similarly, the controller (4) no longer receivesyp andyd but
their networked versionŝyp and ŷd

ẋc = fc(xc, ŷp, ŷd, wc) ∀t ∈ [ti−1, ti]
ufb = gc(xc, ŷp, ŷd).

(6)



The variableŝufb, ûff , ŷp, ŷd have the following dynamics

˙̂ufb = f̂fb(xp, xc, xd, ŷp, ŷd, ûfb, ûff)
˙̂uff = f̂ff (xp, xc, xd, ŷp, ŷd, ûfb, ûff)
˙̂yp = f̂p(xp, xc, xd, ŷp, ŷd, ûfb, ûff)
˙̂yd = f̂d(xp, xc, xd, ŷp, ŷd, ûfb, ûff )















∀t ∈ [ti−1, ti],

and

ûfb(t
+
i ) = ufb(ti) + hfb(i, ep(ti), ed(ti), efb(ti), eff (ti))

ûff (t
+
i ) = uff(ti) + hff (i, ep(ti), ed(ti), efb(ti), eff (ti))

ŷp(t
+
i ) = yp(ti) + hp(i, ep(ti), ed(ti), efb(ti), eff (ti))

ŷd(t
+
i ) = yd(ti) + hd(i, ep(ti), ed(ti), efb(ti), eff (ti)),

whereefb = ûfb − ufb ∈ R
neu , eff = ûff − uff ∈ R

neu ,
ep = ŷp − yp ∈ R

nep , ed = ŷd − yd ∈ R
ned (nep = ned )

denote the network-induced errors on the feedback and the
feedforward terms and the plant and the reference outputs,
respectively. The functionŝffb, f̂ff , f̂p, f̂d represent the in-
network processing algorithms, i.e. the way the variables
ûfb, ûff , ŷp, ŷd are generated between two successive
transmission instants. In practice, it is common to use zero-
order-hold devices, i.e. the functionsf̂fb, f̂ff , f̂p, f̂d are equal
to 0. Other algorithms may also be implemented such as
model-based algorithms as explained in [7] for example. We
let f̂fb, f̂ff , f̂p, f̂d depend onxp, xc andxd for the sake of
generality to capture the cases where they depend on a part
of these vector variables. Functionshfb,hff ,hp,hd model
the scheduling mechanism which governs the transmissions
at each instantti between the controller on one hand and the
plant and the reference system on the other hand. Following
the terminology of [5], we refer to the equation below as the
protocol

e(t+i ) = h(i, e(ti)), (7)

wheree = (ep, ed, efb, eff) ∈ R
ne , ne = nep +ned +2neu ,

andh = (hp,hd,hfb,hff ). Since the network is composed
of l nodes, we partitione as e = (e1, . . . , el) (after
reordering, if necessary). The protocol (7) is such that at each
transmission instantti, if nodej gets access to the network,
the corresponding errorej experiences a jump while the
other components ofe remain unchanged; usuallyej(t

+
i ) =

0 but this is not needed in general. It has been shown in
[5] that several common protocols can be modeled by (7)
such as the round-robin (RR) protocol which grants access
to each node at a fixed period, or the maximum error first try-
once-discard (TOD) protocol introduced in [10] which gives
access to the node where the norm of the local network-
induced error,|ej | with j ∈ {1, . . . , l}, is the largest. Model
(7) also captures standard sampled-data systems by setting
h to 0.

Our objective is to provide conditions on the system (1)-
(4) and on the network to guarantee theapproximateconver-
gence of the plant statex towards the reference statexd in
the presence of network-induced communication constraints.

III. H YBRID MODEL FOR NCS

Before presenting the hybrid model, we need to define
new coordinates. As we are interested in the convergence

of xp towardsxd, we introduce the tracking errorξ :=
xp − xd ∈ R

nξ (nξ = nxp
). We also define the error

e := (eξ, efb) ∈ R
ne where eξ := ep − ed ∈ R

neξ .
The idea is to show that theξ- and thee-system dynamics
satisfy some robust asymptotic stability properties w.r.t. the
external perturbation vectorw := (wp, wd, wc) ∈ R

nw and
the network-induced errors(ed, eff) which are regarded
as external disturbances similarly to [9]. This choice is
motivated by the fact thated and eff typically depend on
the reference system (2) and there is a priori no reason why
they should satisfy some asymptotic stability properties even
for very fast transmissions (recall that the MATIτ∗ cannot
be infinitely small as it needs to be such thatτ∗ ≥ υ > 0),
contrary toe as we will show in Section V. For instance,
when zero-order-hold devices are implemented,ėd = −ẏd
and ėff = −u̇ff so that the origin is not an equilibrium
point of the systems ined and eff when ẏd 6= 0 and
u̇ff 6= 0 (which is generally the case when tracking time-
varying trajectories).

We write the overall NCS as a hybrid system using the
framework and the notation of [3]. We use the coordinates
(ξ, xc, xd, e, ed, eff , κ, τ1, τ2) whereκ ∈ Z≥0 is a counter
variable which may be used to describe protocols such as
the RR protocol (see Example 1 in [5]) andτ1, τ2 ∈ R≥0

are clock variables:

ξ̇ = fξ(τ2, ξ, xc, xd, e, ed, eff , w)
ẋc = fc(τ2, ξ, xc, xd, e, ed, w)
ẋd = fd(τ2, xd, w)
ė = ge(τ2, ξ, xc, xd, e, ed, eff , w)
ėd = gd(τ2, ξ, xc, xd, e, ed, eff , w)
ėff = gff (τ2, ξ, xc, xd, e, ed, eff , w)
κ̇ = 0
τ̇1 = 1
τ̇2 = 1























































τ1 ∈ [0, τ∗]

ξ+ = ξ

x+c = xc
x+d = xd
e+ = he(κ, e, ed, eff)
e+d = hd(κ, e, ed, eff)
e+ff = hff (κ, e, ed, eff)

κ+ = κ+ 1
τ+1 = 0
τ+2 = τ2























































τ1 ∈ [υ, τ∗].

(8)

The variableτ1 represents the time elapsed since the last
transmission andτ2 models the time. The vector fields and
mappingsfξ, fc, fd, ge, gd, gff , he, hd andhff are obtained
by direct calculations from the developments in Section II
(the τ2-argument captures their dependency onuff or u̇ff )
and are assumed to be continuous. We similarly writee+p =

hp(κ, e, ed, eff ) and e+fb = hfb(κ, e, ed, eff) which will be
used in the sequel.

For the sake of convenience, we introduceqx :=
(ξ, xc, xd) ∈ Rx and qe := (e, ed, eff ) ∈ Re, where
Rx := R

nξ+nxc+nxd and Re := R
ne+ned

+neff . In that
way, we write q̇x = f(τ2, qx, qe, w), q̇e = g(τ2, qx, qe, w)
andq+e = h(κ, qe) (note thatq+x = qx).



IV. A SSUMPTIONS

Inspired by [1], we present the assumptions we adopt
which can be used as guidelines to design and implement the
controller (3)-(4) for the robust stabilisation of the desired
trajectory.

The protocol has to be such that Assumption 1 holds.
Assumption 1:There exist a functionW : Z≥0 × Re →

R≥0 that is locally Lipschitz inqe, αW , αW ∈ K∞, ρ ∈
[0, 1) andµd, µff ∈ K∞ such that for any(κ, qe) ∈ Z≥0 ×
Re, it holds that

αW (|e|) ≤ W (κ, qe) ≤ αW (|qe|),
W (κ+ 1, h(κ, qe)) ≤ ρW (κ, qe) + µd(|ed|) + µff (|eff |).

(9)
�

In Section VI, we give examples of protocols that verify
Assumption 1. Note that, contrary to similar conditions in
[5], [1], [4], the second inequality in (9) holds with the
additional perturbation termsµd and µff . This difference
is due to the fact that Assumption 1 does not apply to the
protocol (7) but to theqe-system at jumps which, although
related, are different dynamical systems. Indeed, the jumps
of qe are governed by the vector fieldh = (hp−hd, hfb, hff )
while the protocol concerns the variablee whose jumps are
dictated byh = (hp, hd, hfb, hff ). It can be noticed that
analogous conditions to (9) are considered in [8] where input-
to-state stable (ISS) protocols have been defined (except that
hereed andeff are parts of the overall stateqe, while in [8]
there are exogenous disturbances and a similar dissipation
inequality).

We assume that the following exponential growth condi-
tion on theqe-dynamics between two transmission instants
holds, which thus depends on the continuous-time dynamics
of yp, yd, ufb, uff and on the choice of the in-network
processing algorithms.

Assumption 2:There existL ≥ 0 and a continuous
functionH : Rx → R≥0 and νd, νff , νw ∈ K∞ such that
for all qx ∈ Rx, κ ∈ Z≥0, τ2 ∈ R≥0, w ∈ R

nw and almost
all qe ∈ Re
〈

∂W (κ,qe)
∂qe

, g(τ2, qx, qe, w)
〉

≤ LW (κ, qe) +H(qx)

+νd(|ed|) + νff (|eff |) + νw(|w|),
whereW comes from Assumption 1. �

The controller (3)-(4) needs to be designed so that the
condition below is valid.

Assumption 3:There exist a locally Lipschitz function
V : Rx → R≥0, αV , αV ∈ K∞, ε ∈ R>0, γ ∈ R≥0 and
σd, σff , σw ∈ K∞ such that for anyqx ∈ Rx

αV (|ξ|) ≤ V (qx) ≤ αV (|qx|), (10)

and for all qe ∈ Re, τ2 ∈ R≥0, w ∈ R
nw and almost all

qx ∈ Rx

〈∇V (qx), f(τ2, qx, qe, w)〉 ≤ −εV (qx)− εW 2(κ, qe)
−H2(qx) + γ2W 2(κ, qe) + σd(|ed|)
+σff (|eff |) + σw(|w|),

(11)
whereW andH come from Assumptions 1-2. �

According to (10) and (11), the emulated controller does
ensure an ISS-like property for the tracking error dynamics
(i.e. theξ-system) withW, ed, eff , w as inputs. Assumption
3 also implies that theξ-system isL2 stable fromW to H
when there is no errored, eff and no disturbancew. The
constantε in (11) is usually taken sufficiently small.

The last condition is on the MATI. As in [1], we need to
have a network that has a sufficiently high bandwidth so that
the assumption stated below is satisfied.

Assumption 4:The MATI τ∗ satisfiesτ∗ < T (ρ, γ, L)
where

T (ρ, γ, L):=















1
Lr

arctan
(

r(1−ρ)
2 ρ

1+ρ
( γ
L
−1)+1+ρ

)

if γ > L

1
L

1−ρ
1+ρ

if γ = L

1
Lr

arctanh
(

r(1−ρ)
2 ρ

1+ρ
( γ
L
−1)+1+ρ

)

if γ < L,

(12)

with r :=

√

∣

∣

∣

(

γ
L

)2 − 1
∣

∣

∣
andρ ∈ [0, 1) andγ, L ≥ 0 come

from Assumptions 1-3. �

V. M AIN RESULTS

We are ready to state the main result. Its proof is based
on the proof of Theorem 1 in [1] and requires some essen-
tial modifications to handle the effect of the perturbations
induced byed, eff andw.

Theorem 1:Consider system (8) and suppose Assump-
tions 1-4 hold. Then there existβ ∈ KLL, δd, δff , δw ∈ K∞

such that for any initial conditionqx(0, 0) ∈ Rx, qe(0, 0) ∈
Re, τ1(0, 0), τ2(0, 0) ∈ R≥0 and κ(0, 0) ∈ Z≥0 and each
corresponding solution(qx, qe, τ1, τ2, κ, w) of (8) it holds
that

|(ξ(t, j), e(t, j))| ≤ β(|(qx(0, 0), qe(0, 0))| , t, j)
+δd(‖ed‖(t,j)) + δff (‖eff‖(t,j)) + δw(‖w‖(t,j)),

(13)
for all (t, j) in the solution’s domain. Moreover,δd(s) and
δff (s) can be written as(1 + ϕ(τ∗))ψ(υ−1)δ(s) for s ≥ 0
whereδ, ϕ, ψ ∈ K∞. �

Remark 1:The property (13) is obtained by constructing
a hybrid Lyapunov functionU which satisfies an ISS-like
property on flows but not at jumps. Thus, we use the fact
thatU flows for some time (at leastυ seconds, see Section
II-B) before jumping in order for the decreasing property
of U on flows to compensate, in some sense, the potential
increase ofU at jumps. �

Remark 2:The norms of the errors‖ed‖(t,j) , ‖eff‖(t,j)
and the functionsδd, δff in (13) depend on the MATIτ∗. We
may find upper bounds for‖ed‖(t,j) and‖eff‖(t,j) on a case-
by-case basis. For instance, when zero-order-hold devicesare
implemented and the RR protocol is selected, we can proceed
like in (31) in [9] (where delays are taken into account but
not scheduling). On the other hand, the functionsδd, δff

also depend on the minimum timeυ between two jumps.
We see thatδd, δff go to infinity asυ tends to0. This fact
is due to our stability analysis which requires to decrease
for some timeυ during flows in order to guarantee stability,
see Remark 1. We think that a different analysis inspired by



the small gain arguments used in [8] may help to avoid this
issue. Nevertheless, our approach is justified by the fact that
we do not aim at estimating these gains and that we rely
on a Lyapunov-based proof which allows us to derive easily
computable MATI bounds. �

Theorem 1 shows that(ξ, e) tends to a ball centered at
the origin and of radiusδd(‖ed‖(t,j)) + δff (‖eff‖(t,j)) +
δw(‖w‖(t,j)) as(t, j) grows. Thus,ξ indeed converges to the
origin up to some errors due tow, as expected, but also due
to eff anded which are induced by the network, similar to
[9]. In practice, we want these errors to be sufficiently small
and it might then be convenient to have some estimates of
δd(‖ed‖(t,j)) andδff (‖eff‖(t,j)). While it may be possible
to bound theL∞-norm of ed and eff (see Remark 2), we
know that the expressions forδd andδff we can deduce from
the proof of Theorem 1 are subject to some conservatism.
Nevertheless, the result in Theorem 1 provides the following
qualitative insights on how to reduce the impact of the
network-induced errorseff anded on the tracking errors:

• For δff (‖eff‖(t,j)): first, when uff can be directly
implemented at the actuators’ stage, we haveeff ≡ 0.
When this is not possible, some previews ofuff might
be considered as in [9] to reduce the error due toeff .

• For δd(‖ed‖(t,j)): it can be shown thatδd can be written
asδd(s) = α

(

µd(s) + νd(s) + σd(s)
)

for s ≥ 0, where
α is some class-K∞ function (which depends onV , W ,
τ∗ andυ) andµd, νd, σd come from Assumptions 1-3.
We show in Section VI that it is possible to setµd = 0
by selecting an appropriate protocol or by appropriately
implementing the emulated controller.

VI. ON THE CHOICE OF THE PROTOCOL

In this section, we give examples of protocols that ensure
the satisfaction of Assumption 1. We first show that this
assumption is verified when the protocol (7) is Lyapunov
UGAS (as defined below) under mild conditions.

Definition 1 ([6]): The protocol (7) is said to beLyapunov
uniformly globally asymptotically stable (UGAS)if there
existW : Z≥0×R

ne → R≥0, αW, αW ∈ K∞ andρ ∈ [0, 1)
such that for allκ ∈ Z≥0 and e ∈ R

ne the following is
satisfied (recalle = (ep, ed, efb, eff )):

α
W
(|e|) ≤ W(κ, e) ≤ αW(|e|) (14)

W(κ+ 1,h(κ, e)) ≤ ρW(κ, e). (15)

�

We are now ready to state the main result of this section.
Proposition 1: Consider the protocol (7) and suppose the

following conditions hold:

(i) For anyj ∈ {1, . . . , ne} andi ∈ Z≥0, |hj(i, e(ti))| ≤
|ej(ti)| with h = (h1, . . . ,hne

) whereh is given in
(7).

(ii) The protocol (7) is Lyapunov UGAS with a function
W : Z≥0×R

ne → R≥0 which is differentiable almost
everywhere ine and satisfies for allκ ∈ Z≥0 and

almost alle ∈ R
ne ,

∣

∣

∣

∂W(κ,e)
∂e

∣

∣

∣
≤M , whereM ≥ 0.

Then Assumption 1 is verified withW (κ, e) =
W(κ, eξ, 0, efb, 0), αW (s) = α

W
(s), αW (s) = αW(s),

µd(s) = 2M(1 + ρ)s, µff (s) = M(1 + ρ)s for s ≥ 0 and
ρ = ρ. �

Note that item (i) in Proposition 1 simply states that the local
errors do not increase at each transmission which is the case
for all relevant protocols. The conditions of Proposition 1are
satisfied by the RR and the TOD protocol in view of Section
IV in [5].

Since we are interested in a different stability property
for the e-system at jumps than in [5], we can propose an
alternative Lyapunov function for the RR protocol, based on
Proposition 4 in [5], which ensures stronger properties and
may lead to less conservative MATI bounds.

Lemma 1:Suppose the protocol (7) is the RR proto-
col, then Assumption 1 is satisfied with:W (κ, e) =
√

∞
∑

i=κ

|φ(i, κ, e)|2, whereφ(i, κ, e) is the solution to1 e+ =

(hp(κ, eξ), hfb(κ, efb)) at time i starting at timeκ with
initial conditione, αW (s) = s, αW (s) =

√
ls, µd(s) =

√
ls

andµff (s) = 0 for s ≥ 0 andρ =
√

l−1
l

. Moreover,µd = 0

if and only if hp = hd. �

We now propose a new TOD-like protocol, that we call
the TOD-tracking protocol. Consider the scenarios where
each corresponding components ofyp and yd are assigned
to the same nodes2. In that way, a subvector(e, eff )j of
(e, eff), j ∈ {1, . . . , l}, can be associated to each of the
l nodes of the network. The idea is to grant access to
the node where|(e, eff )j | is the biggest (and not|ej |,
j ∈ {1, . . . , l}, as in the classical TOD protocol). We define
the functionh in (7) as h(κ, e) = (I − Ψ(e))e where
Ψ(e) = (δ1(e)In1

, . . . , δl(e)Inl
) where n1 + . . . + nl =

ne and δj(e) = 1 if j = min(argmaxj |(e, eff )j |) and
δj(e) = 0 otherwise. The lemma below shows that the TOD-
tracking protocol satisfies Assumption 1. It directly follows
from Proposition 5 in [5].

Proposition 2: Suppose the protocol (7) is the TOD-
tracking protocol, then Assumption 1 is satisfied with
W (qe) = |(e, eff)|, αW (s) = s, αW (s) = s, µd(s) =

µff (s) = 0 for s ≥ 0 andρ =
√

l−1
l

. �

The TOD-tracking protocol ensures Assumption 1 holds
with µd = µff = 0, which is a priori not the case for the
TOD protocol according to Proposition 1. Thus, the TOD-
tracking protocol may reduce the error of(ξ, e), and hence
improve tracking performance in view of the discussion in
Section V.

Remark 3:When the control input is sent over the net-
work as ufb + uff , like in the example in Section VII,
we can set the protocol to grant access to the node where
|(eξ, efb + eff )j | is the largest (and not|(eξ, efb, eff)j | as

1It has to be noted thathp (respectivelyhd) only depends onκ andep
(respectivelyed) for the RR protocol, see Example 1 in [5].

2The TOD-tracking protocol can also be used when the nodes which
transmityp (equivalentlyyd) have access toyd (equivalentlyyp). That is
typically the case whenyd is a given trajectory which can be implemented
on the nodes.



RR TOD TOD-tracking

Assumption 4 0.0061 0.0105 0.0105

Simulations 0.150 0.170 0.170

TABLE I

MATI BOUNDS IN SECTION VII.

above). We then takeW (qe) = |(eξ, efb + eff)| which
satisfies Assumption 1 with the same functionsαW , αW ,
µd, µff and constantρ. �

VII. I LLUSTRATIVE EXAMPLE

We apply the results developed in the previous sections
to the tracking control of a single-link robot arm whose
dynamics can be written aṡx1 = x2, ẋ2 = −a sin(x1)+ bu,
wherex1 is the angle,x2 is the rotational velocity which are
both measured,u is the input torque anda, b > 0 are fixed
parameters. The robot arm has to track the reference system
ẋ1,d = x2,d, ẋ2,d = −a sin(x1,d) + buff , wherex1,d and
x2,d are measured anduff (t) = 10 sin(50t). When there
is no communication constraint, the asymptotic convergence
of (x1, x2) towards(x1,d, x2;d) is ensured using the control
input u = ufb + uff where ufb = b−1

(

a(sin(x1) −
sin(x1,d))− (x1−x1,d)− (x2−x2,d)

)

. We consider the case
where the controller is implemented using zero-order-hold
devices and communicates with the robot arm via a network
composed of3 nodes forx1, x2 andu, respectively (l = 3).
Thus, we assume that3 x1,d, x2,d, uff are directly available
to the controller as in Figure 1. The protocol is either the
RR, the TOD or the TOD-tracking. We consider the function
W in Lemma 1 for the RR protocol,W (e) = |e| for the
TOD protocol andW (qe) = |(eξ, efb + eff)| for the TOD-
tracking protocol (see Remark 3). In that way, Assumption
1 is valid, see Section VI. By takinga = 9.81 · 0.5 and
b = 2, we also have that Assumptions 2 and 3 hold with
V (ξ) = αξ21 + βξ1ξ2 + δξ22 whereα = 3.05, β = 1.05,
δ = 5.05. The obtained MATI bounds are summarized and
compared to the bounds estimated via simulations in Table
I. It has to be emphasized that our method strongly relies
on the choice of the Lyapunov functionsV andW and that
other functions may lead to larger bounds. We notice that the
bounds for the TOD and the TOD-tracking protocol are the
same according to Assumption 4 and in simulations. Interest
in the TOD-tracking is justified by the fact that it may reduce
the impact of the errorsed andeff on the tracking error as
discussed below Proposition 2 and illustrated by Figure 3.
On the other hand, we see in Figure 4 that the convergence
error is of the same order of magnitude when using the TOD-
tracking and the RR protocol; the advantage of the TOD-
tracking is that we can consider larger transmission intervals
(see Table I).

VIII. C ONCLUSIONS

The Lyapunov-based emulation approach investigated in
[1] for the stabilization of equilibrium points of NCS has

3We make this assumption in order to be able to consider the TOD-
tracking protocol (see Section VI).
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Fig. 3. Tracking error forτ∗ = 0.006.
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Fig. 4. Tracking error forτ∗ = 0.006.

been extended to tracking control of time-varying trajec-
tories. To handle the specific features of tracking control
for NCS, we have proposed an appropriate hybrid model.
We have presented sufficient conditions under which an
approximate tracking control objective is achieved. We have
explained how the controller can be implemented and how
the protocol can be set up in order to reduce the impact of
some of the network-induced errors on the tracking error.
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